袁斗,譚琛,姚建民,李丹,黃思慧,徐威
· 論著 ·
運動性心房顫動兔模型的建立
袁斗,譚琛,姚建民,李丹,黃思慧,徐威
目的建立由運動誘發(fā)的心房顫動(房顫)動物模型并評價其效果。方法24只成年健康新西蘭大耳白兔,分為對照組(n=8)、中強度組(n=8)、高強度組(n=8)。對照組不進行任何訓(xùn)練,中強度組和高強度組采用兔實驗跑臺不同強度運動,每天1 h或一次性力竭(不足1 h),每周5 d,持續(xù)12周(第一周為適應(yīng)性訓(xùn)練)。于運動前、運動后8周、12周通過超聲心動圖檢測各組兔心房大?。贿\動結(jié)束后,24只兔采用離體心臟Langendorff系統(tǒng)進行灌流,行心房早搏程序刺激(S1S2)誘發(fā)房顫,記錄房顫的誘發(fā)率。結(jié)果與對照組比較,中強度組和高強度組左、右房前后徑在運動訓(xùn)練8周后均增加,12周后也增加,差異有統(tǒng)計學(xué)意義(P均<0.05)。與中強度組比較,高強度組左、右房前后徑在運動訓(xùn)練8周后均增加,12周后也增加,差異有統(tǒng)計學(xué)意義(P均<0.05)。與對照組比較,中強度組(45% vs. 60%)和高強度組(45% vs. 90%)房顫發(fā)生率增加,差異有顯著統(tǒng)計學(xué)意義(P均<0.01)。結(jié)論長期高強度的跑臺運動訓(xùn)練可使兔心房內(nèi)徑增加,房顫的誘發(fā)率增加。
兔;耐力運動;心房內(nèi)徑;心房顫動
心房顫動(房顫)為臨床上最常見的快速型心律失常之一,目前其發(fā)生機制還未完全闡明。規(guī)律適度的體力運動有益于身體健康,而與同齡非運動員相比,長期高強度鍛煉的運動員卻容易發(fā)生心律失常、甚至心源性猝死[1]。Karjalainen等[2]研究指出,與正常對照組相比,耐力訓(xùn)練組房顫的發(fā)生率增加。由于訓(xùn)練強度與房顫發(fā)生的相關(guān)性不明確,使受訓(xùn)者無法科學(xué)的控制訓(xùn)練強度。同時,耐力訓(xùn)練導(dǎo)致房顫的機制尚未明了,因此無法研制出針對靶點的房顫治療藥物。本研究擬建立耐力運動相關(guān)的房顫動物模型,用于運動相關(guān)性房顫的研究
1.1 兔跑臺的制備跑臺整體采用平面式設(shè)計(如圖1),總體積405L(長150 cm*寬90 cm*高30 cm);采用整體化大跑道(長150 cm*寬90 cm)保持運動的同步性,內(nèi)置支架隔離成4跑道(長150 cm*寬22 cm);跑道尾部一個防夾式電刺激金屬桿叢,可提供電刺激(電流0.05~4 mA),僅在兔子停留超過3 s才開始放電,同時也可提供光、聲刺激。跑臺角度為全自動可調(diào)式(0~35°),跑道速度整體控制(0~0.67m/s)。兔跑臺由北京智鼠多寶生物科技有限公司制作。
1.2 動物運動模型的制備實驗動物采用24只成年健康新西蘭大耳白兔,體重2.5~3.0kg,雌雄不限,由北京海淀興旺實驗動物養(yǎng)殖場提供。適應(yīng)性喂養(yǎng)7 d后,將實驗兔隨機分為對照組(n=8)、中強度組(n=8)、高強度組(n=8)。對照組籠內(nèi)生活,自由飲食,不進行任何訓(xùn)練。中強度組和高強度組采用兔實驗跑臺運動,每天1 h[3,4]或一次性力竭(不足1 h),每周5 d,持續(xù)12周(第一周為適應(yīng)性訓(xùn)練)。中強度:坡度0度,速度0.25 m/s;高強度:坡度0度,速度0.5 m/s。
1.3 心房內(nèi)徑的測量適應(yīng)性喂養(yǎng)7 d后,首次檢測各組兔左、右心房大小,之后分別于訓(xùn)練完成后第8、12周,再次檢測,一共3次。用0.5%戊巴比妥經(jīng)耳緣靜脈麻醉后,胸部備皮,取左側(cè)臥位,采用IE33型(飛利浦,荷蘭)心臟彩超檢測儀經(jīng)胸超聲檢測,留取標準心動周期的心尖四腔切面(如圖2)進行分析,測量左、右心房前后徑。
1.4 實驗?zāi)P蜏蕚溆?xùn)練目標完成后,各組實驗兔,用3%戊巴比妥經(jīng)耳緣靜脈麻醉后,開胸取出心臟,在溫度37°C、速度20 ml/min下行Langendorff經(jīng)主動脈逆向灌流,灌流液為改良的Krebs-Henseleit緩沖液(單位:mmol/L;NaCl:118,KCl:2.8,KH2PO4:1.2,CaCL2:2.5,MgSO4:0.5,丙酮酸:2.0,葡萄糖:5.5, Na2EDTA:0.57,NaHCO3:25)。于右心耳置入雙極特氟龍涂層的起搏導(dǎo)線,基礎(chǔ)頻率3.3Hz,電刺激脈沖脈寬3 ms,刺激電壓幅度是起搏閾值的3倍以下,應(yīng)用心臟期前刺激法(S1S2)誘導(dǎo)房顫。每次刺激重復(fù)5次,記錄房顫(S1S2刺激后心電圖跟隨出現(xiàn)快速而不規(guī)則心房激動,同時心室也呈不規(guī)則反應(yīng)并持續(xù)1000 ms以上)誘發(fā)的次數(shù),若出現(xiàn)持續(xù)性房顫(持續(xù)時間大于1 min)使用Grass-S88X型刺激儀(Astro-Med公司,美國)給予Burst刺激終止。采用具備Wilson終端的模擬的非接觸式12導(dǎo)聯(lián)心電圖記錄系統(tǒng)(Harvard Apparatus公司,美國)采集心電信號,并經(jīng)Biopac心電放大系統(tǒng)(Harvard Apparatus公司,美國)處理后存儲于計算機。
1.5 統(tǒng)計學(xué)處理采用SPSS 19.0統(tǒng)計軟件進行分析,計量資料以均數(shù)±標準誤表示,組間比較采用方差分析;計數(shù)資料采用例數(shù)(百分比)表示,組間比較采用卡方檢驗。以P<0.05為差異具有統(tǒng)計學(xué)意義。
圖2 兔心臟超聲影像(心尖四腔切面)
2.1 運動訓(xùn)練情況兔跑臺可同時訓(xùn)練4只實驗兔,節(jié)省了大量時間。本研究共納入40只實驗兔,最終篩選出24只實驗兔接受耐力訓(xùn)練,中強度組13只、高強度組11只,中、高強度組各有8只完成整個耐力訓(xùn)練過程。
2.2 各組大鼠心房前后徑與對照組比較,中強度組和高強度組左、右房前后徑在運動訓(xùn)練8周后均增加,12周后也增加,差異有統(tǒng)計學(xué)意義(P均<0.05)。與中強度組比較,高強度組左、右房前后徑在運動訓(xùn)練8周后均增加,12周后也增加,差異有統(tǒng)計學(xué)意義(P均<0.05)(表1)。
2.3 房顫誘發(fā)情況訓(xùn)練12周后,經(jīng)心房程序刺激誘發(fā)房顫心電圖如圖3。與對照組比較,中強度組(45% vs. 60%)和高強度組(45% vs. 90%)房顫發(fā)生率增加,差異有顯著統(tǒng)計學(xué)意義(P均<0.01)(表2)。
自19世紀末瑞典醫(yī)生Henschen提出運動心臟概念后,許多研究證實了運動員有心臟肥大和心功能改變,又稱為運動員心臟綜合癥(athletic heart syndrome)。近年來多項研究[5-7]均證實接受長時間、高強度的耐力訓(xùn)練后房顫發(fā)生率明顯增高。建立相應(yīng)的實驗動物模型是相關(guān)研究的基礎(chǔ)。雖然鼠循環(huán)系統(tǒng)、神經(jīng)系統(tǒng)等方面與人類相似,但有一定局限性[4]。兔與人的心臟結(jié)構(gòu)相似,具備四腔,血液循環(huán)包括體循環(huán)和肺循環(huán),心臟電生理方面與人也更為接近[8]。在動物運動模型的研究中,國內(nèi)外學(xué)者多以鼠為對象建立跑步機運動[9]、自主滾輪運動[10]、游泳訓(xùn)練[11]和負重爬[12]等運動模型。跑步機運動訓(xùn)練具有安全、簡單、易操作等特點,并能夠?qū)\動強度和時間進行精確控制。運動強度與跑臺的速度和角度密切相關(guān),運動強度根據(jù)Bedford[13]的最大攝氧量確定,運動超過最大攝氧量90%為高強度運動,中等強度運動則為60%~70%。Gaustad等[14]開創(chuàng)了單跑道測攝氧量兔運動跑臺,研究表明(0.51± 0.09)m/s的速度就能達到最大攝氧量,跑臺的角度(0~20°)對兔攝氧量無明顯影響。本實驗跑臺在Gaustad跑臺基礎(chǔ)上改良,采用多跑道、大馬力電機速度,可控性強,同時本跑臺去掉了傳統(tǒng)的電擊、高頻聲音及強光等刺激方式,避免應(yīng)激反應(yīng)、心理壓力增大、受傷等因素對神經(jīng)系統(tǒng)的影響。如兔停止運動,為保證訓(xùn)練質(zhì)量,實驗員輕拍其背部,使其繼續(xù)跑動。本實驗均采用0°角,中等強度訓(xùn)練取0.25 m/s的速度,高強度運動訓(xùn)練采用0.5 m/s的速度。
圖3 S1S2刺激誘發(fā)房顫心電圖
表1 不同訓(xùn)練強度不同時間兔的左、右房前后徑大小的比較
表2 不同強度訓(xùn)練的兔房顫誘發(fā)情況
本研究發(fā)現(xiàn)高強度運動訓(xùn)練12周可導(dǎo)致兔心房擴大,誘導(dǎo)房顫增加,與先前研究結(jié)果一致[15]。中強度運動訓(xùn)練12周也能導(dǎo)致兔心房擴大,但誘導(dǎo)房顫發(fā)生率并未增加。根據(jù)心房擴大與房顫關(guān)系的研究[16],運動性房顫發(fā)生的機理可能為長期高強度耐力訓(xùn)練過程中心臟前負荷增加及心室壓力增高,心房壓力增高以維持對心室的灌注,繼而心房壁張力增加,導(dǎo)致心房增大,心房細胞受到牽張;心房增大,從而房內(nèi)容納更多的子波數(shù),易于發(fā)生折返,進而引起房顫發(fā)生;心房細胞受到牽張刺激可激活機械牽張敏感性離子通道而縮短ADP90及AERP,導(dǎo)致房顫的發(fā)生。
有研究[17]指出,心房的大小與房顫的穩(wěn)定性呈正相關(guān)。然而中等強度運動訓(xùn)練也使心房增大,但未能增加房顫,提示不同訓(xùn)練強度對實驗兔心房電活動影響不同,原因有待進一步探討。
本研究第一次應(yīng)用自行設(shè)計的多跑道兔跑臺進行不同強度的耐力運動訓(xùn)練,節(jié)省時間,方法可行;高強度長時間的耐力訓(xùn)練可使實驗兔心房內(nèi)徑增加,易于誘發(fā)房顫,為進一步研究運動性房顫的機制提供參考依據(jù)。
[1] Siscovick DS,Weiss NS,Fletcher RH,et al. The incidence of primary cardiac arrest during vigorous exercise[J]. N Engl J Med,1984,311(14):874-7
[2] Karjalainen J,Kujala UM,Kaprio J,et al. Lone atrial fibrillation in vigorously exercising middle aged men: case-control study[J]. BMJ, 1998,316(7147):1784-5.
[3] Gao L,Wang W,Liu D,et al. Exercise training normalizes sympathetic outflow by central antioxidant mechanisms in rabbits with pacing-induced chronic heart failure[J]. Circulation, 2007,115(24):3095-102.
[4] De Moraes R,Valente RH,Leon IR,et al. Chronic dynamic exercise increases Apolipoprotein A-I expression in rabbit renal cortex as determined by proteomic technology[J]. Br J Sports Med,2008,42(5):386-8.
[5] Mont L,Tamborero D,Elosua R,et al. Physical activity, height, and left size are independent risk factors for lone atrial fibrillation in middleaged healthy individuals[J]. Europace,2008,10(1):15-20.
[6] Wilhelm M,Roten L,Tanner H,et al. Atrial remodeling, autonomic tone, and lifetime training hours in nonelite athletes[J]. Am J Cardiol, 2011,108(4):580-5
[7] Elosua R,Arquer A,Mont L,et al. Sport practice and the risk of lone atrial fibrillation: a case control study[J]. Int J Cardiol,2006,108(3):332-7.
[8] Yuan W,Ginsburg KS,Bers DM. Comparison of sarcolemmal calcium channel current in rabbit and rat ventricular myocytes[J]. J Physiol, 1996,493(Pt3):733-46.
[9] Bellafiore M,Sivverini G,Palumbo D,et al. Increased cx43 and angiogenesis in exercised mouse hearts[J]. Int J Sports Med,2007,28(9):749-55.
[10] Yancey SL,Overton JM. Cardiovascular responses to voluntary and treadmill exercise in rats[J]. J Appl Physiol,1993,75(3):1334-40.
[11] Edwards JG. Swim training increases ventricular atrial natriuretic factor (ANF) gene expression as an early adaptation tochronic exercise[J]. Life Sci,2002,70(23):2753-68.
[12] 陳彩珍,盧健,蘇有存,等. 抗阻訓(xùn)練對D-半乳糖衰老模型大鼠骨骼肌線粒體膜的影響[J]. 西安體育學(xué)院學(xué)報,2011,28(1):83-8.
[13] Bedford TG,Tipton CM,Wilson NC,et al. Maximum oxygen consumption of rats and its changes with various experimental procedures[J]. J Appl Physiol,1979,47(6):1278-83.
[14] Gaustad SE,Rolim N,Wisl?ff U,et al. A valid and reproducible protocol for testing maximal oxygen uptake in rabbits[J]. Eur J Cardiovasc Prev Rehabil,2010,17(1):83-8.
[15] Guasch E,Benito B,Qi X,et al. Atrial fibrillation promotion by endurance exercise: demonstration and mechanistic exploration in an animal model[J]. J Am Coll Cardiol, 2013,62(1):68-77.
[16] Fuster V,Rydén LE,Asinger RW,et al. ACC/AHA/ESC Guidelines for the management of matients with atrial fibrillation: executive summary a report of the american college of cardiology/american heart association task force on practice guidelines and the european society of cardiology committee for practice guidelines and policy conferences (committee to develop guidelines for the aanagement of patients with atrial fibrillation) developed in collaboration with the north american society of pacing and electrophysiology[J]. Circulation, 2001,104(17):2118-50.
[17]Verhorst PM,Kamp O,Welling RC,et al. Transesophageal echocardiographic predictors for maintenance of sinus rhythm after electrical cardioversion of atrial fibrillation[J]. Am J Cardiol,1997,79 (10):1355-9.
Establishment of rabbit model of exercise atrial fibrillation
YUAN Dou*, TAN Chen, YAO Jian-min, LI Dan, HUANG Si-hui, XU Wei.*Second College of Clinical Medicine, Shanxi Medical University, Taiyuan 030001, China. Corresponding author: YAO Jian-min, E-mail: jimyao@vip.sina.com; TAN Chen,E-mail:happytanchen@126.com
ObjectiveTo establish the animal model of exercise atrial fibrillation (AF) and review its results.MethodsHealthy adult New Zealand rabbits (n=24) were divided into control group, mid-intensity group and highintensity group (each n=8). The control group did not do any exercises and other groups did treadmill running with different intensity (for 1 h or one-time exhaustive exercise) for 5 d a week for 12 w. The size of atrium was detected by using echocardiogram before exercise and 8 w and 12 w after exercise. After exercise finished, Langendorff system is employed for isolated heart perfusion in all rabbits, and AF was induced by using S1S2 and induction rate of AF was recorded.ResultsCompared with control group, the left atrial anteroposterior diameter and right atrial anteroposterior diameter increased in mid-intensity group and high-intensity group after 8 w and after 12 w (all P<0.05). Compared with mid-intensity group, the left atrial anteroposterior diameter and right atrial anteroposterior diameter increased in high-intensity group after 8 w and after 12 w (all P<0.05). Compared with control group, the incidence of AF increased in mid-intensity group (45% vs. 60%) and high-intensity group (45% vs. 90%, all P<0.01).ConclusionLong-term and high-intensity treadmill running can enlarge atrial inner diameter and increase AF incidence in rabbits.
Rabbits; Endurance Exercise; Atrium dimension; Atrial Fibrillation
R541.75
A
1674-4055(2015)01-0094-03
2014-09-25)
(責(zé)任編輯:姚雪莉)
030001 太原,山西醫(yī)科大學(xué)第二臨床醫(yī)學(xué)院(袁斗);北京軍區(qū)總醫(yī)院心血管疾病研究所(袁斗,譚琛,姚建民,徐威);超聲科(李丹);北京大學(xué)第一醫(yī)院心內(nèi)科(黃思慧)
姚建民,E-mail:jimyao@vip.sina.com;
譚琛,E-mail:happytanchen@126.com
10.3969/j.1674-4055.2015.01.29