馬建國 蔡彥麗 莊晴光
中圖分類號:TP393 文獻(xiàn)標(biāo)志碼:A 文章編號:1009-6868 (2014) 04-0037-03
摘要: 指出移動(dòng)網(wǎng)絡(luò)的數(shù)據(jù)流量無法一直依靠增加基地臺(tái)的數(shù)組天線個(gè)數(shù)提升,認(rèn)為電磁波在復(fù)雜的立體空間傳播所產(chǎn)生各種穿透與反射的波傳遞現(xiàn)象深深影響了數(shù)據(jù)流量。提出了可能的有效物理方法或路徑,用以克服高速移動(dòng)、多媒體寬頻帶通信的諸多困難。
關(guān)鍵詞: 電磁理論;高速移動(dòng);多媒體;寬頻帶通信;遠(yuǎn)場;近場
Abstract: In this paper, we point out that the data flow of mobile communication cannot always rely on the increasing of antenna elements of base station. Electromagnetic propagation in the complex environment mainly affects the quality of wireless data transmission. We propose effective physical methods for overcoming many difficulties with high speed mobile, multimedia broadband communication.
Key words: electromagnetic theory; high-speed mobile; multimedia; broadband communication; far field; near field
1電磁場與移動(dòng)無線通信
伴隨3G的普及和4G無線移動(dòng)通信的來臨,基站數(shù)目隨之增加,以滿足高速而大量的數(shù)據(jù)傳輸量。1990年的第2代移動(dòng)通信數(shù)據(jù)傳輸率小于200 kbit/s,到2000年的第3代移動(dòng)通信數(shù)據(jù)傳輸率小于2 Mbit/s,再到2010年的第4代移動(dòng)通信,數(shù)據(jù)傳輸率可達(dá)到100 Mbit/s。這個(gè)趨勢可由香農(nóng)信道容量理論來描述[1]:
[C=iMBilog21+PSPN] (1)
在(1)中, Bi是信道帶寬,PS是信號強(qiáng)度,PN是干擾強(qiáng)度。從調(diào)變技術(shù)的演進(jìn)過程可看出,為了更有效地提高傳輸數(shù)據(jù)量,科學(xué)家已把調(diào)變方法從時(shí)間域轉(zhuǎn)到頻率域,再轉(zhuǎn)到碼域中。唯一可以繼續(xù)開拓的只有空間域了,可見將來5G的技術(shù)關(guān)鍵將是空間信道技術(shù)。通過增加每個(gè)基站的天線數(shù)或增加通道數(shù)Bi,或增加信號功率對雜波功率比,都可以增加信號通載量。而使用多輸入多輸出(MIMO)來增加無線基站的傳送數(shù)據(jù)能力,已是相當(dāng)普遍的做法了。基站或基站天線數(shù)的增加,也已無法讓無線信道容量呈線性增加,甚至當(dāng)天線增加到移動(dòng)數(shù)量后信號容量也無法再提升。從上述觀察我們可看出現(xiàn)今的通信技術(shù)無論在硬件或軟件似乎達(dá)到某一極限。這對4G移動(dòng)通信的改進(jìn)以及未來5G移動(dòng)通信的設(shè)計(jì)都蒙上一層陰影。是不是現(xiàn)今無線移動(dòng)通信理論面臨無法突破的障礙?頻寬不足是真實(shí)的主因嗎?文章將從電磁理論與技術(shù)角度,探討電磁波傳導(dǎo)現(xiàn)象,并結(jié)合香農(nóng)信道容量理論的實(shí)際使用狀況進(jìn)行討論。
2 近場、遠(yuǎn)場的電磁現(xiàn)象
及其影響
在香農(nóng)信道容量理論中PS及PN是代表兩個(gè)標(biāo)量(正實(shí)數(shù)),其前提條件是天線的輻射場是遠(yuǎn)場。目前移動(dòng)通信信道分析中普遍采用如下的一些假設(shè):
·不考慮發(fā)射天線和接收天線的幾何尺寸。
·不考慮接收發(fā)射天線間的幾何走向,也就是假設(shè)接發(fā)收天線相互水平放置或垂直放置都不會(huì)對信道產(chǎn)生任何的影響。
·不考慮接發(fā)收天線幾何大小的不同。
·電磁波在空間的傳播是標(biāo)量,可利用射線跟蹤法來估算多徑。
·天線輻射的電磁波是在自由無界的空間。
這時(shí)PS及PN所代表的物理量必須是遠(yuǎn)場才有可能實(shí)現(xiàn)。如果是近場的情況,PS及PN是復(fù)數(shù),此時(shí)香農(nóng)信道容量理論無法代入復(fù)數(shù)量。
從電磁場理論可以知道,自由平面電磁波是一個(gè)矢量波,并且波的特征和天線的放置有關(guān),但實(shí)際的天線都是假設(shè)在離地面一定高度的地方,而地面均被假設(shè)是一個(gè)良好的無限大導(dǎo)體。這時(shí)候除去射線跟蹤法中描述的LoS路徑外,還存在著許多其他的波傳輸路徑,最主要的是地面發(fā)射波和表面波。同樣,當(dāng)天線輻射的電磁波照射到立體的建筑物表面時(shí),也會(huì)產(chǎn)生反射波和表面波。無論是基站的設(shè)置或是室內(nèi)Wi-Fi 接入點(diǎn)的架設(shè),人們往往沒有考慮到上述的這些情形。
3 近場、遠(yuǎn)場表面波
天線種類非常多,除了熟知的方向性天線如號角天線,電流流動(dòng)雙極式天線、單極式天線或磁流流動(dòng)的回路天線,另外還有貼片天線等[2-4]。這些不同的天線置于實(shí)際的無線通信環(huán)境中,其輻射場型(遠(yuǎn)場)往往產(chǎn)生大幅變化。因?yàn)?,有所謂的鏡像電流伴隨邊界條件而產(chǎn)生[5-8]。由于是矢量的電磁場,天線的輻射源和它的鏡像所產(chǎn)生的綜合場型會(huì)產(chǎn)生建設(shè)性或破壞性電磁輻射場,這使得遠(yuǎn)場場型更加不易掌握。因此,天線的擺設(shè),譬如極化方向、天線和周邊環(huán)境的物理距離,譬如天線Aperture,都會(huì)對遠(yuǎn)場輻射產(chǎn)生很大影響[9-10]。有兩個(gè)值得注意的問題:(1) 多遠(yuǎn)才是遠(yuǎn)場?一般可用d > 2D 2/λ0來評估距離天線多遠(yuǎn)才是遠(yuǎn)場。其中,d代表物體距天線的距離,D代表天線的有效輻射面積,λ0代表天線操作頻率對應(yīng)的波長。假設(shè)一個(gè)1.0 GHz雙極化天線懸掛在20 m空中,其遠(yuǎn)場大約是2.67 km之外。我們可以推測,大部分時(shí)候,我們是在天線的近場范圍內(nèi)工作。同時(shí),天線也會(huì)激發(fā)出地面的表面波。表面波的存在,使電磁傳播在地表更復(fù)雜。雖然表面波的研究已有數(shù)十年了,但是它的存在對電磁無線通道的影響,迄今尚未有完整的研究。天線所發(fā)出的電磁波,入射到地表時(shí),除了反射和折射外,地表的表面波也會(huì)和入射波一起作用。(2) 是否能對表面波多加利用?我們不僅可以增加通道,還可以改進(jìn)無線移動(dòng)通信品質(zhì)。眾所周知,光是電磁波。太陽離我們很遠(yuǎn),可以假設(shè)成遠(yuǎn)場合電源。即使如此,當(dāng)陽光照射到水面時(shí)(水面這時(shí)候可以假設(shè)成理想導(dǎo)體表面),水中不僅僅是一個(gè)太陽的鏡像。我們常??吹揭粭l太陽的帶子在水面上。如果把我們的眼睛當(dāng)作接收天線(點(diǎn)源),我們除了接收到了太陽直射光線和鏡像光線(射線跟蹤法可以描述)外,還收到了水面表面波。
4 近場的波阻抗
天線在遠(yuǎn)場時(shí),有明確的輻射場型;而在近場時(shí),它的輻射場型隨觀察點(diǎn)到天線的距離變化而變化[11-14]。因此,近場輻射場型是不確定的。利用精準(zhǔn)全波電磁場論我們可計(jì)算在近場時(shí),電磁波的傳播方向由電場(Et)及磁場(Ht)決定, 所呈現(xiàn)的波阻抗特性。波的阻抗(Z0)由電場(Et)除以磁場(Ht)計(jì)算得出。由于電場與磁場均為向量,包含大小與相位。因此,波的阻抗為復(fù)數(shù)值,不僅隨距離變化,也隨天線極化方向(或天線之?dāng)[設(shè))、天線的性質(zhì)、天線所處環(huán)境等等而有所不同,其特性類似于一般微小化天線的輸入阻抗特性。由此,如需要設(shè)置近場的天線,可借精密電磁估算出復(fù)數(shù)的波阻抗。由此,我們得以將天線電路系統(tǒng)優(yōu)化。譬如采用共軛復(fù)數(shù)阻抗匹配來達(dá)到功率匹配目的,這和一般將天線輸入端視為某一正實(shí)數(shù)之阻抗匹配設(shè)計(jì)是截然不同的,也解釋了為什么實(shí)際使用香農(nóng)信道容量理論一直無法達(dá)到它應(yīng)有的理論的上限值。
5 陣列天線的模型
無線通信理論工作者及工程師,往往視天線陣列(兩支天線或更多)中的天線為標(biāo)量輻射源,根據(jù)此假設(shè)推導(dǎo)出MIMO使用狀況的空間通道模型,而忽略了實(shí)際上電磁場的是運(yùn)作在矢量場的狀況。雖然大量的文獻(xiàn)報(bào)導(dǎo)了天線(輻射源)與天線(輻射源)之間的藕合對通道的影響,但是卻忽略了它們是電磁信號源。無論何種形式,都是矢量信號源,必須考慮天線的極化現(xiàn)象,加上天線尺寸的大小和形狀[2]皆改變了電磁輻射場型。因此,只有準(zhǔn)確地計(jì)算Maxwell方程式所描述的物理狀況才能讓陣列天線信號處理變得有意義。陣列天線的近場模型,不僅具有單一天線時(shí)的復(fù)數(shù)波阻抗,同時(shí)其藕合天線陣列自身也產(chǎn)生所謂多模的狀態(tài)。而任意被激發(fā)出的陣列天線信號,即是這種多模天線狀態(tài)的線性組合[15]。電磁場是一個(gè)矢量場的基本物理事實(shí),一方面讓標(biāo)量場假設(shè)所導(dǎo)出的信號處理方式變得過度簡化,另一方面也騰出一個(gè)大幅改進(jìn)現(xiàn)今信號處理天線陣列的巨大空間,得以改善4G無線移動(dòng)通信,或進(jìn)一步研發(fā)更有效率的無線移動(dòng)通信的空間使用,但這都可源自精確掌握實(shí)際電磁場的電路效應(yīng)。
6 結(jié)束語
文章簡述了電磁波在無線電環(huán)境中如何扮演重要角色但又被忽略的情形。此現(xiàn)象若不予以適當(dāng)改進(jìn), 則無法對信號處理進(jìn)行最佳化設(shè)計(jì)。這是因?yàn)榇蠓冗`背物理現(xiàn)象, 則不可能有最佳設(shè)計(jì),因此無法讓無線電通道傳播更大量且更高速的數(shù)據(jù)。另一方面,用精確電磁計(jì)算得到的天線輻射模型,無論是近場或遠(yuǎn)場,都提供了最佳化微波通信系統(tǒng)電路的解決方向,從而可大幅提升信號與雜波的比值(S/N)。因此,無線電通道和天線系統(tǒng)間電磁物理現(xiàn)象的掌握,對4G、5G等高速移動(dòng)無線通信,會(huì)有重要的貢獻(xiàn)。
參考文獻(xiàn)
[1] SHANNON C E. Communication in the presence of noise [J]. Proceedings of the IRE, 1949(1): 10-21.
[2] MANTEUFFEL D, BAHR A, WALDOW P, WOLFF I. Numerical analysis of absorption mechanisms for mobile phones with integrated multiband antennas [J]. Antennas and Propagation Society International Symposium, 2001(3): 82-85.
[3] LIANG M C,LAI K L,LIN S T. The effect of finite ground on a rectangular C-patch antenna [J]. Antennas and Propagation Society International Symposium, 2003(2): 732-735.
[4] MOK W C, WONG S H, LUK K M, LEE K F. Single-Layer Single-Patch Dual-Band and Triple-Band Patch Antennas [J]. IEEE Transactions on Antennas and Propagation, 2013 (61): 4341-4344.
[5] BILGIC W, RENNINGS A, WOLFF I. Influence of the grid density of a wavelet-transformed (WT) FDTD on the accuracy of scattering parameters [J]. Antennas and Propagation Society International Symposium, 2006: 1819-1822.
[6] MIRHADI S, SOLEIMANI M, ABDOLALI A. Analysis of finite ground plane effects on antenna performance using discrete Green's function [J]. 2012 15th International Symposium on Antenna Technology and Applied Electromagnetics, 2012: 1-3.
[7] ECHEVERRI BAUTISTA M A, FRANCAVILLA M A , VIPIANA F, VECCHI G. A hierarchical fast solver for EFIE-MoM analysis of multiscale structures at very low frequencies [J]. IEEE Transactions on Antennas and Propagation, 2014(3): 1523-1528.
[8] FAYYAZ N, ABBASPOUR T A, SAFAVI N S, HODJAT N. Design and analysis of a circular patch antenna on a finite conical ground plane [J]. Antennas and Propagation Society International Symposium, 1996(1): 680-683.
[9] MILLARD X, LIU Q H. A fast volume integral equation solver for electromagnetic scattering from large inhomogeneous objects in planarly layered media [J]. IEEE Transactions on Antennas and Propagation, 2003(9): 2393-2401.
[10] YUAN M, SARKAR T K, KOLUNDZIJA B. Solution of large complex problems in computational electromagnetics using higher-order basis in MoM with out-of-core solvers [J]. Antennas and Propagation Magazine, 2006(2):55-62.
[11] SARKAR T K. Analysis of arbitrarily oriented thin wire antennas over a plane imperfect ground [J]. Archiv fuer Elektronik und Uebertragungstechnik, 1977(31): 449-457.
[12] ZIVKOVIC Z, SENIC D, BODENDORF C, SKRZYPCZYNSKI J, SAROLIC A. Radiation pattern and impedance of a quarter wavelength monopole antenna above a finite ground plane [J]. 2012 20th International Conference on Software, Telecommunications and Computer Networks (SoftCOM), 2012: 1-5.
[13] DYAB W M, SARKAR T K, SALAZAR-PALMA M. A physics-based greens function for analysis of vertical electric dipole radiation over an imperfect ground plane [J]. IEEE Transactions on Antennas and Propagation, 2013(8): 4148-4157.
[14] CHATTERJEE D, CHETTIAR E. Analytical calculation of input impedance of rectangular microstrip patch antennas on finite ground planes [J]. IEEE/ACES International Conference on Wireless Communications and Applied Computational Electromagnetics, 2005(2): 960-963.
[15] HU C N, TZUANG C K C. Analysis and design of large leaky-mode array employing the coupled-mode approach [J]. IEEE Transactions on Microwave Theory and Techniques, 2001(4): 629-636.
[8] FAYYAZ N, ABBASPOUR T A, SAFAVI N S, HODJAT N. Design and analysis of a circular patch antenna on a finite conical ground plane [J]. Antennas and Propagation Society International Symposium, 1996(1): 680-683.
[9] MILLARD X, LIU Q H. A fast volume integral equation solver for electromagnetic scattering from large inhomogeneous objects in planarly layered media [J]. IEEE Transactions on Antennas and Propagation, 2003(9): 2393-2401.
[10] YUAN M, SARKAR T K, KOLUNDZIJA B. Solution of large complex problems in computational electromagnetics using higher-order basis in MoM with out-of-core solvers [J]. Antennas and Propagation Magazine, 2006(2):55-62.
[11] SARKAR T K. Analysis of arbitrarily oriented thin wire antennas over a plane imperfect ground [J]. Archiv fuer Elektronik und Uebertragungstechnik, 1977(31): 449-457.
[12] ZIVKOVIC Z, SENIC D, BODENDORF C, SKRZYPCZYNSKI J, SAROLIC A. Radiation pattern and impedance of a quarter wavelength monopole antenna above a finite ground plane [J]. 2012 20th International Conference on Software, Telecommunications and Computer Networks (SoftCOM), 2012: 1-5.
[13] DYAB W M, SARKAR T K, SALAZAR-PALMA M. A physics-based greens function for analysis of vertical electric dipole radiation over an imperfect ground plane [J]. IEEE Transactions on Antennas and Propagation, 2013(8): 4148-4157.
[14] CHATTERJEE D, CHETTIAR E. Analytical calculation of input impedance of rectangular microstrip patch antennas on finite ground planes [J]. IEEE/ACES International Conference on Wireless Communications and Applied Computational Electromagnetics, 2005(2): 960-963.
[15] HU C N, TZUANG C K C. Analysis and design of large leaky-mode array employing the coupled-mode approach [J]. IEEE Transactions on Microwave Theory and Techniques, 2001(4): 629-636.
[8] FAYYAZ N, ABBASPOUR T A, SAFAVI N S, HODJAT N. Design and analysis of a circular patch antenna on a finite conical ground plane [J]. Antennas and Propagation Society International Symposium, 1996(1): 680-683.
[9] MILLARD X, LIU Q H. A fast volume integral equation solver for electromagnetic scattering from large inhomogeneous objects in planarly layered media [J]. IEEE Transactions on Antennas and Propagation, 2003(9): 2393-2401.
[10] YUAN M, SARKAR T K, KOLUNDZIJA B. Solution of large complex problems in computational electromagnetics using higher-order basis in MoM with out-of-core solvers [J]. Antennas and Propagation Magazine, 2006(2):55-62.
[11] SARKAR T K. Analysis of arbitrarily oriented thin wire antennas over a plane imperfect ground [J]. Archiv fuer Elektronik und Uebertragungstechnik, 1977(31): 449-457.
[12] ZIVKOVIC Z, SENIC D, BODENDORF C, SKRZYPCZYNSKI J, SAROLIC A. Radiation pattern and impedance of a quarter wavelength monopole antenna above a finite ground plane [J]. 2012 20th International Conference on Software, Telecommunications and Computer Networks (SoftCOM), 2012: 1-5.
[13] DYAB W M, SARKAR T K, SALAZAR-PALMA M. A physics-based greens function for analysis of vertical electric dipole radiation over an imperfect ground plane [J]. IEEE Transactions on Antennas and Propagation, 2013(8): 4148-4157.
[14] CHATTERJEE D, CHETTIAR E. Analytical calculation of input impedance of rectangular microstrip patch antennas on finite ground planes [J]. IEEE/ACES International Conference on Wireless Communications and Applied Computational Electromagnetics, 2005(2): 960-963.
[15] HU C N, TZUANG C K C. Analysis and design of large leaky-mode array employing the coupled-mode approach [J]. IEEE Transactions on Microwave Theory and Techniques, 2001(4): 629-636.