勞楊駿徐濤濤楊笑奇吳承亮
(1.浙江中醫(yī)藥大學(xué)骨傷研究所,浙江杭州310053;2.浙江中醫(yī)藥大學(xué)附屬第一醫(yī)院,浙江杭州310053;3.浙江省骨傷研究所,浙江杭州310053;4.浙江中醫(yī)藥大學(xué)第一臨床醫(yī)學(xué)院,浙江杭州310053)
·綜述·
小鼠椎間盤退變模型的構(gòu)建策略*
勞楊駿1,3,4徐濤濤1,3,4楊笑奇2,4吳承亮1,3△
(1.浙江中醫(yī)藥大學(xué)骨傷研究所,浙江杭州310053;2.浙江中醫(yī)藥大學(xué)附屬第一醫(yī)院,浙江杭州310053;3.浙江省骨傷研究所,浙江杭州310053;4.浙江中醫(yī)藥大學(xué)第一臨床醫(yī)學(xué)院,浙江杭州310053)
椎間盤退變模型構(gòu)建動(dòng)物實(shí)驗(yàn)
椎間盤退變是臨床上造成腰腿痛的主要原因[1],由于目前其發(fā)病機(jī)制尚未闡明,臨床上的治療手段相對(duì)單一,治療效果不甚理想。動(dòng)物模型是為生物醫(yī)學(xué)研究和闡明人類疾病的病因、病機(jī)和探尋治療方法而制作的實(shí)驗(yàn)動(dòng)物。目前,能準(zhǔn)確模擬人類椎間盤退變的動(dòng)物模型尚不多見,選擇和建立一種理想的椎間盤退變動(dòng)物模型是研究其發(fā)病機(jī)制的關(guān)鍵。
小鼠是品種最多,用途最廣,研究最詳盡的實(shí)驗(yàn)動(dòng)物,擁有生長(zhǎng)周期短,飼養(yǎng)管理方便,容易達(dá)到標(biāo)準(zhǔn)化等特點(diǎn)。理想的腰椎間盤退變及突出的動(dòng)物模型應(yīng)包括以下幾個(gè)方面:1)能再現(xiàn)椎間盤退變及突出的病理變化過(guò)程;2)有良好的可重復(fù)性;3)擁有較高的造模成功率;4)所選動(dòng)物的解剖生理特點(diǎn)盡可能與人類接近。與此同時(shí),還應(yīng)考慮實(shí)驗(yàn)周期以及可操作性、經(jīng)濟(jì)性等因素。另外,已有研究表明,小鼠腰椎和尾椎椎間盤與人類椎間盤結(jié)構(gòu)最為相似[1],力學(xué)特性最為相似[2],從準(zhǔn)確易用的角度來(lái)講,小鼠是一種理想的用于椎間盤退變相關(guān)研究的模型動(dòng)物。
人類椎間盤是由外周的纖維環(huán)、中央的髓核和上下軟骨終板構(gòu)成的。纖維環(huán)由同心膠原纖維層組成,每層內(nèi)膠原平行排列,間層纖維交錯(cuò)排列,與椎間盤平面呈30°夾角,外層纖維環(huán)主要是Ⅰ型膠原組成,向內(nèi)提供約束力;纖維環(huán)內(nèi)是透明凝膠狀的髓核,主要是由Ⅱ型膠原和聚集蛋白聚糖構(gòu)成,這保證了髓核的高含水量,從而抵抗脊柱軸向負(fù)載。正常成人的椎間盤沒(méi)有血管分布,是全身最大的無(wú)血供器官,新陳代謝主要依靠擴(kuò)散作用與軟骨終板的毛細(xì)血管床完成物質(zhì)交換,因此極容易發(fā)生退變。
引起椎間盤退變的原因可分為基因因素和環(huán)境因素?;蛞蛩厥怯捎诘任换虻亩鄳B(tài)性,造成了不同個(gè)體間的表現(xiàn)差異,導(dǎo)致相應(yīng)功能紊亂,從而引起椎間盤退變的發(fā)生[3]。環(huán)境因素主要是指某些個(gè)體生活或工作的環(huán)境對(duì)其椎間盤造成的影響,如:長(zhǎng)期抬舉重物[4]、長(zhǎng)時(shí)間駕駛[5]、椎間盤損傷[6]、缺乏體育鍛煉[7]、長(zhǎng)期吸煙[4-5,8-9]等因素??偟膩?lái)看,人類椎間盤退變發(fā)生的原因有:脊柱縱向應(yīng)力改變;物理性損傷;椎間盤自身代謝紊亂;基因多態(tài)性。因此在構(gòu)建動(dòng)物模型時(shí),也應(yīng)緊緊圍繞以上幾點(diǎn)進(jìn)行動(dòng)物模型的構(gòu)建。
2.1應(yīng)力改變型椎間盤退變模型應(yīng)力改變模型的建立常常通過(guò)改變小鼠的體態(tài)或活動(dòng)方式,使其脊柱特定節(jié)段椎間盤受力方式或大小發(fā)生改變,從而導(dǎo)致椎間盤退變的發(fā)生。Lotz等[10]發(fā)現(xiàn)持續(xù)地脊柱非生理性負(fù)載造成椎間盤細(xì)胞的死亡。Court等[11]通過(guò)對(duì)小鼠尾部椎間盤施加異常彎曲應(yīng)力,發(fā)現(xiàn)增強(qiáng)的彎曲應(yīng)力造成纖維環(huán)細(xì)胞的死亡,聚集蛋白聚糖表達(dá)減少。Arigga等[12]研究發(fā)現(xiàn)靜態(tài)的力學(xué)刺激造成小鼠離體培養(yǎng)的椎間盤細(xì)胞凋亡。Hsieh等[13]發(fā)現(xiàn)持續(xù)的力學(xué)負(fù)載誘導(dǎo)金屬基質(zhì)蛋白酶2的激活,從而使椎間盤基質(zhì)降解,促使椎間盤退變的發(fā)生。Court等[14]采用兩根鋼針?lè)謩e鉆入小鼠第9、第10尾椎,并用采用自制的可調(diào)節(jié)夾子,使其固定在一個(gè)特定的角度,造成異常的力學(xué)負(fù)載。Papuaa等[15]在小鼠第7、第10尾椎插入2枚0.028英寸的鈦針,使相應(yīng)的脊柱節(jié)段始終呈特定角度彎曲而造成椎間盤應(yīng)力改變來(lái)得到椎間盤退變模型。最近,Sakai等[16]通過(guò)外科手術(shù)的方法,用0.8 mm的不銹鋼絲將小鼠第5和第13尾椎固定起來(lái),形成一個(gè)環(huán),制成了一種新型的椎間盤退變的應(yīng)力改變模型。該模型在同一只小鼠尾巴上可同時(shí)獲得不同程度應(yīng)力改變的椎間盤,大大減少了模型動(dòng)物的使用量。小鼠尾椎間盤是一個(gè)本身在軸向并不受力的結(jié)構(gòu),而人類腰椎間盤卻是負(fù)載著人類一部分體質(zhì)量的重要結(jié)構(gòu)。以上模型的建立都是通過(guò)對(duì)小鼠特定脊柱節(jié)段活動(dòng)度的改變,使得椎間盤受到非生理的力學(xué)刺激,從而導(dǎo)致椎間盤退變的發(fā)生,能較成功地獲得椎間盤退變模型。但是上述動(dòng)物實(shí)驗(yàn)的研究者都是采用彎曲小鼠尾椎的方法來(lái)提供給椎間盤異常應(yīng)力,而并沒(méi)有真正提高兩段椎骨間的軸向作用力,因此此類模型并不能很好地模擬人類椎間盤退變的發(fā)生發(fā)展過(guò)程。
2.2物理?yè)p傷型椎間盤退變模型針刺誘導(dǎo)椎間盤退變模型是主要物理?yè)p傷模型,通過(guò)對(duì)椎間盤的針刺,誘導(dǎo)椎間盤退變的發(fā)生。雖然多數(shù)研究者認(rèn)為針刺椎間盤可建立較為理想的小鼠椎間盤退變模型[17-20],但是采用此方法獲得模型的研究者較少,且小鼠椎間盤本身很小,在針刺過(guò)程中很難保證針刺的精度,且針刺是否可誘導(dǎo)椎間盤退變還存在著一定的分歧。為了驗(yàn)證針刺小鼠椎間盤會(huì)導(dǎo)致生物分子化學(xué)的改變,Yang等[21]采用31 G在顯微鏡下對(duì)小鼠尾椎間盤進(jìn)行針刺,通過(guò)椎間盤高度、組織學(xué)分級(jí)、糖胺聚糖的定量分析,細(xì)胞外基質(zhì)基因水平和蛋白水平的分析,發(fā)現(xiàn)其椎間盤的退變和人類椎間盤退變的方式存在一定的相似性,都存在短暫的從脊索細(xì)胞轉(zhuǎn)化成軟骨樣細(xì)胞,最終轉(zhuǎn)變?yōu)槔w維軟骨細(xì)胞的過(guò)程。有趣的是,Martin等[22]研究發(fā)現(xiàn)通過(guò)粗針頭(26 G)對(duì)小鼠尾椎間盤的針刺,其力學(xué)特性立即改變,且在8周后椎間盤高度下降37%,髓核糖胺聚糖含量下降41%,髓核總膠原含量下降45%,而采用細(xì)針頭(29 G)進(jìn)行針刺的小鼠椎間盤卻沒(méi)有觀察到顯著的結(jié)構(gòu)和成分變化,因此,他們認(rèn)為只用細(xì)針頭對(duì)椎間盤的針刺并不能導(dǎo)致椎間盤退變的發(fā)生。物理?yè)p傷型椎間盤退變模型,是模擬人類在日常活動(dòng)中對(duì)椎間盤產(chǎn)生的各種微損傷,對(duì)于更大型的動(dòng)物如大鼠、兔、犬來(lái)說(shuō)比較合適,應(yīng)用也比較廣泛,但小鼠的椎間盤本身較小,針刺會(huì)直接導(dǎo)致其椎間盤結(jié)構(gòu)的破壞,操作過(guò)程非常精細(xì),且不能控制每一只小鼠針刺的位置和深度,模型可重復(fù)性較差。
2.3基因敲除模型近年來(lái)隨著生物技術(shù)的發(fā)展,基因敲除技術(shù)在日??蒲兄械氖褂靡苍絹?lái)越廣泛。通過(guò)基因敲除技術(shù)建立的椎間盤退變小鼠模型在椎間盤退變的機(jī)制研究中逐漸被運(yùn)用。就小鼠的體型來(lái)講,通過(guò)手術(shù)等方法獲得椎間盤退變模型數(shù)量少,偏差大,而基因敲除小鼠椎間盤模型具有數(shù)量多,可控性強(qiáng)等優(yōu)點(diǎn),其優(yōu)勢(shì)也逐步體現(xiàn)。目前報(bào)道的基因敲除椎間盤退變小鼠模型主要是對(duì)椎間盤的結(jié)構(gòu)決定性相關(guān)基因敲除,如:Col9a1[23-24]、雙糖鏈蛋白聚糖[25-26]、COL2[27]這些基因的缺失對(duì)軟骨結(jié)構(gòu)和功能造成直接損害從而誘導(dǎo)椎間盤退變的發(fā)生和發(fā)展;此外,也可通過(guò)對(duì)影響椎間盤正常代謝過(guò)程的相關(guān)基因進(jìn)行敲除,如:核苷酸切除修復(fù)交叉互補(bǔ)基因[28-29]、骨保護(hù)素[30]、Smad3[31]、胰島素樣生長(zhǎng)因子[32]、白細(xì)胞介素-1受體拮抗劑[33]等。利用基因工程獲得的椎間盤模型可控性強(qiáng)、數(shù)量多、可穩(wěn)定遺傳,一旦模型可穩(wěn)定持續(xù)地獲得,對(duì)以后椎間盤退變相關(guān)機(jī)制和防治藥物的研制和開發(fā)都有著非常積極的作用。雖然基因敲除小鼠有著非常廣闊的應(yīng)用前景,但是在獲得敲除相關(guān)基因的純合子動(dòng)物之前,飼養(yǎng)動(dòng)物和相關(guān)基因的鑒定需要花費(fèi)大量的時(shí)間和精力,基因鑒定相關(guān)引物和試劑也是一筆巨大的開銷。
人類是動(dòng)物界唯一長(zhǎng)期直立行走的動(dòng)物,長(zhǎng)期的直立行走導(dǎo)致脊柱受力的大小和方式不同于自然界中自身體重基本由四肢承擔(dān)的的動(dòng)物,這一點(diǎn)使得人類椎間盤更容易發(fā)生退變且更難在自然界中獲得能夠模擬人類椎間盤特征的動(dòng)物模型。雖然脊柱的負(fù)載增加可能會(huì)導(dǎo)致椎間盤退變發(fā)生的風(fēng)險(xiǎn)增大,但是在研究宇航員椎間盤退變的高發(fā)病率時(shí)研究人員發(fā)現(xiàn),處于微重力條件下的小鼠椎間盤糖胺聚糖的合成減少,金屬基質(zhì)蛋白酶-3合成增加,椎間盤細(xì)胞凋亡增加,表明處于微重力條件下可能會(huì)誘導(dǎo)椎間盤退變的發(fā)生[34]。在15 d的航天飛行后,可以觀察到小鼠椎間盤高度的下降和力學(xué)性能的降低[35]。這說(shuō)明脊柱的負(fù)載同時(shí)也是一個(gè)維持椎間盤正常生理的重要因素,太大或者太小的負(fù)載都會(huì)導(dǎo)致椎間盤退變的發(fā)生。
與人類表現(xiàn)相同的是,老年小鼠椎間盤也出現(xiàn)椎間盤退變的表現(xiàn)。研究表明隨著年齡的增加,小鼠椎間盤細(xì)胞合成蛋白多糖的能力下降[36],纖維蛋白的羰基化增加[37],造成纖維彈蛋白彈性喪失,單核細(xì)胞趨化蛋白和金屬基質(zhì)蛋白酶的表達(dá)增加[38],髓核祖細(xì)胞數(shù)目減少[39],髓核細(xì)胞的生成速度小于凋亡速度,造成椎間盤結(jié)構(gòu)和功能逐漸喪失。同時(shí),也有研究者為了模擬慢性吸煙人群,將小鼠暴露于可直接吸入香煙的環(huán)境中[40-41],檢測(cè)到吸煙導(dǎo)致小鼠髓核細(xì)胞的衰老、聚集蛋白聚糖的裂解增加、蛋白聚糖合成減少等一系列椎間盤退變的表現(xiàn)。
臨床上腰腿痛是常見的疾病,椎間盤退變是引起局部炎癥、骨贅、椎管狹窄從而導(dǎo)致腰腿痛癥狀產(chǎn)生的主要原因,嚴(yán)重影響了一部分人的生活質(zhì)量。目前對(duì)椎間盤退變產(chǎn)生的病因病機(jī)缺乏明確的認(rèn)識(shí)。動(dòng)物模型是現(xiàn)代科學(xué)研究中的重要方法和手段,有助于闡明椎間盤退變發(fā)生的病因及機(jī)理和研制相應(yīng)的治療手段。而值得注意的是,雖然上述模型均能在一定程度上模擬椎間盤退變的發(fā)生與發(fā)展,但都只是對(duì)單一因素進(jìn)行研究,而在人類椎間盤退變的過(guò)程中,上述致病因素往往相互結(jié)合,致使椎間盤退變的變得復(fù)雜而多變。因此針對(duì)單一致病因素構(gòu)建的椎間盤退變模型不能滿足模擬人類復(fù)雜退變機(jī)制的要求,且目前尚未見能準(zhǔn)確模擬人類椎間盤退變過(guò)程的動(dòng)物模型。因此,在今后的科研中,應(yīng)考慮多種機(jī)制的存在,建立多因素并存的椎間盤退變動(dòng)物模型是將來(lái)椎間盤退變模型構(gòu)建的方向。
[1]Millecamps M,Tajerian M,Naso L,et al.Lumbar intervertebral disc degeneration associated with axial and radiating low back pain in ageing SPARC-null mice[J].Pain,2012,153(6):1167-1179.
[2]Showalter BL,Beckstein JC,Martin JT,et al.Comparison of animal discs used in disc research to human lumbar disc:torsion mechanics and collagen content[J].Spine,2012,37(15):E900-907.
[3]Kepler CK,Ponnappan RK,Tannoury CA,et al.The molecular basis of intervertebral disc degeneration[J].The spine journal:official journal of the North American Spine Society,2013,13(3):318-330.
[4]Deyo RA,Bass JE.Lifestyle and low-back pain.The influence of smoking and obesity[J].Spine,1989,14(5):501-506.
[5]Kelsey JL,Githens PB,O′Conner T,et al.Acute prolapsed lumbar intervertebral disc.An epidemiologic study with special reference to driving automobiles and cigarette smoking[J]. Spine,1984,9(6):608-613.
[6]Videman T,Battie MC.The influence of occupation on lumbar degeneration[J].Spine,1999,24(11):1164-1168.
[7]Elfering A,Semmer N,Birkhofer D,et al.Risk factors for lumbar disc degeneration:a 5-year prospective MRI study in asymptomatic individuals[J].Spine,2002,27(2):125-134.
[8]Wang D,Nasto LA,Roughley P,et al.Spine degeneration in a murine model of chronic human tobacco smokers[J].Osteoarthritis and cartilage/OARS,Osteoarthritis Research Society,2012,20(8):896-905.
[9]Pye SR,Reid DM,Adams JE,et al.Influence of weight,body mass index and lifestyle factors on radiographic features of lumbar disc degeneration[J].Annals of the rheumatic diseases,2007,66(3):426-427.
[10]Lotz JC,Chin JR.Intervertebral disc cell death is dependent on the magnitude and duration of spinal loading[J].Spine,2000,25(12):1477-83.
[11]Court C,Colliou OK,Chin JR,et al.The effect of static in vivo bending on the murine intervertebral disc[J].The spine journal:official journal of the North American Spine Society,2001,1(4):239-45.
[12]Ariga K,Yonenobu K,Nakase T,et al.Mechanical stress-induced apoptosis of endplate chondrocytes in organ-cultured mouse intervertebral discs:an ex vivo study[J].Spine,2003,28(14):1528-33.
[13]Hsieh AH,Lotz JC.Prolonged spinal loading induces matrix metalloproteinase-2 activation in intervertebral discs[J]. Spine,2003,28(16):1781-8.
[14]Court C,Chin JR,Liebenberg E,et al.Biological and mechanical consequences of transient intervertebral disc bending[J].European spine journal:official publication of the European Spine Society,the European Spinal Deformity Society,and the European Section of the Cervical Spine Research Society,2007,16(11):1899-906.
[15]Papuga MO,Kwok E,You Z,et al.TNF is required for the induction but not the maintenance of compression-induced BME signals in murine tail vertebrae:limitations of anti-TNF therapy for degenerative disc disease[J].Journal of orthopaedic research:official publication of the Orthopaedic Research Society,2011,29(9):1367-1374.
[16]Sakai D,Nishimura K,Tanaka M,et al.Migration of bone marrow-derived cells for endogenous repair in a new tail-looping disc degeneration model in the mouse:a pilot study[J].The spine journal:official journal of the Noth American Spine Society,2015,15(6):1356-1365.
[17]Yang F,Leung VY,Luk KD,et al.Mesenchymal stem cells arrest intervertebral disc degeneration through chondrocytic differentiation and stimulation of endogenous cells[J].Molecular therapy:the journal of the American Society of Gene Therapy,2009,17(11):1959-1966.
[18]Tam V,Rogers I,Chan D,et al.A comparison of intravenous and intradiscal delivery of multipotential stem cells on the healing of injured intervertebral disk[J].Journal of orthopaedic research:official publication of the Orthopaedic Research Society,2014,32(6):819-825.
[19]Ohta R,Tanaka N,Nakanishi K,et al.Heme oxygenase-1 modulates degeneration of the intervertebral disc after puncture in Bach 1 deficient mice[J].European spine journal:official publication of the European Spine Society,the European Spinal Deformity Society,and the European Section of the Cervical Spine Research Society,2012,21(9):1748-1757.
[20]Liang H,Ma SY,F(xiàn)eng G,et al.Therapeutic effects of adenovirus-mediated growth and differentiation factor-5 in a mice disc degeneration model induced by annulus needle puncture[J].The spine journal:official journal of the North American Spine Society,2010,10(1):32-41.
[21]Yang F,Leung VY,Luk KD,et al.Injury-induced sequential transformation of notochordal nucleus pulposus to chondrogenic and fibrocartilaginous phenotype in the mouse[J].The Journal of pathology,2009,218(1):113-121.
[22]Martin JT,Gorth DJ,Beattie EE,et al.Needle puncture injury causes acute and long-term mechanical deficiency in a mouse model of intervertebral disc degeneration[J].Journal of orthopaedic research,official publication of the Orthopaedic Research Society,2013,31(8):1276-82.
[23]Boyd LM,Richardson WJ,Allen KD,et al.Early-onset degeneration of the intervertebral disc and vertebral end plate in mice deficient in typeⅨcollagen[J].Arthritis and rheu-matism,2008,58(1):164-71.
[24]Allen KD,Griffin TM,Rodriguiz RM,et al.Decreased physical function and increased pain sensitivity in mice deficient for typeⅨcollagen[J].Arthritis and rheumatism,2009,60(9):2684-2693.
[25]Furukawa T,Ito K,Nuka S,et al.Absence of biglycan accelerates the degenerative process in mouse intervertebral disc[J].Spine,2009,34(25):E911-917.
[26]Marfia G,Campanella R,Navone SE,et al.Potential use of human adipose mesenchymal stromal cells for intervertebral disc regeneration:a preliminary study on biglycan-deficient murine model of chronic disc degeneration[J].Arthritis research&therapy,2014,16(5):457.
[27]Chen M,Li S,Xie W,et al.Col2CreER(T2),a mouse model for a chondrocyte-specific and inducible gene deletion[J]. European cells&materials,2014,28:236-245.
[28]Vo N,Seo HY,Robinson A,et al.Accelerated aging of intervertebral discs in a mouse model of progeria[J].Journal of orthopaedic research:official publication of the Orthopaedic Research Society,2010,28(12):1600-1607.
[29]Nasto LA,Robinson AR,Ngo K,et al.Mitochondrial-derived reactive oxygen species(ROS)play a causal role in aging-related intervertebral disc degeneration[J].Journal of orthopaedic research:official publication of the Orthopaedic Research Society,2013,31(7):1150-1157.
[30]Liang QQ,Li XF,Zhou Q,et al.The expression of osteoprotegerin is required for maintaining the intervertebral disc endplate of aged mice[J].Bone,2011,48(6):1362-1369.
[31]Li CG,Liang QQ,Zhou Q,et al.A continuous observation of the degenerative process in the intervertebral disc of Smad3 gene knock-out mice[J].Spine,2009,34(13):1363-1369.
[32]Li B,Zheng XF,Ni BB,et al.Reduced expression of insulinlike growth factor 1 receptor leads to accelerated intervertebral disc degeneration in mice[J].International journal of immunopathology and pharmacology,2013,26(2):337-347.
[33]Phillips KL,Jordan-Mahy N,Nicklin MJ,et al.Interleukin-1 receptor antagonist deficient mice provide insights into pathogenesis of human intervertebral disc degeneration[J].Annals of the rheumatic diseases,2013,72(11):1860-1867.
[34]Jin L,F(xiàn)eng G,Reames DL,et al.The effects of simulated microgravity on intervertebral disc degeneration[J].The spine journal:official journal of the North American Spine Society,2013,13(3):235-242.
[35]Bailey JF,Hargens AR,Cheng KK,et al.Effect of microgravity on the biomechanical properties of lumbar and caudal intervertebral discs in mice[J].Journal of biomechanics,2014,47(12):2983-2988.
[36]Venn G,Mason RM.Changes in mouse intervertebral-disc proteoglycan synthesis with age.Hereditary kyphoscoliosis is associated with elevated synthesis[J].The Biochemical journal,1986,234(2):475-479.
[37]Scharf B,Clement CC,Yodmuang S,et al.Age-related carbonylation of fibrocartilage structural proteins drives tissue degenerative modification[J].Chemistry&biology,2013,20(7):922-934.
[38]Fujita K,Ando T,Ohba T,et al.Age-related expression of MCP-1 and MMP-3 in mouse intervertebral disc in relation to TWEAK and TNF-alpha stimulation[J].Journalof orthopaedic research:official publication of the Orthopaedic Research Society,2012,30(4):599-605.
[39]Sakai D,Nakamura Y,Nakai T,et al.Exhaustion of nucleus pulposus progenitor cells with ageing and degeneration of the intervertebral disc[J].Nature communications,2012,3:1264.
[40]Wang D,Nasto LA,Roughley P,et al.Spine degeneration in a murine model of chronic human tobacco smokers[J].Osteoarthritis and cartilage/OARS,Osteoarthritis Research Society,2012,20(8):896-905.
[41]Nasto LA,Ngo K,Leme AS,et al.Investigating the role of DNA damage in tobacco smoking-induced spine degeneration[J].The spine journal:official journal of the North American Spine Society,2014,14(3):416-23.
R681.5+3
A
1004-745X(2015)10-1783-04
10.3969/j.issn.1004-745X.2015.10.032
2015-05-30)
國(guó)家自然科學(xué)基金資助項(xiàng)目(81273770);浙江省中西醫(yī)結(jié)合骨關(guān)節(jié)病研究科技創(chuàng)新團(tuán)隊(duì)(2011R50022);浙江省骨關(guān)節(jié)疾病中醫(yī)藥干預(yù)技術(shù)研究重點(diǎn)實(shí)驗(yàn)室(2013E10024)
(電子郵箱:wu.cl@163.com)
·綜述·