黃 潔,韓惠麗
(寧夏大學(xué) 數(shù)學(xué)計(jì)算機(jī)學(xué)院,銀川750021)
分?jǐn)?shù)階微積分及其方程廣泛應(yīng)用于力學(xué)和種群?jiǎn)栴}等領(lǐng)域中.分?jǐn)?shù)階積分(微分)方程的解析解求解較困難,且方法少.目前,分?jǐn)?shù)階積分(微分)方程的數(shù)值解法主要有同倫攝取法[1]、Taylor展式法[2]、Adomin分解法[3]和小波基方法[4-10]等.由于小波基的正交性使化簡(jiǎn)后代數(shù)方程組的矩陣是稀疏的,因此小波方法廣泛應(yīng)用于數(shù)值求解積分方程和偏微分方程問(wèn)題中.文獻(xiàn)[5-6]分別采用CAS小波的分?jǐn)?shù)階積分算子矩陣和第二類Chebyshev小波(SCW)的分?jǐn)?shù)階積分算子矩陣研究了非線性分?jǐn)?shù)階Volterra積分微分方程的數(shù)值解問(wèn)題,得到了相應(yīng)的結(jié)果.本文利用Legendre小波求解非線性分?jǐn)?shù)階Volterra積分微分方程.與文獻(xiàn)[5-6]相比,相同點(diǎn)是將非線性分?jǐn)?shù)階Volterra積分微分方程轉(zhuǎn)化為非線性代數(shù)方程組求解,不同點(diǎn)是本文通過(guò)Legendre小波和分?jǐn)?shù)階微積分的概念推出了Legendre小波的分?jǐn)?shù)階積分算子矩陣,并證明了這種方法的誤差邊界值.
考慮如下形式的第二類非線性分?jǐn)?shù)階Volterra積分微分方程:
滿足初始條件
其中:f(x),k(x,t)∈L2([0,1])為已知函數(shù);Dα為Caputo分?jǐn)?shù)階微分算子;y(x)為未知函數(shù);q為正整數(shù).
定義1[11]在[0,1)上定義Legendre小波如下:
對(duì)于定義在[0,1)上的函數(shù)f(t)可用Legendre小波展開為
式中:
當(dāng)M=3,k=2時(shí),Legendre小波矩陣表示為
定義3[12]R-L 分?jǐn)?shù)階積分定義為
定義4[12]Caputo分?jǐn)?shù)階微分定義為
式(5)和式(6)有如下關(guān)系:
其中m-1<α≤m,m∈?.
對(duì)于[0,1)上的平方可積函數(shù)f(t)可用BPFs展開為
式中:F=(f0,f1,…,fm-1)T;Bm(t)=(b0(t),b1(t),…,bm-1(t))T.
于是Legendre小波可由m′個(gè)塊脈沖函數(shù)表示為
由BPFs的分?jǐn)?shù)階積分算子矩陣性質(zhì)[13]得
式中
下面求解Legendre小波的分?jǐn)?shù)階積分算子矩陣.設(shè)
則Pα稱為L(zhǎng)egendre小波的分?jǐn)?shù)階積分算子矩陣.由式(10),(11)可得
再由式(12),(13)得
將式(1)中的函數(shù)Dαy(x)和f(x)用Legendre小波展開為
其中K 是 m′×m′矩 陣,其 元 素 為kij= 〈φnm(x),〈k(x,t),φm′n′(t)〉〉,i= (n-1)M +m+1,j=(n′-1)M+m′+1.
由式(8),(12),(15)計(jì)算得
令A(yù)=(a0,a1,…,am′-1)=(YTPα+)Φm′×m′,則y(x)≈ABm′(x),(y(x))q≈AqBm′(x),其中由數(shù)學(xué)歸納法得
將式(15)~(18)代入式(1)得
通過(guò)數(shù)值求解方程組(20),可得式(1)的近似解.
隨著q的不斷增大,Cq以指數(shù)形式不斷減小.由于截?cái)郘egendre小波的系數(shù)即為方程的近似解,所以定義2-范數(shù)的誤差函數(shù)為
其中:y(x)為精確解;ym′(x)為式(20)得到的數(shù)值解.
證明:設(shè)S=Y(jié)TPα+,且
又因?yàn)閞q(x)為y(x)在區(qū)間In上的q次插值多項(xiàng)式,所以
因此,由式(22)得
例1 求解滿足初始條件y(0)=0的積分微分方程:
令M=2,k=6,取α分別為1,0.9,0.8進(jìn)行數(shù)值求解,并與文獻(xiàn)[15]中采用HPM方法得到的結(jié)果進(jìn)行比較,結(jié)果列于表1.由表1可見,當(dāng)α=1時(shí),本文方法的數(shù)值解一致逼近精確解.
表1 Legendre小波與HPM方法的數(shù)值解對(duì)比Table 1 Contrast of numerical results by Legendre wavelet and HPM method
例2 解滿足條件y(0)=y(tǒng)′(0)=0的積分微分方程:
其精確解為y(x)=x2.令M=1,k分別取4,5,6,7時(shí),2-范數(shù)誤差的近似值列于表2.其精確解與數(shù)值解如圖1所示.由表2和圖1可見:隨著節(jié)點(diǎn)的不斷增多,數(shù)值解的精度逐漸提高,誤差越來(lái)越小.
圖1 當(dāng)M=1,k=4,5,6,7時(shí)數(shù)值解與精確解的比較Fig.1 Comparison between numerical solution and exact solution for M=1and k=4,5,6,7
表2 當(dāng)M=1時(shí)不同k值2-范數(shù)誤差的近似值Table 2 Approximate values of absolute errors for norm-2at different kof the Legendre wavelet when M=1
綜上可見,本文采用Legendre小波求解了非線性第二類分?jǐn)?shù)階Volterra積分微分方程,先將方程轉(zhuǎn)化為非線性方程組進(jìn)行數(shù)值求解,再通過(guò)矩陣的稀疏化簡(jiǎn)化了運(yùn)算量.誤差分析和數(shù)值算例結(jié)果表明,采用Legendre小波運(yùn)算可行、有效.
[1]Nawaz Y.Variational Iteration Method and Homotopy Perturbation Method for Fourth-Order Fractional Integro-Differential Equations[J].Comput Math Appl,2011,61(8):2330-2341.
[2]HUANG Li,LI Xianfang,ZHAO Yulin,et al.Approximate Solution of Fractional Integro-Differential Equations by Taylor Expansion Method[J].Comput Math Appl,2011,62(3):1127-1134.
[3]Momani S,Noor M A.Numerical Methods for Fourth-Order Fractional Integro-Differential Equations[J].Appl Math Comput,2006,182(1):754-760.
[4]Saeedi H,Mohseni Moghadam M,Mollahasani N,et al.A CAS Wavelet Method for Solving Nonlinear Fredholm Integro-Differential Equations of Fractional Order[J].Commun Nonlinear Sci Numer Simulat,2011,16(3):1154-1163.
[5]Saeedi H,Mohseni Moghadam M.Numerical Solution of Nonlinear Volterra Integro-Differential Equations of Arbitrary Order by CAS Wavelets[J].Commun Nonlinear Sci Numer Simulat,2011,16(3):1216-1226.
[6]ZHU Li,F(xiàn)AN Qibin.Numerical Solution of Nonlinear Fractional-Order Volterra Integro-Differential Equations by SCW [J].Commun Nonlinear Sci Numer Simulat,2013,18(5):1203-1213.
[7]ZHU Li,F(xiàn)AN Qibin.Solving Fractional Nonlinear Fredholm Integro-Differential Equations by the Second Kind Chebyshev Wavelet[J].Commun Nonlinear Sci Numer Simulat,2012,17(6):2333-2341.
[8]儀明旭,陳一鳴,魏金俠,等.應(yīng)用Haar小波求解非線性分?jǐn)?shù)階Fredholm積分微分方程 [J].河北師范大學(xué)學(xué)報(bào):自然科學(xué)版,2012,36(5):452-455.(YI Mingxu,CHEN Yiming,WEI Jinxia,et al.Haar Wavelet Method for Solving Nonlinear Fredholm Integro-Differential Equations of Fractional Order[J].Journal of Hebei Normal University:Natural Science Edition,2012,36(5):452-455.)
[9]Lepikü.Haar Wavelet Method for Nonlinear Integro-Differential Equations[J].Appl Math Comput,2006,176(1):324-333.
[10]尹建華,任建婭,儀明旭.Legendre小波求解非線性分?jǐn)?shù)階Fredholm積分微分方程 [J].遼寧工程技術(shù)大學(xué)學(xué)報(bào):自然科學(xué)版,2012,31(3):405-408.(YIN Jianhua,REN Jianya,YI Mingxu.Legendre Wavelet Method for Solving Nonlinear Fredholm Integro-Differential Equations of Fractional Order[J].Journal of Liaoning Technical University:Natural Science,2012,31(3):405-408.)
[11]Rehman M,Khan R A.The Legendre Wavelet Method for Solving Fractional Differential Equations[J].Commun Nonlinear Sci Numer Simulat,2011,16(11):4163-4173.
[12]Das S.Functional Fractional Calculus[M].2nd ed.Berlin:Springer-Verlag,2011.
[13]Kilicman A,Al Zhour Z A A.Kronecker Operational Matrices for Fractional Calculus and Some Applications[J].Appl Math Comput,2007,187(1):250-265.
[14]Biazar J,Ebrahimi H.Chebyshev Wavelets Approach for Nonlinear Systems of Volterraintegral Equations[J].Comput and Math Appl,2012,63(3):608-616.
[15]Ghazanfari B,Ghazanfari A G,Veisi F.Homotopy Perturbation Method for the Nonlinear Fractional Integro-Differential Equations[J].Aust J Basic Appl Sci,2010,4(12):5823-5829.