国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

次線性算子的多線性交換子在齊型Morrey空間上的有界性

2014-08-08 02:56鄧宇龍
關(guān)鍵詞:積分算子有界二階

趙 蕾,鄧宇龍

(1.西藏大學(xué)理學(xué)院,西藏拉薩850000; 2.湖南科技學(xué)院數(shù)學(xué)與計(jì)算科學(xué)系,湖南永州425199)

為了研究二階橢圓偏微分方程解的局部性質(zhì),C.B.Jr.Morrey[1]引 進(jìn) 了 齊 型 Morrey 空 間Lp,λ(Rn)(1≤p<∞,0<λ<n).Morrey空間在二階橢圓微分方程解的局部性質(zhì)研究中有著廣泛的應(yīng)用[2-3].

交換子理論在算子理論研究中有極其重要的作用.A.P.Calderón[4]于1965 年研究了一類交換子,它出現(xiàn)在沿Lip曲線的Cauchy積分問(wèn)題中[5].R.Coifman等在文獻(xiàn)[6]中證明了奇異積分交換子Tb的Lp(Rn)有界性.C.Pérez等[7]定義了奇異積分多線性交換子Tb(f),且證明了Tb(f)的Lp(Rn)有界性.

本文主要討論了次線性算子T與BMO函數(shù)生成的多線性交換子Tb在齊型Morrey空間上的有界性.得到了在Lp(Rn)有界的情況下,Tb是有界的.設(shè)次線性算子T:

其中,f∈L1(Rn),f具有緊支撐且?x■supp(f),不等式

成立.在調(diào)和分析中有許多算子滿足(1)式,例如Calderón-Zygmund 算子、C.Fefferman 奇異乘子、R.Fefferman奇異積分算子、Riui-Stein震蕩積分算子、臨界階的 Bochner-Riesz算子等[8].更多關(guān)于滿足(1)式的次線性算子T和它的交換子Tb的研究參見(jiàn)文獻(xiàn)[9-15].

1 主要定理

2 定理的證明

[1]Morrey C B Jr.On the solution of quasi:linear partial differential equations[J].Trans Am Math Soc,1938,43(1):126.

[2]Chiarenza F,F(xiàn)rasca M.Morrey space and Hardy-Littlewood maximal function[J].Rend Math,1987,7:273-279.

[3]Fazio G D,Ragusa M A.Interior estimates in morrey spaces for strong solutions to nondivergence from equations with discontinuous coefficients[J].J Funct Anal,1993,112(2):164.

[4]Calderón A P.Commutators of singular integral opertors[J].Proc Nat Acad Sci USA,1965,53:1092-1099.

[5] Calderón A P.Cauchy integrals on Lipschitz curves and related operators[J].Proc Nat Acad Sci USA,1977,74(4):1324-1327.

[6]Coifman R,Rochberg R,Weiss G.Fractorization theorems for Hardy spaces in several variables[J].Ann Math,1976,103:611-635.

[7]Pérez C,Trujllo-Gonzalez G.Sharp weighted estimates for multilinear commutators[J].London Math Soc,2002,65:672-692.

[8]Lin Y,Lu S Z.Multilinear Calderon-Zygmund operator on Morrey type spaces[J].Anal Theory Appl,2006,22(4):387-400.

[9]Fan D,Lu S Z,Yang D C.Regularity in morrey spaces of strong solutions to nondivergence elliptic equations with VMO coefficients[J].Georgian Math,1998,5:425-440.

[10]曹俊峰,蔡宇澤.交換子在Morrey-Herz空間上的有界性[J].蘇州科技學(xué)院學(xué)報(bào):自然科學(xué)版,2007,24(3):15-19.

[11]Tao S P,Wu J L,Sun X C.Boundedness for commutators on homogenceneous Morrey-Herz spaces[J].J Mathematics,2009,29(1):21-26.

[12]徐莉芳.齊次Morrey-Herz空間上交換子的有界性[J].北京師范大學(xué)學(xué)報(bào):自然科學(xué)版,2004,33(3):10-14.

[13]Bandaliev R A.The boundedness of certain sublinear operator in the weighted variable Lebesgue spaces[J].Czechoslovak Math J,2010,60:327-337.

[14]Guliyev V S,Aliyev S S,Karaman T.Boundedness of a class of sublinear operator and their commutators on generalized Morrey spaces[J/OL].Abstract and Applied Analysis,2011,2011:356041.http://dx.doi.org/10.1155/2011/356041.

[15]王麗娟,束立生.一類次線性算子交換子在Morrey-Herz空間上的有界性[J].南京大學(xué)學(xué)報(bào):數(shù)學(xué)半年刊,2013,30(1):15-19.

[16]Lu S Z.Four Lectures on RealHpSpaces[M].Singapore:World Scientific Publishing Company,1995.

[17]劉紅海.Bochner-Riesz極大多線性交換子的有界性[D].長(zhǎng)沙:湖南大學(xué),2007.

猜你喜歡
積分算子有界二階
齊次核誘導(dǎo)的p進(jìn)制積分算子及其應(yīng)用
指數(shù)有界雙連續(xù)n階α次積分C群的次生成元及其性質(zhì)
一類二階迭代泛函微分方程的周期解
一類具低階項(xiàng)和退化強(qiáng)制的橢圓方程的有界弱解
一類二階中立隨機(jī)偏微分方程的吸引集和擬不變集
一類振蕩積分算子在Wiener共合空間上的有界性
二階線性微分方程的解法
一類二階中立隨機(jī)偏微分方程的吸引集和擬不變集
平均振蕩和相關(guān)于具有非光滑核的奇異積分算子的Toeplitz型算子的有界性
淺談?wù)?xiàng)有界周期數(shù)列的一些性質(zhì)