国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

小麥SnRK2.2基因克隆、表達(dá)載體構(gòu)建及轉(zhuǎn)化

2014-12-23 13:20張照貴李冰王佳佳張桂芝李斯深
山東農(nóng)業(yè)科學(xué) 2014年11期
關(guān)鍵詞:擬南芥引物位點(diǎn)

張照貴+李冰+王佳佳+張桂芝+李斯深

摘 要:SnRK2基因家族成員參與蛋白質(zhì)的磷酸化,在植物抵御非生物脅迫方面發(fā)揮重要的作用。本研究以水稻SAPK2基因序列為基礎(chǔ),通過RT-PCR技術(shù)克隆得到一個(gè)新的小麥SnRK2基因,命名為TaSnRK2.2,并提交到GenBank(登錄號(hào):KJ850253)。TaSnRK2.2基因全長4 118 bp,由9個(gè)外顯子和8個(gè)內(nèi)含子組成,包含一個(gè)1 026 bp的開放閱讀框,編碼341個(gè)氨基酸。SnRK2.2基因序列在禾本科植物中高度保守,TaSnRK2.2與水稻SAPK2以及玉米SnRK2.2親緣關(guān)系較近。TaSnRK2.2基因編碼的蛋白質(zhì)分子量為38.64 kD,理論等電點(diǎn)為5.45,含有SnRK2基因家族典型的絲氨酸/蘇氨酸蛋白激酶保守結(jié)構(gòu)域和多處磷酸化位點(diǎn)。構(gòu)建了TaSnRK2.2基因過表達(dá)載體,轉(zhuǎn)化擬南芥,獲得轉(zhuǎn)基因植株,通過RT-PCR方法檢測到TaSnRK2.2基因在擬南芥中穩(wěn)定表達(dá)。

關(guān)鍵詞:小麥;非生物脅迫;TaSnRK2.2;克隆;轉(zhuǎn)基因

中圖分類號(hào):S512.1+Q785 文獻(xiàn)標(biāo)識(shí)號(hào):A 文章編號(hào):1001-4942(2014)11-0001-07 小麥?zhǔn)鞘澜缟献钪匾募Z食作物之一,全世界約有35%的人口以小麥為主食,在中國糧食消費(fèi)總量中,小麥占43%以上。我國地理環(huán)境復(fù)雜,自然災(zāi)害多發(fā),干旱、鹽堿以及極端溫度等環(huán)境因素嚴(yán)重影響小麥產(chǎn)量,威脅小麥糧食生產(chǎn)安全。植物在長期的進(jìn)化過程中形成了一系列應(yīng)對復(fù)雜多變環(huán)境、抵御逆境脅迫的調(diào)控機(jī)制,眾多的調(diào)控和防御類基因構(gòu)成了植物應(yīng)答和抵御逆境脅迫的分子生物學(xué)基礎(chǔ)[1~3]。

研究表明,蔗糖非發(fā)酵相關(guān)蛋白激酶(Sucrose non-fermenting 1-related protein kinase, SnRK)參與蛋白質(zhì)的磷酸化,在植物激素信號(hào)傳導(dǎo)、抵御非生物脅迫和調(diào)節(jié)植物生長發(fā)育等方面發(fā)揮重要的作用[4~6]。根據(jù)序列相似性和結(jié)構(gòu)域特點(diǎn),高等植物SnRK基因家族被分為3個(gè)亞族:SnRK1、SnRK2、SnRK3[7]。SnRK1基因已經(jīng)從不同的植物中分離和鑒定,其參與植物氮元素、蔗糖以及脂質(zhì)的代謝、器官發(fā)育與衰老等過程[8~11]。SnRK3基因又稱類鈣調(diào)磷酸酶B亞基互作蛋白激酶(calcineurin B-like protein interacting protein kinase, CIPK)基因[12,13],能夠介導(dǎo)Ca2+信號(hào)的傳遞和提高植物的抗逆性[14~17]。SnRK2基因數(shù)目較少,編碼植物特有的蛋白激酶,主要參與植物應(yīng)對逆境脅迫、養(yǎng)分利用和生長發(fā)育等過程,到目前為止已經(jīng)鑒定了10個(gè)家族成員,統(tǒng)一命名為SnRK2.1~SnRK2.10[18]。

在小麥中,多個(gè)SnRK2基因家族成員已經(jīng)被克隆并進(jìn)行了功能驗(yàn)證。PKABA1是第一個(gè)被克隆的SnRK2家族成員,可被水分脅迫和脫落酸(Abscisic acid, ABA)誘導(dǎo)表達(dá)[19,20]。TaSnRK2.3可被聚乙二醇(Polyethylene glycol, PEG)、ABA、NaCl以及冷脅迫誘導(dǎo),轉(zhuǎn)TaSnRK2.3基因的擬南芥植株失水率下降,光合作用增強(qiáng),細(xì)胞內(nèi)脯氨酸含量增加,提高了對干旱、鹽漬以及冷害的耐受性[21]。轉(zhuǎn)TaSnRK2.4基因擬南芥植株較對照增加了對干旱、鹽分以及冷脅迫的抵抗能力,同時(shí)種子萌發(fā)延緩、初生根增長以及生物量增加,表明TaSnRK2.4在植物抗逆性和生長發(fā)育方面發(fā)揮作用[22]。轉(zhuǎn)TaSnRK2.7基因的擬南芥同樣增加了對多種逆境脅迫的抗性,但其活性不被ABA誘導(dǎo),說明TaSnRK2.7參與非ABA信號(hào)轉(zhuǎn)導(dǎo)通路[23]。轉(zhuǎn)TaSnRK2.8基因的擬南芥除增強(qiáng)了對逆境抗性外,其可溶性糖含量降低,說明TaSnRK2.8在碳水化合物的代謝中發(fā)揮作用[24]。小麥W55a也屬于SnRK2家族成員,該基因受干旱等非生物脅迫的誘導(dǎo)[25]。以上研究表明,小麥SnRK2基因在抵御非生物脅迫方面發(fā)揮重要作用,并且參與植物的生長發(fā)育和碳水化合物的代謝過程。

隨著植物基因工程技術(shù)的發(fā)展,利用分子生物學(xué)方法克隆小麥抗逆相關(guān)基因,研究其生物學(xué)功能,探索植物抗旱分子機(jī)理是近來研究的熱點(diǎn)。水稻SAPK2基因是植物SnRK基因家族成員之一,本研究利用水稻SAPK2基因通過同源克隆的方法得到一個(gè)新的小麥SnRK2基因家族成員——TaSnRK2.2,并構(gòu)建該基因的植物過表達(dá)載體,轉(zhuǎn)化擬南芥,為進(jìn)一步研究該基因的功能及在逆境條件下的表達(dá)特征奠定基礎(chǔ)。

1 材料與方法

1.1 試驗(yàn)材料

1.1.1 植物材料 小麥品種魯麥21用于TaSnRK2.2基因cDNA及gDNA的克隆和序列分析。Columbia型擬南芥用于遺傳轉(zhuǎn)化。

1.1.2 菌株和載體 大腸桿菌感受態(tài)細(xì)胞Trans1-T1和克隆載體pEASY-T1購自北京全式金生物技術(shù)有限公司,農(nóng)桿菌菌株GV3101和表達(dá)載體PBI121由本實(shí)驗(yàn)室保存。

1.1.3 酶、試劑盒及其他耗材 LA Taq酶、限制性核酸內(nèi)切酶、T4 DNA連接酶以及dNTP購自寶生物工程(大連)有限公司。反轉(zhuǎn)錄試劑盒The RevertAidTM Premium First Strand cDNA Synthesis Kit購自Fermentas公司。RNA提取試劑TRIzol購自Invitrogen公司。普通瓊脂糖凝膠DNA回收試劑盒和質(zhì)粒小提試劑盒購自天根生化科技(北京)有限公司。其它化學(xué)藥品為國產(chǎn)分析純。

1.1.4 引物和測序 本試驗(yàn)所用PCR引物合成及DNA測序工作由北京六合華大基因科技股份有限公司完成。

1.2 試驗(yàn)方法

1.2.1 總RNA、gDNA提取和第一鏈cDNA合成 小麥總RNA提取步驟按照TRIzol試劑說明書進(jìn)行。小麥gDNA的提取參照改良的CTAB法[26]進(jìn)行。第一鏈cDNA的合成參照The RevertAidTM Premium First Strand cDNA Synthesis Kit說明書進(jìn)行。

1.2.2 目的基因的克隆 以水稻SAPK2基因(GenBank登錄號(hào):AB125303)的mRNA序列為探針?biāo)阉餍←淓ST數(shù)據(jù)庫,選取與探針序列相似性高的小麥EST,經(jīng)DNAMAN軟件拼接組裝成TaSnRK2.2的電子克隆序列。利用NCBI中ORF finder程序(http://www.ncbi.nlm.nih.gov/gorf/gorf.html)進(jìn)行開放閱讀框(open reading frame, ORF)預(yù)測。用Primer Premier 5.0軟件在ORF兩側(cè)設(shè)計(jì)引物Sn1,上游引物Sn1-F:5′-ATGGAGCGGTACGAGGTG-3′;下游引物Sn1-R:5′-CACGCCTGCTCGTCACAA-3′

利用Sn1引物對小麥cDNA和gDNA進(jìn)行PCR擴(kuò)增。PCR反應(yīng)體系為20 μL:10×PCR buffer 2 μL,dNTPs(各2.5 mmol/L)1.6 μL,LA Taq酶(5 U/μL)0.2 μL,Sn1-F(10 μmol/L)和Sn1-R(10 μmol/L)各1 μL,cDNA或gDNA 1 μL(100 ng),ddH2O 13.2 μL。反應(yīng)程序:94℃預(yù)變性5 min;94℃變性35 s,56℃退火35 s,72℃延伸90 s,30個(gè)循環(huán);最后72℃延伸10 min,4℃保存。

PCR產(chǎn)物用1%瓊脂糖凝膠電泳分離,用普通瓊脂糖凝膠DNA回收試劑盒回收目的片段?;厥债a(chǎn)物與pEASY-T1載體于25℃連接15 min,并轉(zhuǎn)化Trans1-T1感受態(tài)細(xì)胞。轉(zhuǎn)化產(chǎn)物均勻涂布在含100 mg/L氨芐青霉素(Ampicillin, Amp)的LB平板上,37℃條件下培養(yǎng)12~16 h。隨機(jī)挑選菌斑,在含有100 mg/L Amp的LB液體培養(yǎng)基中震蕩培養(yǎng)4~5 h,取1 μL菌液進(jìn)行PCR檢測。挑選陽性克隆送北京六合華大基因科技股份有限公司測序。

1.2.3 基因的生物信息學(xué)分析 運(yùn)用DNAMAN軟件對測序結(jié)果進(jìn)行比對,確定基因結(jié)構(gòu),并與其他物種的序列進(jìn)行相似性分析。利用ProtParam程序(http://web.expasy.org/protparam/)分析氨基酸序列的理化性質(zhì)。利用NetPhos2.0 Server程序(http://www.cbs.dtu.dk/services/NetPhos/)預(yù)測蛋白序列中的磷酸化位點(diǎn)。利用MEGA 6.0軟件進(jìn)行序列比對和進(jìn)化分析。功能區(qū)域和活性位點(diǎn)分析通過在線程序PROSITE(http://expasy.hcuge.ch/sprot/prosite.html)進(jìn)行。利用SOPMA(http://npsa-pbil.ibcp.fr/cgi-bin/npsa_automat.pl?page=npsa_sopma.html)和Swiss-Model 程序(http://swissmodel.expasy.org/)對蛋白質(zhì)二級(jí)結(jié)構(gòu)和高級(jí)結(jié)構(gòu)進(jìn)行分析。

1.2.4 表達(dá)載體的構(gòu)建和農(nóng)桿菌轉(zhuǎn)化 參照質(zhì)粒小提試劑盒說明書的步驟,提取pEASY-T1-TaSnRK2.2和PBI121質(zhì)粒。設(shè)計(jì)引物Sn2,上游引物Sn2-F:5′-TAGGATCCATGGAGCGGTACGAGGTG-3′(下劃線標(biāo)注的堿基代表BamH Ⅰ內(nèi)切酶識(shí)別位點(diǎn));下游引物Sn2-R:5′-AT-GAATTCCACGCCTGCTCGTCACAA-3′(下劃線標(biāo)注的堿基代表EcoRⅠ內(nèi)切酶識(shí)別位點(diǎn))。利用Sn2引物對pEASY-T1-TaSnRK2.2質(zhì)粒進(jìn)行PCR擴(kuò)增。PCR產(chǎn)物和PBI121質(zhì)粒用BamHⅠ和EcoRⅠ雙酶切,回收目的片段,用T4 DNA連接酶連接,構(gòu)建CaMV 35S啟動(dòng)子驅(qū)動(dòng)的正義35S∶ TaSnRK2.2過表達(dá)載體。

將構(gòu)建好的表達(dá)載體轉(zhuǎn)化大腸桿菌感受態(tài)細(xì)胞,經(jīng)培養(yǎng)后提取質(zhì)粒,采用凍融法轉(zhuǎn)化農(nóng)桿菌GV3101。將轉(zhuǎn)化后的農(nóng)桿菌菌液加到含有50 mg/L 利福平(Rifampicin, Rif)和50 mg/L卡那霉素(Kanamycin, Kan)的YEP固體培養(yǎng)基上,在28℃條件下培養(yǎng)2~3天。轉(zhuǎn)化子長出后挑取單菌落于YEP液體培養(yǎng)基中繼續(xù)培養(yǎng),提取質(zhì)粒進(jìn)行酶切和測序驗(yàn)證。

1.2.5 擬南芥的侵染和轉(zhuǎn)基因植株的鑒定 將驗(yàn)證正確的農(nóng)桿菌接種于含有50 mg/L Rif的YEP液體培養(yǎng)基中,28℃、200 r/min震蕩培養(yǎng)至菌液渾濁。按照1∶ 100的體積比將菌液轉(zhuǎn)接到50 mL含有50 mg/L Rif 的YEP液體培養(yǎng)基中繼續(xù)培養(yǎng)至OD600為0.6。5 000 r/min離心10 min,倒掉上清液,用等體積含有5%蔗糖和0.02% Silwet L-77的侵染液重懸菌體,即可用于擬南芥的轉(zhuǎn)化。采用花序浸染法轉(zhuǎn)化擬南芥,侵染時(shí)將擬南芥平放,使花序浸到浸染液中約10 s左右,然后將擬南芥平放到培養(yǎng)箱中,黑暗培養(yǎng)24 h后正常培養(yǎng)。

將收獲的擬南芥種子在超凈臺(tái)中用70%乙醇滅菌5 min,2.6%次氯酸鈉消毒10 min,用滅菌水沖洗干凈。將滅菌的種子鋪到含有50 mg/L Kan的1/2 MS培養(yǎng)基上,4℃條件下春化2天。轉(zhuǎn)移到正常條件下培養(yǎng)7天后,轉(zhuǎn)化植株幼苗能夠在含有Kan的培養(yǎng)基上正常生長,葉片呈綠色,非轉(zhuǎn)化幼苗則會(huì)呈現(xiàn)黃化狀態(tài)。將轉(zhuǎn)基因幼苗移植到基質(zhì)中培養(yǎng),植株長成后提取RNA進(jìn)行RT-PCR檢測,引物為Sn3,上游序列Sn3-F:5′-GCGAGAATGAGGCTAGGTTC-3′;下游序列Sn3-R:5′-CGTCGTCTATGTCGTCCAG-3′。

2 結(jié)果與分析

2.1 TaSnRK2.2基因克隆

以水稻SAPK2基因?yàn)樘结樅Y選小麥EST數(shù)據(jù)庫,選取2條序列相似性高且相互重疊的EST片段,CJ785127和DR741853。利用DNAMAN軟件拼接,得到長度為1 359 bp的電子克隆序列,預(yù)測包含一個(gè)長度為1 026 bp的ORF。在ORF兩側(cè)設(shè)計(jì)引物Sn1對小麥cDNA和gDNA進(jìn)行PCR擴(kuò)增,產(chǎn)物經(jīng)瓊脂糖凝膠電泳后顯示大小約為1 000 bp和4 000 bp(圖1)。

測序結(jié)果表明,TaSnRK2.2基因的cDNA全長1 038 bp,包含長度為1 026 bp的ORF,編碼341個(gè)氨基酸,與預(yù)期結(jié)果基本一致。與cDNA相對應(yīng)的gDNA序列全長(從ATG到TGA)4 118 bp,包含9個(gè)外顯子和8個(gè)內(nèi)含子(圖2),基因結(jié)構(gòu)與水稻、玉米以及擬南芥的SnRK2.2相同,并且不同物種外顯子大小和序列保守性較內(nèi)含子強(qiáng)。序列已提交至GenBank(登錄號(hào):KJ850253)。

2.2 TaSnRK2.2基因的生物信息學(xué)分析

TaSnRK2.2基因編碼的蛋白質(zhì)分子量為38.64 kD,理論等電點(diǎn)為5.45。PROSITE程序分析表明(圖3A),蛋白序列中含有絲氨酸/蘇氨酸基因家族典型的保守結(jié)構(gòu)域(第4~260位的氨基酸)、ATP結(jié)合位點(diǎn)(第10~33位的氨基酸)和絲氨酸/蘇氨酸蛋白激酶活性位點(diǎn)(第119~131位的氨基酸)。NetPhos2.0 Server程序分析蛋白序列中含有7處絲氨酸(Serine, Ser)、1處蘇氨酸(Threonine, Thr)和5處酪氨酸(Tyrosine, Tyr)磷酸化位點(diǎn)(圖3C)。運(yùn)用SOPMA和Swiss-Model對TaSnRK2.2蛋白質(zhì)序列的高級(jí)結(jié)構(gòu)進(jìn)行預(yù)測,TaSnRK2.2基因編碼的蛋白質(zhì)含有38.12%的α螺旋、37.2%的無規(guī)則卷曲、8.21%的β轉(zhuǎn)角以及16.42%的擴(kuò)展鏈,具有和SnRK2基因家族類似的蛋白質(zhì)三級(jí)結(jié)構(gòu)(圖3B)。

TaSnRK2.2基因與水稻、玉米和擬南芥SnRK2.2基因核苷酸序列的相似性分別為87.23%、85.48%和60.24%,氨基酸序列的相似性分別為91.20%、89.44%和66.76%。將TaSnRK2.2與水稻、玉米、擬南芥SnRK2基因家族成員做聚類分析,結(jié)果表明,SnRK2基因分為Ⅰ、Ⅱ、Ⅲ三個(gè)亞族,TaSnRK2.2屬于Ⅱ亞族,與SAPK2和ZmSnRK2.2親緣關(guān)系較近(圖4)。

2.3 表達(dá)載體的構(gòu)建和鑒定

用Sn2引物擴(kuò)增質(zhì)粒pEASY-T1-TaSnRK2.2,PCR產(chǎn)物與PBI121-GUS質(zhì)粒(約14.7 kb)同時(shí)進(jìn)行BamHⅠ和EcoRⅠ雙酶切(圖5)?;厥諑в忻盖形稽c(diǎn)的TaSnRK2.2片段(1 026 bp)和PBI121載體雙酶切片段(約12.7 kb),經(jīng)T4 DNA連接酶連接,構(gòu)建由CaMV 35S啟動(dòng)子驅(qū)動(dòng)的、正義35S∶ TaSnRK2.2過表達(dá)載體(圖6)。將構(gòu)建好的載體轉(zhuǎn)化大腸桿菌感受態(tài),培養(yǎng)后提取質(zhì)粒,采用凍融法轉(zhuǎn)化農(nóng)桿菌菌株GV3101,酶切鑒定陽性克?。▓D7)。

2.4 擬南芥的轉(zhuǎn)化及RT-PCR檢測

采用花序浸染法轉(zhuǎn)化擬南芥,收獲T1代轉(zhuǎn)基因擬南芥的種子,經(jīng)適當(dāng)干燥并消毒后平鋪在含有Kan的1/2 MS培養(yǎng)基上。PBI121載體帶有Kan抗性基因,轉(zhuǎn)基因擬南芥幼苗在含有 Kan的培養(yǎng)基上生長正常,而非轉(zhuǎn)基因幼苗生長不正常,發(fā)生黃化(圖8)。利用RT-PCR檢測目標(biāo)基因在T1代轉(zhuǎn)基因植株中的表達(dá)情況,結(jié)果如圖9,非轉(zhuǎn)基因擬南芥植株中無TaSnRK2.2基因表達(dá),而在轉(zhuǎn)基因植株中檢測到TaSnRK2.2基因的表達(dá)。

3 討論與結(jié)論

蛋白質(zhì)的可逆磷酸化由蛋白激酶和蛋白磷酸酶共同調(diào)控,廣泛參與植物對逆境脅迫和病蟲害刺激的應(yīng)答、植物體內(nèi)能量代謝和信號(hào)轉(zhuǎn)導(dǎo)過程[27, 28]。大量的植物蛋白激酶已被分離和鑒定,許多蛋白激酶處于植物對逆境脅迫感知和響應(yīng)的中心環(huán)節(jié)[29]。植物SnRK2屬于絲氨酸/蘇氨酸蛋白激酶家族,各成員以不同的調(diào)控方式參與多種逆境脅迫應(yīng)答,在擬南芥、水稻、玉米、大豆、高粱、煙草等植物中已經(jīng)進(jìn)行了廣泛的研究和報(bào)道[30~35]。在小麥中,克隆了6個(gè)SnRK2基因并進(jìn)行了功能分析,其在小麥抵御逆境脅迫中發(fā)揮重要作用。

本研究通過同源克隆結(jié)合RT-PCR方法克隆得到一個(gè)新的小麥SnRK2基因——TaSnRK2.2。TaSnRK2.2基因由9個(gè)外顯子和8個(gè)內(nèi)含子組成,包含一個(gè)1 026 bp的ORF,編碼341個(gè)氨基酸。序列比對和進(jìn)化分析表明,SnRK2.2基因在禾本科植物中高度保守,TaSnRK2.2與水稻SAPK2以及玉米SnRK2.2親緣關(guān)系較近。SAPK2和ZmSnRK2.2受NaCl和高滲脅迫誘導(dǎo)表達(dá)[29,36],推測TaSnRK2.2可能具有相同的生物學(xué)功能。TaSnRK2.2編碼蛋白質(zhì)含有SnRK2基因家族典型的絲氨酸/蘇氨酸保守結(jié)構(gòu)域,具有ATP結(jié)合位點(diǎn)和絲氨酸/蘇氨酸蛋白激酶活性位點(diǎn),同時(shí)含有絲氨酸、蘇氨酸和酪氨酸磷酸化位點(diǎn)。由此推測,TaSnRK2.2基因可能參與蛋白質(zhì)的磷酸化,介導(dǎo)信號(hào)轉(zhuǎn)導(dǎo),參與小麥應(yīng)對滲透脅迫的反應(yīng)。

為了研究TaSnRK2.2基因在逆境脅迫中的作用,構(gòu)建了TaSnRK2.2基因的植物過表達(dá)載體,采用花序浸染法轉(zhuǎn)化擬南芥,獲得了轉(zhuǎn)TaSnRK2.2基因的擬南芥植株。通過RT-PCR方法檢測到TaSnRK2.2基因在擬南芥中穩(wěn)定表達(dá),為該基因進(jìn)一步的功能分析奠定了基礎(chǔ),以期為小麥抗逆分子育種提供優(yōu)良的候選基因資源。

參 考 文 獻(xiàn):

[1] Bartels D, Sunkar R. Drought and salt tolerance in plants[J]. Critical Reviews in Plant Sciences, 2005, 24: 23-58.

[2] Ingram J, Bartels D. The molecular basis of dehydration tolerance in plants [J]. Annual Review of Plant Biology, 1996, 47: 377-403.

[3] Ramanjulu S, Bartels D. Drought and desiccation induced modulation of gene expression in plants [J]. Plant, Cell and Environment, 2002, 25: 141-151.

[4] Fujii H, Zhu J K. Osmotic stress signaling via protein kinases [J]. Cellular and Molecular Life Sciences, 2012, 69: 3165-3173.

[5] Kulik A, Wawer I, Krzywińska E, et al. SnRK2 protein kinases-key regulators of plant response to abiotic stresses [J]. OMICS: A Journal of Integrative Biology, 2011, 15: 859-872.

[6] Shukla V, Mattoo A K. Sucrose non-fermenting 1-related protein kinase 2 (SnRK2): a family of protein kinases involved in hyperosmotic stress signaling [J]. Physiology and Molecular Biology of Plants, 2008, 14: 91-100.

[7] Hrabak E M, Chan C W, Gribskov M, et al. The Arabidopsis CDPK-SnRK superfamily of protein kinases [J]. Plant Physiology, 2003, 132: 666-680.

[8] Alderson A, Sabelli P A, Dickinson J R, et al. Complementation of snf1, a mutation affecting global regulation of carbon metabolism in yeast, by a plant protein kinase cDNA [J]. Proceedings of the National Academy of Sciences,1991,88:8602-8605.

[9] Halford N G, Hey S, Jhurreea D, et al. Metabolic signalling and carbon partitioning: role of Snf1-related (SnRK1) protein kinase [J]. Journal of Experimental Botany, 2003, 54: 467-475.

[10] Muranaka T, Banno H, Machida Y. Characterization of tobacco protein kinase NPK5, a homolog of Saccharomyces cerevisiae SNF1 that constitutively activates expression of the glucose-repressible SUC2 gene for a secreted invertase of S. cerevisiae [J]. Molecular and Cellular Biology, 1994, 14: 2958-2965.

[11] Purcell P C, Smith A M, Halford N G. Antisense expression of a sucrose non-fermenting-1-related protein kinase sequence in potato results in decreased expression of sucrose synthase in tubers and loss of sucrose-inducibility of sucrose synthase transcripts in leaves [J]. The Plant Journal, 1998, 14: 195-202.

[12] Kim K N, Cheong Y H, Gupta R, et al. Interaction specificity of Arabidopsis calcineurin B-like calcium sensors and their target kinases [J]. Plant Physiology, 2000, 124: 1844-1853.

[13] Shi J, Kim K N, Ritz O, et al. Novel protein kinases associated with calcineurin B-like calcium sensors in Arabidopsis [J]. The Plant Cell, 1999, 11: 2393-2405.

[14] Liu J, Zhu J K. A calcium sensor homolog required for plant salt tolerance [J]. Science, 1998, 280: 1943-1945.

[15] Qiu Q S, Guo Y, Dietrich M A, et al. Regulation of SOS1, a plasma membrane Na+/H+ exchanger in Arabidopsis thaliana, by SOS2 and SOS3 [J]. Proceedings of the National Academy of Sciences, 2002, 99: 8436-8441.

[16] Qiu Q S, Barkla B J, Vera-Estrella R, et al. Na+/H+ exchange activity in the plasma membrane of Arabidopsis [J]. Plant Physiology, 2003, 132: 1041-1052.

[17] Shi H, Ishitani M, Kim C, et al. The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter [J]. Proceedings of the National Academy of Sciences, 2000, 97: 6896-6901.

[18] Hrabak E M, Chan C W, Gribskov M, et al. The Arabidopsis CDPK-SnRK superfamily of protein kinases [J]. Plant Physiology, 2003, 132: 666-680.

[19] Anderberg R J, Walker-Simmons M. Isolation of a wheat cDNA clone for an abscisic acid-inducible transcript with homology to protein kinases [J]. Proceedings of the National Academy of Sciences, 1992, 89: 10183-10187.

[20] Holappa L D, Walker-Simmons M. The wheat abscisic acid-responsive protein kinase mRNA, PKABA1, is up-regulated by dehydration, cold temperature, and osmotic stress [J]. Plant Physiology, 1995, 108: 1203-1210.

[21] Tian S, Mao X, Zhang H, et al. Cloning and characterization of TaSnRK2.3, a novel SnRK2 gene in common wheat [J]. Journal of Experimental Botany, 2013, 64: 2063-2080.

[22] Mao X, Zhang H, Tian S, et al. TaSnRK2.4, an SNF1-type serine/threonine protein kinase of wheat (Triticum aestivum L.), confers enhanced multistress tolerance in Arabidopsis [J]. Journal of Experimental Botany, 2010, 61: 683-696.

[23] Zhang H, Mao X, Jing R, et al. Characterization of common wheat (Triticum aestivum L.) TaSnRK2.7 gene involved in abiotic stress responses [J]. Journal of Experimental Botany, 2011, 62: 975-988.

[24] Zhang H, Mao X, Wang C, et al. Overexpression of a common wheat gene TaSnRK2.8 enhances tolerance to drought, salt and low temperature in Arabidopsis [J]. PLoS One, 2010, 5: e16041.

[25] Xu Z S, Liu L, Ni Z Y, et al. W55a encodes a novel protein kinase that is involved in multiple stress responses [J]. Journal of Integrative Plant Biology, 2009, 51: 58-66.

[26] Van der Beek J, Verkerk R, Zabel P, et al. Mapping strategy for resistance genes in tomato based on RFLPs between cultivars: Cf9 (resistance to Cladosporium fulvum) on chromosome 1 [J]. Theoretical and Applied Genetics, 1992, 84: 106-112.

[27] Cohen P. Review Lecture: Protein phosphorylation and hormone action [J]. Biological Sciences, 1988, 234: 115-144.

[28] Knight H. Calcium signaling during abiotic stress in plants [J]. International Review of Cytology, 1999, 195: 269-324.

[29] Kobayashi Y, Yamamoto S, Minami H, et al. Differential activation of the rice sucrose nonfermenting1-related protein kinase2 family by hyperosmotic stress and abscisic acid [J]. The Plant Cell, 2004, 16: 1163-1177.

[30] Boudsocq M, Barbier-Brygoo H, Laurière C. Identification of nine sucrose non-fermenting 1-related protein kinases2 activated by hyperosmotic and saline stresses in Arabidopsis thaliana [J]. Journal of Biological Chemistry, 2004, 279: 41758-41766.

[31] Kelner A, Pkala I, Kaczanowski S, et al. Biochemical characterization of the tobacco 42-kD protein kinase activated by osmotic stress [J]. Plant Physiology, 2004, 136: 3255-3265.

[32] Kolukisaoglu , Weinl S, Blazevic D, et al. Calcium sensors and their interacting protein kinases: genomics of the Arabidopsis and rice CBL-CIPK signaling networks [J]. Plant Physiology, 2004, 134: 43-58.

[33] Li L B, Zhang Y R, Liu K C, et al. Identification and bioinformatics analysis of SnRK2 and CIPK family genes in sorghum [J]. Agricultural Sciences in China, 2010, 9: 19-30.

[34] Xiang Y, Huang Y, Xiong L. Characterization of stress-responsive CIPK genes in rice for stress tolerance improvement [J]. Plant Physiology, 2007, 144: 1416-1428.

[35] Zou H, Zhang X, Zhao J, et al. Cloning and characterization of maize ZmSPK1, a homologue to nonfermenting1-related protein kinase2 [J]. African Journal of Biotechnology, 2006, 5: 490-496.

[36] Huai J, Wang M, He J, et al. Cloning and characterization of the SnRK2 gene family from Zea mays [J]. Plant Cell Reports, 2008, 27: 1861-1868. 山 東 農(nóng) 業(yè) 科 學(xué) 2014,46(11):8~11,14

[29] Kobayashi Y, Yamamoto S, Minami H, et al. Differential activation of the rice sucrose nonfermenting1-related protein kinase2 family by hyperosmotic stress and abscisic acid [J]. The Plant Cell, 2004, 16: 1163-1177.

[30] Boudsocq M, Barbier-Brygoo H, Laurière C. Identification of nine sucrose non-fermenting 1-related protein kinases2 activated by hyperosmotic and saline stresses in Arabidopsis thaliana [J]. Journal of Biological Chemistry, 2004, 279: 41758-41766.

[31] Kelner A, Pkala I, Kaczanowski S, et al. Biochemical characterization of the tobacco 42-kD protein kinase activated by osmotic stress [J]. Plant Physiology, 2004, 136: 3255-3265.

[32] Kolukisaoglu , Weinl S, Blazevic D, et al. Calcium sensors and their interacting protein kinases: genomics of the Arabidopsis and rice CBL-CIPK signaling networks [J]. Plant Physiology, 2004, 134: 43-58.

[33] Li L B, Zhang Y R, Liu K C, et al. Identification and bioinformatics analysis of SnRK2 and CIPK family genes in sorghum [J]. Agricultural Sciences in China, 2010, 9: 19-30.

[34] Xiang Y, Huang Y, Xiong L. Characterization of stress-responsive CIPK genes in rice for stress tolerance improvement [J]. Plant Physiology, 2007, 144: 1416-1428.

[35] Zou H, Zhang X, Zhao J, et al. Cloning and characterization of maize ZmSPK1, a homologue to nonfermenting1-related protein kinase2 [J]. African Journal of Biotechnology, 2006, 5: 490-496.

[36] Huai J, Wang M, He J, et al. Cloning and characterization of the SnRK2 gene family from Zea mays [J]. Plant Cell Reports, 2008, 27: 1861-1868. 山 東 農(nóng) 業(yè) 科 學(xué) 2014,46(11):8~11,14

[29] Kobayashi Y, Yamamoto S, Minami H, et al. Differential activation of the rice sucrose nonfermenting1-related protein kinase2 family by hyperosmotic stress and abscisic acid [J]. The Plant Cell, 2004, 16: 1163-1177.

[30] Boudsocq M, Barbier-Brygoo H, Laurière C. Identification of nine sucrose non-fermenting 1-related protein kinases2 activated by hyperosmotic and saline stresses in Arabidopsis thaliana [J]. Journal of Biological Chemistry, 2004, 279: 41758-41766.

[31] Kelner A, Pkala I, Kaczanowski S, et al. Biochemical characterization of the tobacco 42-kD protein kinase activated by osmotic stress [J]. Plant Physiology, 2004, 136: 3255-3265.

[32] Kolukisaoglu , Weinl S, Blazevic D, et al. Calcium sensors and their interacting protein kinases: genomics of the Arabidopsis and rice CBL-CIPK signaling networks [J]. Plant Physiology, 2004, 134: 43-58.

[33] Li L B, Zhang Y R, Liu K C, et al. Identification and bioinformatics analysis of SnRK2 and CIPK family genes in sorghum [J]. Agricultural Sciences in China, 2010, 9: 19-30.

[34] Xiang Y, Huang Y, Xiong L. Characterization of stress-responsive CIPK genes in rice for stress tolerance improvement [J]. Plant Physiology, 2007, 144: 1416-1428.

[35] Zou H, Zhang X, Zhao J, et al. Cloning and characterization of maize ZmSPK1, a homologue to nonfermenting1-related protein kinase2 [J]. African Journal of Biotechnology, 2006, 5: 490-496.

[36] Huai J, Wang M, He J, et al. Cloning and characterization of the SnRK2 gene family from Zea mays [J]. Plant Cell Reports, 2008, 27: 1861-1868. 山 東 農(nóng) 業(yè) 科 學(xué) 2014,46(11):8~11,14

猜你喜歡
擬南芥引物位點(diǎn)
相信科學(xué)!DNA追兇是如何實(shí)現(xiàn)的?
DNA甲基化跨代遺傳取得新進(jìn)展(2020.6.11 中國科學(xué)院)
有關(guān)PCR擴(kuò)增過程中的疑慮與剖析
雞BCO2基因功能性單核苷酸多態(tài)性的生物 信息分析
一種改進(jìn)的多聚腺苷酸化位點(diǎn)提取方法
“PCR技術(shù)原理和應(yīng)用”考點(diǎn)的復(fù)習(xí)建議
基于RPA技術(shù)檢測向日葵莖潰瘍病菌的方法、RPA引物及試劑盒
西藏砂生槐EST—SSR引物開發(fā)及多態(tài)性檢測
擬南芥
口水暴露了身份
新蔡县| 碌曲县| 涟水县| 沙田区| 株洲市| 浮山县| 盐边县| 海林市| 张家界市| 社会| 民县| 周口市| 紫阳县| 广平县| 松溪县| 龙海市| 通许县| 阳西县| 平顶山市| 内黄县| 铁岭县| 宁陕县| 英德市| 蚌埠市| 安泽县| 工布江达县| 壤塘县| 图们市| 马山县| 屏东市| 瑞金市| 鄯善县| 富阳市| 洛隆县| 沽源县| 绥滨县| 玉山县| 荆州市| 济阳县| 兰西县| 平谷区|