国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

microRNAs調(diào)控動物骨骼肌細(xì)胞發(fā)育的研究進(jìn)展

2015-01-23 22:25:16岳炳霖
中國牛業(yè)科學(xué) 2015年5期
關(guān)鍵詞:成肌細(xì)胞肌細(xì)胞肌纖維

岳炳霖,陳 宏

(江蘇師范大學(xué)細(xì)胞與分子生物學(xué)研究所,江蘇師范大學(xué)生命科學(xué)學(xué)院,江蘇 徐州 221116)

microRNAs調(diào)控動物骨骼肌細(xì)胞發(fā)育的研究進(jìn)展

岳炳霖,陳宏*

(江蘇師范大學(xué)細(xì)胞與分子生物學(xué)研究所,江蘇師范大學(xué)生命科學(xué)學(xué)院,江蘇 徐州 221116)

microRNAs( miRNAs) 是一類長度約為22個(gè)寡核苷酸左右的內(nèi)源性單鏈非編碼RNA,在動植物進(jìn)化過程中十分保守。近年來研究表明,miRNAs參與細(xì)胞分化、增殖、凋亡等生理過程并發(fā)揮著重要的調(diào)節(jié)作用.本文綜述了miRNAs的來源和作用機(jī)制,miRNAs對動物骨骼肌細(xì)胞增殖分化,再生以及肌纖維類型調(diào)節(jié)的最新研究進(jìn)展。

microRNA;骨骼?。杭∪獍l(fā)育

引言:

microRNA(miRNA)最早由Lee 等[1]在研究線蟲發(fā)育的過程中被發(fā)現(xiàn),是一類調(diào)節(jié)基因轉(zhuǎn)錄后表達(dá)的rna,廣泛存在于動植物、病毒、及單細(xì)胞有機(jī)體中,具有高度的進(jìn)化保守性,并且在表達(dá)上有顯著的時(shí)空特異性[2]。miRNA主要與靶mRNA 的3' 端非翻譯區(qū)(3'UTR)互補(bǔ),引起靶基因mRNA降解或由于不完全配對造成的翻譯抑制[3],從而實(shí)現(xiàn)相應(yīng)的生物學(xué)作用。近年來,大量參與基因轉(zhuǎn)錄后調(diào)控的miRNA被分析鑒定,它們廣泛參與生物體的增殖、分化、信號轉(zhuǎn)導(dǎo)、疾病產(chǎn)生與恢復(fù)等各個(gè)方面的調(diào)控。其中,miRNA作為轉(zhuǎn)錄后調(diào)控因子在骨骼肌發(fā)育中的作用及其相關(guān)調(diào)控網(wǎng)絡(luò)逐漸明晰。

骨骼肌是脊椎動物身體中最豐富的組織,約占動物體總體重的40%[4],主要由肌纖維,少量脂肪組織及結(jié)締組織組成。骨骼肌發(fā)育是一個(gè)受多因素調(diào)節(jié)的復(fù)雜生物學(xué)過程,主要包括:成肌細(xì)胞的生成,成肌細(xì)胞增殖,分化,融合成肌管,肌管最終分化為肌纖維。在骨骼肌的發(fā)育過程中,不同發(fā)育階段會形成不同類型的成肌細(xì)胞(胚胎成肌細(xì)胞、胎兒成肌細(xì)胞和衛(wèi)星細(xì)胞)[5]。這些成肌細(xì)胞經(jīng)過一系列的增殖、遷移、分化,最終形成多種類型的快、慢肌纖維[6]。動物骨骼肌的生長主要依賴肌纖維數(shù)目的增加和肌纖維橫截面積的變大。其中,胎兒期主要發(fā)生纖維數(shù)目的增加,出生后則主要依靠原有肌纖維橫截面積的變大增加肌肉含量[7]。

miRNAs對動物骨骼肌細(xì)胞發(fā)育的影響最早在敲除dicer基因的小鼠上得到證實(shí),dicer基因編碼的dicer酶將前體microRNA加工成成熟microRNA,它的敲除使得小鼠骨骼肌細(xì)胞發(fā)育不全,肌纖維形態(tài)缺陷,加速了骨骼肌細(xì)胞的凋亡[8]。此外miRNAs能夠通過控制成肌細(xì)胞的增殖與分化過程調(diào)節(jié)肌肉生成。如miR-206 和miR-486能通過直接抑制Pax7的表達(dá)使成肌細(xì)胞退出增殖及細(xì)胞周期,進(jìn)入分化階段[9]。

許多miRNA具有組織表達(dá)特異性,據(jù)此miRNA可分為肌肉特異性的miRNA和非肌肉特異性的miRNA,兩種類型的miRNA在肌肉的增殖及分化方面都扮演著重要角色。肌肉特異的miR-1[10]、miR-133[11]、和miR-206[12]參與骨骼肌細(xì)胞的增殖分化,其中miR-1,miR-133在骨骼肌及心肌中表達(dá),miR-206被發(fā)現(xiàn)僅在骨骼肌中表達(dá)[13]。非特異性表達(dá)的miR-181[14]、miR-241[15]、miR-26a[16]、miR-27[17-18]、miR-29[19]、miR-125b[20]以及廣泛表達(dá)的miR-155[21]、和miR-214[22-23]也參與成肌過程。骨骼肌細(xì)胞的增殖與分化是骨骼肌發(fā)育的核心問題,骨骼肌的再生與人肌肉相關(guān)疾病的治療密切相關(guān),肌纖維類型與肉品質(zhì)密切相關(guān)[24-25]。由于有關(guān)肌肉發(fā)育的分子機(jī)制尚未徹底闡明,因此,通過深入研究miRNAs調(diào)控骨骼肌細(xì)胞發(fā)育的分子機(jī)制,有利于加深人們對動物骨骼肌增殖分化機(jī)制的理解,并為其在人骨骼肌相關(guān)疾病治療,畜禽肉品質(zhì)改善的應(yīng)用方面提供理論依據(jù)。

1 microRNA的來源與作用機(jī)制

1.1microRNA的來源

microRNA在生物體內(nèi)的生成經(jīng)過細(xì)胞核內(nèi)基因組DNA轉(zhuǎn)錄、加工、轉(zhuǎn)移到細(xì)胞質(zhì)、胞漿繼續(xù)加工和裝配等過程,涉及3個(gè)關(guān)鍵酶:RNA聚合酶Ⅱ、RNaseⅢ-Drosha、RNaseⅢ-Dicer。首先,在細(xì)胞核中DNA 聚合酶Ⅱ?qū)⒒蚪MDNA轉(zhuǎn)錄為初級miRNA(pri-miRNA)[26-27],之后RNaseⅢ-Drosha和雙鏈RNA結(jié)合蛋白DGCR8將其剪切成含有70到120個(gè)核苷酸左右具有莖環(huán)結(jié)構(gòu)的前體miRNA(pre-miRNA)[28]。隨后pre-miRNA經(jīng)轉(zhuǎn)運(yùn)蛋白-5(exportin-5) 轉(zhuǎn)運(yùn)進(jìn)入細(xì)胞質(zhì)[29]。在胞漿內(nèi)內(nèi)源性的RNaseⅢ-Dicer將pre-miRNA加工成成熟雙鏈miRNA[30],同時(shí)與TAR結(jié)合蛋白(TAR-binding protein,TRBP)結(jié)合形成RNA 誘導(dǎo)的沉默復(fù)合體裝載復(fù)合物(RLC)[31]。之后RNA解旋酶解開RLC中成熟雙鏈miRNA并在一種AGO蛋白的參與下形成RNA 誘導(dǎo)的沉默復(fù)合體(RISC),RISC中成熟單鏈miRNA通過識別靶基因的3'UTR降解mRNA或抑制翻譯[32]或通過快速脫腺苷酸化使mRNA降解[33]。Pre-miRNA除了來源于基因組DNA的轉(zhuǎn)錄外,最近Yang等研究表明一些Pre-miRNA由RNA剪切而來。microRNA還可以由諸如核仁小分子RNA(snoRNA),轉(zhuǎn)運(yùn)RNA(tRNA)和內(nèi)含子非編碼RNA等內(nèi)源性RNA產(chǎn)生[34]。

1.2microRNA的作用機(jī)制

miRNA 5'端2 -7個(gè)核苷酸被稱為種子序列,它與靶mRNA 的3' 端非翻譯區(qū)(3' UTR)完全互補(bǔ),引起靶基因mRNA降解,而它們之間的不完全配對則造成翻譯抑制,影響蛋白的表達(dá)水平。2006 年,Wu等研究表明,在哺乳動物細(xì)胞中,miR-125b 和let-7 能夠快速脫腺苷酸化靶mRNA,去除mRNA 聚腺苷酸尾,從而抑制基因表達(dá).這又提供了一個(gè)microRNA的作用機(jī)制。相關(guān)研究表明miRNA還可以在轉(zhuǎn)錄水平上通過對特異基因甲基化作用等方式沉默特定基因[35]。miRNA除了抑制靶基因表達(dá),在特殊情況下也可以促進(jìn)靶基因翻譯。如miR-16能夠靶向MYT激酶的mRNA,激活其在爪蟾卵母細(xì)胞中的表達(dá)[36]。microRNA對靶基因的調(diào)節(jié)是一個(gè)復(fù)雜并且需要高度協(xié)調(diào)的過程。大多數(shù)microRNA是通過對靶基因的微調(diào)來達(dá)到它們的抑制作用[37]。在同一種生物學(xué)過程中一個(gè)microRNA可以抑制多個(gè)mRNA,也可以是多個(gè)microRNA各自靶向相關(guān)位點(diǎn)或共同靶向同一位點(diǎn),相互協(xié)調(diào)完成生物學(xué)過程。除此之外,microRNA可以在不同條件下抑制或者激活相關(guān)靶位點(diǎn)從而使得機(jī)體適應(yīng)環(huán)境變化[38]。生物體的發(fā)育過程中幾乎沒有單一的microRNA發(fā)揮作用,越來越多的研究表明了microRNA調(diào)控的復(fù)雜性,不相關(guān)的microRNA,microRNA與轉(zhuǎn)錄因子相互作用共同參與同一生物學(xué)過程[39-42]。轉(zhuǎn)錄因子除了與microRNA啟動子結(jié)合外,一些轉(zhuǎn)錄因子還能與pri-miRNA結(jié)合影響microRNA的生成[43]。競爭性內(nèi)源RNA(ceRNA)通過與相關(guān)靶基因競爭性地結(jié)合microRNA,使microRNA與靶基因脫離。例如,具有肌肉特異性的長鏈非編碼ceRNAlinc-MD1通過結(jié)合miR-135激活肌肉特異性基因表達(dá)的轉(zhuǎn)錄因子肌細(xì)胞增強(qiáng)因子(MEF2C)[44],從而調(diào)節(jié)小鼠和人成肌細(xì)胞的分化。這為microRNA的轉(zhuǎn)錄后調(diào)控提供了新的機(jī)制。

2 microRNA對動物骨骼肌細(xì)胞增殖分化調(diào)控的研究現(xiàn)狀

成肌細(xì)胞是動物生肌前體細(xì)胞。在脊椎動物胚胎中,成肌細(xì)胞來源于由體節(jié)分化而來的生皮肌節(jié)[45],生皮肌節(jié)富含生肌祖細(xì)胞,它是由一類表達(dá)Pax3 和Pax7轉(zhuǎn)錄因子的增殖及未分化細(xì)胞[46],生肌祖細(xì)胞增殖分化成成肌細(xì)胞。生皮肌節(jié)背側(cè)及腹側(cè)的生肌祖細(xì)胞分別構(gòu)建了脊柱軸上方及下方的肌節(jié),脊柱軸上方肌節(jié)經(jīng)分化,延伸,融合形成深背部肌肉組織,脊柱軸下方肌節(jié)前體的一部分亞群分化為軀干肌,其余的繼續(xù)保持增殖,分層,遷移形成隔膜、四肢和舌頭肌肉組織[47-48]。

肌纖維的形成需要成肌細(xì)胞退出細(xì)胞周期,融合,伸長并保持末端分化[49]。成肌細(xì)胞在遷移的過程中,生肌調(diào)節(jié)因子myogenin和肌細(xì)胞增強(qiáng)因子MRF4開始表達(dá),并且促使成肌細(xì)胞分化為肌管[50]。生肌調(diào)節(jié)因子包括:myogenin、Myod、Myf5、MRF4,是一類具有螺旋-環(huán)-螺旋結(jié)構(gòu)的轉(zhuǎn)錄因子,與E蛋白二聚化并結(jié)合E boxes,是肌肉特異性基因的增強(qiáng)劑。其中Myod作為肌肉特異性基因轉(zhuǎn)錄的重要調(diào)節(jié)因子能促進(jìn)成肌細(xì)胞分化,Myogenin與成肌細(xì)胞末端分化有關(guān)[51]。在末端分化前成肌細(xì)胞經(jīng)歷了一段增殖以及細(xì)胞靜息周期[52]。當(dāng)成肌細(xì)胞退出細(xì)胞周期,myogenin等生肌調(diào)節(jié)因子繼續(xù)表達(dá),成肌細(xì)胞分化融合成多核肌管,多核肌管含有由肌動蛋白和肌球蛋白組成的肌原纖維。隨著肌原纖維的增多,細(xì)胞核逐漸靠向細(xì)胞膜,肌管最終轉(zhuǎn)變成肌纖維[49]。肌節(jié)形成后,胚胎成肌細(xì)胞引起胚胎初級肌纖維的形成,之后胎兒成肌細(xì)胞引起次級肌纖維的形成,并起初包圍在初級肌纖維周圍。衛(wèi)星細(xì)胞出現(xiàn)在剛形成的基膜下,處于肌纖維周圍,用于產(chǎn)后肌纖維的生長及再生。

在骨骼肌中特異表達(dá)的microRNA被稱為MyomiRs,控制著成肌細(xì)胞的增殖分化及肌肉組織的代謝平衡,如miR-1、miR-133a、miR-133b、miR-206、miR-208b[53-54]。miR-1/206家族包含miR-1-1、miR-1-2、miR-206,miR-133家族由miR-133a-1、miR-133a-2、miR-133b組成[42]。miR-1-1/miR-133a-2,miR-1-2/miR-133a-1以及miR-206 / miR-133b這三組肌肉特異性mirna在骨骼肌上的表達(dá)受包括血清應(yīng)答因子(SRF)、生肌調(diào)節(jié)因子(Myod,myogenin)、肌細(xì)胞增強(qiáng)因子(MEF2)在內(nèi)的一系列轉(zhuǎn)錄因子的調(diào)控[55-56]。miR-1、miR-133、miR-206 的啟動子區(qū)含有Myod和Myogenin的結(jié)合位點(diǎn),此外,miR-1的啟動子區(qū)含有MEF-2 和血清應(yīng)答因子(SRF)的結(jié)合位點(diǎn),同時(shí)受MEF-2和SRF 的調(diào)控,生肌調(diào)節(jié)因子(Myod)可以通過結(jié)合E boxes激活miR-206/133b的轉(zhuǎn)錄[57]。

除了前面提到的MyomiRs,各種組織廣泛表達(dá)的miRNAs也參與骨骼肌的發(fā)育和功能調(diào)控:miR-27靶向抑制Pax-3,促進(jìn)骨骼肌早期分化[17]。miR-181可靶向同源異型框蛋白(Hox-A11)從而促進(jìn)成肌細(xì)胞終末分化[14]。在骨骼肌細(xì)胞分化過程中表觀抑制因子YY1 表達(dá)下調(diào),miR-29t通過靶向YY1促進(jìn)骨骼肌細(xì)胞的分化[19]。miR-214通過Hedgehog 信號轉(zhuǎn)導(dǎo)通路影響慢肌纖維的產(chǎn)生[22]等。

2.1microRNA對動物骨骼肌細(xì)胞增殖的調(diào)控

在骨骼肌發(fā)育過程中,miR-1和miR-133作用相反,miR-1促進(jìn)肌肉分化,而miR-133抑制肌肉分化、促進(jìn)成肌細(xì)胞增殖。miR-133通過靶向抑制血清應(yīng)答因子(SRF),促進(jìn)成肌細(xì)胞增殖。實(shí)驗(yàn)表明在爪蟾胚胎中過表達(dá)miR-133,雖然可以形成心肌組織,但不能形成心腔且不能環(huán)化。miR-1與miR-206共同下調(diào)PAX3的表達(dá)從而抑制橫紋肌肉瘤細(xì)胞的增殖[58],miR-206通過靶向高遷移率族蛋白基因Hmgb3[59]以及調(diào)控DNA聚合酶的合成,對骨骼肌細(xì)胞增殖分別起著促進(jìn)、抑制作用,這表明miR-206 對骨骼肌細(xì)胞增殖的促進(jìn)和抑制隨著通路改變將發(fā)生變化。

在小鼠成肌細(xì)胞中,miR-214既可以促進(jìn)成肌細(xì)胞的增殖,又可以促進(jìn)其分化[23];miR-27a通過靶向肌肉生長抑制因子(Myostatin),促進(jìn)成肌細(xì)胞的增殖[17];miR-23a 通過調(diào)控泛素蛋白連接酶促進(jìn)肌細(xì)胞增殖[60]。同時(shí),成肌細(xì)胞的增殖過程也受到一些miRNAs的抑制。例如,MiR-29通過下調(diào)Akt3基因的表達(dá)抑制小鼠成肌細(xì)胞的增殖并促進(jìn)肌管形成[19],miR-682在成肌細(xì)胞增殖過程中表達(dá)上調(diào),抑制miR-682可使細(xì)胞增殖受阻[61]。miR-128a通過靶向抑制胰島素受體底物-1(Irs-1)下調(diào)肌細(xì)胞的增殖,同時(shí)mir-128a又受腫瘤壞死因子(TNF)的調(diào)節(jié)促進(jìn)肌細(xì)胞的增殖,它們之間形成一個(gè)反饋環(huán),調(diào)節(jié)著肌細(xì)胞增殖平衡[62]。

2.2microRNA對動物骨骼肌細(xì)胞分化的調(diào)控

通過microrna調(diào)控基因表達(dá)是動物骨骼肌細(xì)胞分化所必需的,肌肉分化相關(guān)基因MHC Myod、MEF2、Pax3、YY1等受一系列肌肉特異性以及非特異性microrna的調(diào)控。例如miR-1/206家族的miRNAs在成肌細(xì)胞分化過程中就扮演著重要角色。當(dāng)成肌細(xì)胞分化為肌管的過程中,miR-1和miR-133的表達(dá)上調(diào)。組蛋白去乙?;?HDAC4)是miR-1的靶位點(diǎn),又是轉(zhuǎn)錄因子肌細(xì)胞增強(qiáng)因子(MEF2)的抑制劑。肌細(xì)胞增強(qiáng)因子(MEF2)上調(diào)miR-1的表達(dá),而miR-1靶向抑制組蛋白去乙?;?HDAC4)激活了肌細(xì)胞增強(qiáng)因子(MEF2),從而進(jìn)一步促進(jìn)成肌細(xì)胞分化。實(shí)驗(yàn)證明在果蠅幼蟲肌肉有絲分裂后生長過程中miR-1的丟失導(dǎo)致果蠅肌肉嚴(yán)重變形[63-64]。此外,表觀抑制因子通過調(diào)節(jié)miR-1的表達(dá)影響骨骼肌分化[65]。miR-206在成肌細(xì)胞分化中上調(diào),并通過抑制DNA聚合酶a亞基(pola1),連接蛋白43(connexin 43)、卵泡抑制素1(FSTL1)以及和肌營養(yǎng)相關(guān)蛋白使細(xì)胞退出細(xì)胞周期進(jìn)入終末分化[66~69]。然而miR-206在活體肌肉分化上的調(diào)節(jié)仍然不清楚,因?yàn)橛凶C據(jù)表明缺乏miR-206的小鼠肌肉顯示正常發(fā)育[70]。

除此之外miR-27a通過減少肌生成抑制蛋白的表達(dá)量,促進(jìn)肌細(xì)胞分化;miR-26通過靶向抑制轉(zhuǎn)錄因子Smad1和Smad4 促進(jìn)肌細(xì)胞分化;miR-378 和miR-181能夠間接促進(jìn)Myod的表達(dá)促進(jìn)肌細(xì)胞分化,而miR-699a/699q直接靶向抑制Myod的表達(dá)從而抑制肌細(xì)胞分化。miR-155和miR-135通過抑制肌細(xì)胞增強(qiáng)因子2a(Mef2a)的表達(dá)抑制肌細(xì)胞的分化。miR-24的抑制可顯著減少M(fèi)EF2D、Myf5、Myod、Myogeniny以及 MHC的表達(dá),從而嚴(yán)重影響著成肌分化[71]。以上表明microrna可以通過直接或間接的方式調(diào)控肌肉發(fā)育相關(guān)基因,并受肌肉發(fā)育相關(guān)基因的反饋,microrna與肌肉發(fā)育相關(guān)基因間的相互作用加深了對microrna在動物骨骼肌細(xì)胞增殖分化調(diào)控中的理解。

3 microRNA對動物肌細(xì)胞修復(fù)的研究現(xiàn)狀

骨骼肌在經(jīng)過損傷,運(yùn)動,疾病等肌肉營養(yǎng)不良過程后具有顯著地再生修復(fù)能力。這種再生能力依賴于衛(wèi)星細(xì)胞,它是一類用于產(chǎn)后肌纖維的生長及再生的異源性干細(xì)胞。衛(wèi)星細(xì)胞位于基膜下,被肌纖維圍繞,一般情況下維持在有絲分裂的靜止?fàn)顟B(tài),保持有限的基因表達(dá)及蛋白合成[72-73]。一旦受到損傷或疾病等內(nèi)在或外在的信號的激活,衛(wèi)星細(xì)胞將離開原來的位置重新進(jìn)入細(xì)胞周期。激活的衛(wèi)星細(xì)胞將進(jìn)入肌肉生成途徑,表達(dá)生肌調(diào)節(jié)因子(MRFs)Myod和Myf5[74-76]。多輪增殖后,成肌細(xì)胞開始分化形成多核肌纖維,并相互融合與現(xiàn)有的肌纖維重建肌肉組織。未激活的衛(wèi)星細(xì)胞則通過不對稱細(xì)胞分裂來補(bǔ)充靜息干細(xì)胞[77]。

microRNA在維持衛(wèi)星細(xì)胞靜息以及增殖分化方面具有重要作用。miR-489在靜息的衛(wèi)星細(xì)胞中高表達(dá),而在衛(wèi)星細(xì)胞激活的時(shí)候急劇下調(diào),miR-489通過抑制能夠促進(jìn)生肌祖細(xì)胞增殖擴(kuò)張的癌基因DEK維持衛(wèi)星細(xì)胞的靜息狀態(tài), 其中DEK能夠促進(jìn)生肌祖細(xì)胞增殖。實(shí)驗(yàn)顯示衛(wèi)星細(xì)胞dicer酶的特異性缺失導(dǎo)致其靜息狀態(tài)的自發(fā)終止,衛(wèi)星細(xì)胞進(jìn)入細(xì)胞周期并開始增殖,同時(shí)衛(wèi)星細(xì)胞的子代也出現(xiàn)大量凋亡[78]。在靜息態(tài)的衛(wèi)星細(xì)胞中,Myf5位于MRNP顆粒中,受到miR-31抑制。一旦衛(wèi)星細(xì)胞受到激活,MRNP顆粒分離,Myf5解除抑制,Myf5蛋白得到快速翻譯和積累,從而標(biāo)記激活的成肌細(xì)胞,促進(jìn)肌肉生成[79]。Myod能夠上調(diào)相關(guān)microRNA的表達(dá),激活的衛(wèi)星細(xì)胞促進(jìn)了Myod的表達(dá),還激活了骨骼肌生肌通路,例如miR-206在激活的衛(wèi)星細(xì)胞中顯著上調(diào),miR-206通過靶向轉(zhuǎn)錄因子配對盒7(Pax7)的3'UTR直接抑制Pax7表達(dá)從而限制衛(wèi)星細(xì)胞的增殖并利于其分化。Pax7在靜息和激活衛(wèi)星細(xì)胞中都能表達(dá),并且在靜息衛(wèi)星細(xì)胞維持和自我更新中是必需的[80]。在受到膜毒素侵?jǐn)_后,miR-351表達(dá)量急劇上升,通過靶向可抑制細(xì)胞增殖的E2f3促進(jìn)衛(wèi)星細(xì)胞增殖[81],而在同樣受膜毒素侵?jǐn)_的情況下,miR-125b表達(dá)量卻顯示下調(diào),它的靶基因類胰島素生長因子2(IGF-2)調(diào)節(jié)肌肉生成[82]。以上研究結(jié)果說明,miRNA在骨骼肌細(xì)胞修復(fù)中具有重要的作用,挖掘和深入研究新miRNA在骨骼肌再生中的作用機(jī)制意義重大。

4 microRNA對動物骨骼肌纖維類型調(diào)控的研究現(xiàn)狀

骨骼肌是由一系列不同生理及代謝參數(shù)的異質(zhì)肌纖維組成,具有多種功能性質(zhì)的肌肉群。根據(jù)骨骼肌肌球蛋白重鏈亞型差異將肌纖維分為I 型、IIa型、IIb型與IIx型4 種類型(I 型俗稱“慢肌”,II型俗稱“快肌”)。所分出的4 種肌纖維表現(xiàn)出不同的生理與代謝特征,其中I 型和IIa型肌纖維表現(xiàn)出氧化代謝特性,而IIb型和IIx型肌纖維表現(xiàn)出主要的糖酵解特性,肌纖維類型與肉品質(zhì)密切相關(guān),慢速氧化型肌纖維直徑小,脂質(zhì)和肌紅蛋白含量高,有助于增加肌肉的嫩度、多汁性和風(fēng)味[24]。肌纖維的總數(shù)在胎兒出生前已經(jīng)固定,但肌纖維類型的變化卻貫穿整個(gè)生長發(fā)育過程。在骨骼肌的生長發(fā)育過程中,骨骼肌肌纖維類型的相互轉(zhuǎn)變遵循I 型?IIa型?IIx型?IIb型的變化規(guī)律[83]。肌纖維類型形成的分子調(diào)控機(jī)制非常復(fù)雜,涉及到許多的信號通路、基因與轉(zhuǎn)錄因子[84]。肌肉特異性microRNA(miR-208、miR-208b、miR-499)分別由三個(gè)肌肉特異性肌球蛋白重鏈基因(Myh6、Myh7、Myh7b)的內(nèi)含子編碼而來[56]。這三個(gè)microRNA在種子序列上具有顯著的同源性,這表明它們在調(diào)節(jié)同一靶點(diǎn)的過程中具有相同的功能。I 型肌纖維的肌球蛋白由Myh7,Myh7b編碼,miR-499通過直接靶向3個(gè)Myh7基因抑制劑:Sox6、Pur?、Thrap1增加I 型肌纖維的數(shù)量[85]。miR-208b能夠增強(qiáng)Myh7b 及miR-499的表達(dá)并且激活I(lǐng) 型肌纖維的形成,但相關(guān)機(jī)制尚不清楚。miR-208及它的編碼基因Myh6只在心肌中表達(dá),與miR-499類似,miR-208也通過靶向Sox6、Pur?、Thrap1促進(jìn)I 型肌纖維的形成。相反,由于miR-208b,miR-499的顯著下調(diào),I 型肌纖維生成受到抑制,II型肌纖維得到激活[86]。在骨骼肌中,miR-208b和miR-499通過激活I(lǐng) 型肌纖維基因抑制II型肌纖維基因共同控制肌纖維的形成。實(shí)驗(yàn)顯示miR-499在骨骼肌中過表達(dá)引發(fā)了比小鼠目魚肌II 型肌纖維向I 型肌纖維的轉(zhuǎn)化,缺乏miR-208b 和miR-499的比目魚肌顯示大量I型肌纖維的丟失。在小鼠新生兒骨骼肌細(xì)胞中有條件敲除Sox6導(dǎo)致II 型肌纖維向I 型肌纖維的轉(zhuǎn)化,同時(shí)伴隨骨骼肌性質(zhì)與功能的改變[87]。

除此之外miR-1、miR-23a也可調(diào)節(jié)骨骼肌纖維類型分化,miR-208b 和miR-499 主要起著延緩肌纖維轉(zhuǎn)型的作用,而miR-23a 和miR-1 決定肌纖維的分化類型[88]。2009 年,van等[54]證實(shí),肌球蛋白編碼的miRNA通過與不同肌球蛋白重鏈亞型形成相互作用網(wǎng)絡(luò),影響肌球蛋白的表達(dá)和肌纖維類型。這些研究揭示了miRNA在調(diào)控骨骼肌類型中的重要作用。

5 展望

miRNA是多種生物學(xué)通路的關(guān)鍵調(diào)節(jié)因子,在骨骼肌細(xì)胞增殖分化、再生以及肌纖維類型調(diào)節(jié)等方面發(fā)揮作用。目前miRNA在肉牛上的研究集中于肌肉生長發(fā)育、繁殖、育種和胚胎存活等方面,主要依托相關(guān)miRNA的深度挖掘及其功能鑒定。盡管大量的miRNA及其在肉牛骨骼肌中的作用靶點(diǎn)得到鑒定,但是其具體的調(diào)控機(jī)制仍需進(jìn)一步研究,例如miRNA介導(dǎo)的肌肉發(fā)育調(diào)控網(wǎng)絡(luò),miRNA與肌細(xì)胞增殖分化重要信號通路的相互作用等。探究并闡明miRNA在肉牛肌肉發(fā)育過程中的調(diào)控機(jī)理將為改良肉牛肉品產(chǎn)量、質(zhì)量提供理論依據(jù),為產(chǎn)肉性狀的分子改良提供新的思路。

[1]Lee R C,F(xiàn)einbaum R L,Ambros V,et al.Elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14[J]. Cell,1993,75(5):843-854.

[2]Bartel DP1.MicroRNAs:genomics,biogenesis,mechanism,and function[J].Cell,2004,116(2):281-97.

[3]Yekta S1,Shih IH,Bartel DP.MicroRNA-directed cleavage of HOXB8 mRNA[J].Science,2004,304(5670):594-6.

[4]Guller I,Russell,A.P.MicroRNAs in skeletal muscle:their role and regulation in development, disease and function[J].Physiol,2010,5(88):4075-4087.

[5]Biressis,Molinarom,Cossug.Cellular heterogeneity during vertebrate skeletal muscle development[J].Dev Biol,2007,308(2):281-293.

[6]Miller J B,Everitt E A,Smith T H,et al.Cellular and molecular diversity in skeletal muscle development:news fromin vitro and in vivo[J].Bioessays,1993,15(3):191-196.

[7]Swatland H J.Muscle growth in the fetal and neonatal pig[J].J Anim Sci,1973,37(2):536-545.

[8]O'Rourke JR1,Georges SA,Seay HR,et al.Essential role for Dicer during skeletal muscle development[J].Dev Biol,2007,311(2):359-68.

[9] Dey,B.K,Gagan,et al.miR-206 and miR-486 induce myoblast differentiation by downregulating Pax7[J].Cell.Biol,2011,31:203-214.

[10]Chen J F,Mandel E M,Thomson J M,et al.The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation[J].Nat Genet,2005,38(2):228-233.

[11]Niu Z,Li A,Zhang S X,et al.Serum response factor micromanaging cardiogenesis[J].Curr Opin Cell Biol,2007,19(6):618-627.

[12]Kim H K,Lee Y S,Sivaprasad U,et al.Muscle specific microRNA miR-206 promotes muscle differentiation[J].Cell Biol,2006,174,(5):677-687.

[13]McCarthy J.The MyomiR network in skeletal muscle plasticity[J].Exerc Sport Sci Rev,2011,(39):150-154.

[14]Naguibneva I,Ameyar-Zazoua M,Polesskaya A,et al.The microRNA miR-181 targets the homeobox protein Hox-A11 during mammalian myoblast differentiation[J].Nat Cell Biol, 2006,8(3):278-284.

[15]Flynt A S,Li N,Thatcher E J,et al.Zebrafish miR-214 modulates Hedgehog signaling to specify muscle cell fate[J].Nat Genet,2007,39(2):259-263.

[16]Dey B K,Gagan J,Yan Z,et al.MiR-26a is required for skeletal muscle differentiation and regeneration in mice[J].Gene Dev,2012,26(19):2180-2191.

[17]Huang Z,Chen X,Yu B,et al.MicroRNA-27a promotes myoblast proliferation by targeting myostatin[J].Biochem Biophys Res Commun,2012,423(2):265-269.

[18]Crist CG,Montarras D,Pallafacchina G,et al.Muscle stem cell behavior is modified by microRNA-27 regulation of Pax3 expression[J].Proc Natl Acad Sci USA,2009,106(32):13 383-13 387.

[19]Wei W,He H B,Zhang W Y,et al.miR-29 targets Akt3 to reduce proliferation and facilitate differentiation of myoblasts in skeletal muscle development[J].Cell Death Dis,2013,(4):668.

[20]Ge Y,Sun Y,Chen J.IGF-II is regulated by microRNA-125b in skeletal myogenesis[J].J Cell Biol,2011,192(1):69-81.

[21]Seok H Y,Tatsuguchi M,Callis T E,et al.MiR-155 inhibits expression of the MEF2A protein to repress skeletal muscle differentiation[J].J Biol Chem,2011,286(41):35339-35346.

[22]Juan A H,Kumar R M,Marx J G,et al.MiR-214-dependent regulation of the polycomb protein Ezh2 in skeletal muscle and embryonic stem cells[J]. Mol Cell,2009,36(1):61-74.

[23]Feng Y,Cao J H,Li X Y,et al.Inhibition of miR-214 expression represses proliferation and differentiation of C2C12 myoblasts[J]. Cell Biochem Funct,2011,29(5):378-383.

[24]Lefaucheur L,Milan D,Ecolan P,et al.Myosin heavy chain composition of different skeletal muscles in Large White and Meishan pigs[J]. J Anim Sci,2004,82(7):1931-1941.

[25]Choi Y M,Ryu Y C,Kim B C.Influence of myosin heavy-and light chain isoforms on early postmortem glycolytic rate and pork quality[J]. Meat Sci,2007,76(2):281-288.

[26]Lee.The nuclear RNase III Drosha initiates microRNA processing[J].Nature,425,(6956): 415-4193.

[27]Cai X,Hagedorn CH,Cullen BR.Human microRNAs are processed from capped,polyadenylated transcripts that can also function as mRNAs[J].RNA,2004,10(12):1957-1966.

[28]Denli AM,Tops BB,Plasterk RH,et al.Processing of primary microRNAs by the Microprocessor complex[J].Nature,2004,432,(7014):231-235.

[29]Lund E1,Güttinger S,Calado A,et al.Nuclear export of microRNA precursors[J]. Science,2004,303(5654):95-8.

[30]Hutvágner G1,McLachlan J,Pasquinelli AE,et al.A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA[J].Science,2001,293(5531):834-8.

[31]Chendrimada TP,Gregory RI,Kumaraswamy E,et al.TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing[J].Nature,2005,436(7051):740-744.

[32]Filipowicz W,Bhattacharyya SN,Sonenberg N.Mechanisms of post-transcriptional.regulation by microRNAs:are the answers in sight?[J].Nat Rev Genet,2008,9(2):102-114.

[33]Wu L,F(xiàn)an J,Belasco JG.MicroRNAs direct rapid deadenylation of mRNA[J].Proc.Natl.Acad.Sci.USA,2006,103:4034-4039.

[34]Yang JS,Lai EC.Alternative miRNA biogenesis pathways and the interpretation of core miRNA[J].pathway mutants Mol Cell,2011,43:892-903.

[35]Bao N,Lye KW,Barton MK.MicroRNA binding sites in Arabidopsis class III HD- ZIP mRNAs are required for methylation of the template chromosome [J].Dev Cell,2004,7(5):653- 662.

[36]Mortensen RD,Serra M,Steitz J A,et al.Post-transcriptional activation of gene expression in Xenopus laevis oocytes by microRNA-protein complexes(microRNPs)[J].Proc Natl Acad Sci USA,2011,108(20) :8281-8286.

[37]Bartel DP.MicroRNAs:target recognition and regulatory functions[J].Cell,2009, 136(2):215-233.

[38]Small EM,Olson EN.Pervasive roles of microRNAs in cardiovascular biology[J].Nature,2011,469(7330):336-342.

[39]Ambros V .MicroRNAs:genetically sensitized worms reveal new secrets[J].Curr Biol,2010,20(14):R598-600.

[40]Brenner JL,Jasiewicz KL,F(xiàn)ahley AF,et al.Loss of individual microRNAs causes mutant phenotypes in sensitized genetic backgrounds in C.elegans[J].Curr Biol,2010,20(14):1321-1325.

[41]Alvarez-Saavedra E,Horvitz HR.Many families of C.elegans microRNAs are not essential for development or viability[J].Curr Biol,2010,20(4):367-373.

[42]Liu N,Olson EN.MicroRNA regulatory networks in cardiovascular development[J].Dev Cell,2010,18(4):510-525.

[43]Goljanek-Whysall K,Sweetman D,Munsterberg AE.MicroRNAs in skeletal muscle differentiation and disease[J].Clin Sci (Lond),2012,123:611-625.

[44]Cesana M,Cacchiarelli D,Legnini I,et al.A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA[J].Cell.2011,147:358-369.

[45]Hollway G,Currie P.Vertebrate myotome development[J].Birth Defects Res C Embryo Today,2005,75:172-9.

[46]Relaix F,Montarras D,Zaffran S,et al.Pax3 and Pax7 have distinct and overlapping functions in adult muscle progenitor[J].cells J Cell Biol,2006,172:91-102.

[47]Huh MS,Smid JK,Rudnicki MA.Muscle function and dysfunction in health and disease[J].Birth Defects Res C Embryo Today,2005,75:180-92.

[48]Kalcheim C,Cinnamon Y,Kahane N,et al.Myotome formation:a multistage process[J].Cell Tissue Res,1999,296:161-73.

[49]Stockdale,F(xiàn).E.Mechanisms of formation of muscle fiber types[J].Cell Struct.Funct,1997,22:37-43.

[50]Berkes, C.A., Tapscott,et al.Myod and the transcriptional control of myogenesis[J].Semin.Cell Dev.Biol,2005,16:585-595.

[51]Venuti JM,Morris JH, Vivian JL,et al.Myogenin is required for late but not early aspects of myogenesis during mouse development[J].J Cell Biol,1995,128:563-76.

[52]Sarkar,S.,Dey,et al.MiR-322/424 and -503 are induced during muscle differentiation and promote cell cycle quiescence and differentiation by down-regulation of Cdc25A[J].Mol.Biol.Cell,2010,2:2138-2149.

[53]Liu N,Williams AH,Kim Y,et al.An intragenic MEF2-dependent enhancer directs musclespecific expression of microRNAs 1 and 133[J].Proc Natl Acad Sci USA,2007,104(52):20844-20849.

[54]van Rooij E,Quiat D,Johnson BA,et al.A family of microRNAs encoded by myosin genes governs myosin expression and muscle performance[J].Dev Cell,2009,17(5):662-673.

[55]Zhao Y,Samal E,Srivastava D.Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis[J].Nature,2005,436(7048):214-220.

[56]Chen JF,Mandel EM,Thomson JM,et al.The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation[J].Nat Genet,2006,38(2):228-233.

[57]Rao PK,Kumar RM,F(xiàn)arkhondehM,et al.Myogenic factors that regulate expression of muscle-specific microRNAs[J].Proc Natl Acad Sci USA,2006,103(23):8721-8726.

[58]Goljanek-Whysall K,Sweetman D,Abu-Elmagd M,et al.MicroRNA regulation of the pairedbox transcription factor Pax3 confers robustness to developmental timing of myogenesis[J].Proc Natl Acad Sci USA,2011,108:11936-11941.

[59]Maciotta S,Meregalli M,Cassinelli L,et al.Hmgb3 is regulated by microrna-206 during muscle regeneration[J].PLoS One,2012,7:43464.

[60]Wada S,Kato Y,Okutsu M,et al.Translational suppression of atrophic regulators by microRNA-23a integrates resistance to skeletal muscle atrophy[J].J Biol Chem,2011,286(44):38456-38465.

[61]Chen Y1,Gelfond J,McManus LM,et al.Temporal microRNA expression during in vitro myogenic progenitor cell proliferation and differentiation:regulation of proliferation by miR-682[J].Physiol Genomics,2011,43(10):621-630.

[62]Motohashi N1,Alexander MS,Shimizu-Motohashi Y,et al.Regulation of IRS1 / Akt insulin signaling by microRNA-128aduring myogenesis[J].J Cell Sci,2013,126:2678-2691.

[63]Kwon C,Han Z,Olson EN,et al.MicroRNA-1 influences cardiac differentiation in Drosophila and regulates Notch signaling[J].Proc Natl Acad Sci USA,2005,102(52):18986-18991.

[64]Sokol NS,Ambros V .Mesodermally expressed Drosophila microRNA-1 is regulated by Twist and is required in muscles during larval growth[J].Genes Dev,2005,19(19):2343-2354.

[65]Lu LN,Zhou L,Chen EZ,et al.A Novel YY1-miR-1 regulatory circuit in skeletal myogenesis revealed by genome-wide prediction of YY1-miRNA network[J].PLoS One, 2012, 7(2):27596.

[66]Anderson C,Catoe H,Werner R.MIR-206 regulates connexin43 expression during skeletal muscle development[J].Nucleic Acids Res,2006,34(20):5863-5871.

[67]Kim HK,Lee YS,Sivaprasad U,et al.Muscle-specific microRNA miR-206 promotes muscle differentiation[J].J Cell Biol,2006,174(5):677-687.

[68]Rosenberg MI,Georges SA,Asawachaicharn A,et al.Myod inhibits Fstl1 and Utrn expression by inducing transcription of miR-206[J].J Cell Biol,2006,175(1):77-85.

[69]Hirai H,Verma M,Watanabe S,et al.Myod regulates apoptosis of myoblasts through microRNA-mediated down-regulation of Pax3[J].J Cell Biol,2010,191(2):347-365.

[70]Williams AH,Valdez G,Moresi V,et al.MicroRNA-206 delays ALS progression and promotes regeneration of neuromuscular synapses in mice[J].Science,2009,326(5959):1549-1554.

[71]Sun Q,Zhang Y,Yang G,et al.Transforming growth factor-beta-regulated miR-24 promotes skeletal muscle differentiation[J].Nucleic Acids Res,2008,36,2690-2699.

[72]Charge SB,Rudnicki MA.Cellular and molecular regulation of muscle regeneration[J].Physiol Rev,2004,84(1):209-238.

[73]Dhawan J,Rando TA.Stem cells in postnatal myogenesis:molecular mechanisms of satellite cell quiescence,activation and replenishment[J].Trends Cell Biol,2005,15(12):666-673.

[74]Tedesco FS,Dellavalle A,Diaz-Manera J.Repairing skeletal muscle:regenerative potential of skeletal muscle stem cells[J].J Clin Invest,2010,120(1):11-19.

[75]Brack AS,Rando TA.Tissue-specific stem cells:lessons from the skeletal muscle satellite cell[J].Cell Stem Cell,2012,10(5):504-514.

[76]Watts R,Johnsen VL,Shearer J,et al.Myostatin-induced inhibition of the long noncoding RNA Malat1 is associated with decreased myogenesis[J].Am J Physiol Cell Physio,2013,304(10):C995-1001.

[77]Kuang S,Kuroda K,Le Grand F,et al.Asymmetric self-renewal and commitment of satellite stem cells in muscle[J].Cell,2007,129(5):999-1010.

[78]Cheung TH,Quach NL,Charville GW,et al.Maintenance of muscle stem-cell quiescence by microRNA-489[J].Nature,2012,482(7386):524-528.

[79]Crist CG,Montarras D,Buckingham M.Muscle satellite cells are primed for myogenesis but maintain quiescence with sequestration of Myf5 mRNA targeted by microRNA-31 in mRNP granules[J].Cell Stem Cell,2012,11(1):118-126.

[80]BuckinghamM.Skeletal muscle progenitor cells and the role of Pax genes[J].C R Biol,2007,330(6-7):530-533.

[81]Chen Y1,Melton DW,Gelfond JA,et al.MiR-351 transiently increases during muscle regeneration and promotes progenitor cell proliferation and survival upon differentiation [J].Physiol Genomics,2012,44(21):1042-51.

[82]Ge Y1,Sun Y,Chen J,et al.IGF-II is regulated by microRNA-125b in skeletal myogenesis [J].Cell Biol,2011,192(1):69-81.

[83]Ausoni S,Gorza L,Schiaffino S,et al.Expression of myosin heavy chain isoforms in stimulated fast and slow rat muscles[J].The Journal of Neuroscience,1990,10:153-160.

[84]Bassel-Duby R,Olson E N.Signaling pathways in skeletal muscle remodeling[J].Annual Review of Biochemistry,2006,75:19-37.

[85]van Rooij,E,Quiat,et al.A family of microRNAs encoded by myosin genes governs myosin expression and muscle performance.Dev.Cell,2009,17:662-673.

[86]McCarthy J,Esser K,Peterson C,et al.Evidence of MyomiR network regulation of beta-myosin heavy chain gene expression during skeletal muscle atrophy.Physiol Genomics,2009,39:219-226.

[87]Hong JS,Noh SH,Lee JS,et al.Effects of polymorphisms in the porcine microRNA miR-1 locus on muscle fiber type composition and miR-1 expression[J].Gene,2012,506(1):211-216.

[88]Wang L,Chen X,Zheng Y,et al.MiR-23a inhibits myogenic differentiation through down regulation of fast myosin heavy chain isoforms[J].Exp Cell Res,2012,318(18): 2324-2334.

Research Progress on MicroRNAs Regulating Animal Skeletal Muscle Cell Development

YUE Bing-lin,CHEN Hong*

(InstituteofCellularandMolecularBiology,CollegeofLifeSciences,JiangsuNormalUniversity,Xuzhou,Jiangsu, 221116,China)

microRNAs(miRNAs)are a class of small(About 22 nucleotides)endogenous noncoding single-stranded RNAs which are very conservative in the evolution of plants and animals. Recent studies shown that miRNAs play an important role in cell differentiation,proliferation,apoptosis and other physiological processes. This paper summarized the origin and mechanism of miRNAs, and the latest research progress of miRNAs on the proliferation, differentiation, regeneration and regulation of muscle fiber type of skeletal muscle cells.

microRNA;skeletal muscle; muscle development

2015-03-19修改日期:2015-03-25

國家自然科學(xué)基金項(xiàng)目(31272408);國家肉牛牦牛產(chǎn)業(yè)技術(shù)體系專項(xiàng)(CARS-38);陜西省科技統(tǒng)籌創(chuàng)新工程計(jì)劃項(xiàng)目:(2014KTZB02-02-02-02,2015KTCL02-08);國家發(fā)改委生物育種能力建設(shè)與產(chǎn)業(yè)化專項(xiàng)(2014-2573)。

岳炳霖(1992-),男,在讀碩士生,研究方向:動物遺傳資源與利用。E-meil:yuebinglin123@163.com。

陳宏(1955-),男,陜西西安人,教授,博士生導(dǎo)師,主要從事分子遺傳學(xué)與家畜育種。

S823.2

A

1001-9111(2015)05-0070-07

猜你喜歡
成肌細(xì)胞肌細(xì)胞肌纖維
乳腺炎性肌纖維母細(xì)胞瘤影像學(xué)表現(xiàn)1例
嬰兒顱骨肌纖維瘤/肌纖維瘤病2例
Ang Ⅱ誘導(dǎo)大鼠成肌細(xì)胞萎縮模型的構(gòu)建
頂骨炎性肌纖維母細(xì)胞瘤一例
成肌細(xì)胞原代培養(yǎng)及臨床應(yīng)用前景*
microRNA-139對小鼠失神經(jīng)肌肉萎縮中肌纖維的影響
8-羥鳥嘌呤可促進(jìn)小鼠骨骼肌成肌細(xì)胞的增殖和分化
Caspase12在糖尿病大鼠逼尿肌細(xì)胞內(nèi)質(zhì)網(wǎng)應(yīng)激中的表達(dá)
豚鼠乳鼠心房肌細(xì)胞體外培養(yǎng)的探討*
缺氧易化快速起搏引起的心室肌細(xì)胞鈣瞬變交替*
沧源| 大新县| 卢龙县| 敦化市| 上饶县| 建湖县| 巩留县| 丹巴县| 铜鼓县| 密云县| 隆昌县| 镇赉县| 确山县| 印江| 孝昌县| 唐海县| 沁源县| 津市市| 盈江县| 双江| 紫云| 舟曲县| 柏乡县| 隆化县| 康保县| 临夏县| 广州市| 绥棱县| 滦平县| 和静县| 梁河县| 沂南县| 吕梁市| 县级市| 鞍山市| 渝北区| 萝北县| 沅江市| 古丈县| 甘泉县| 大名县|