国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

經(jīng)顱直流電刺激的研究進(jìn)展

2015-01-24 19:02:09吳春薇謝瑛
關(guān)鍵詞:興奮性經(jīng)顱皮質(zhì)

吳春薇,謝瑛

·綜述·

經(jīng)顱直流電刺激的研究進(jìn)展

吳春薇,謝瑛

經(jīng)顱直流電刺激是一種無創(chuàng)性大腦皮層刺激方法。本文簡要回顧其起源和發(fā)展,著重綜述其機(jī)制。目前觀點(diǎn)認(rèn)為,經(jīng)顱直流電刺激可能通過改變皮層興奮性、增加突觸可塑性、影響皮質(zhì)興奮/抑制平衡、改變局部腦血流、調(diào)節(jié)局部皮層和腦網(wǎng)聯(lián)系等途徑發(fā)揮調(diào)節(jié)腦功能的作用。本文通過比較分析相關(guān)文獻(xiàn)、總結(jié)研究結(jié)果,提出要取得理想的刺激效果,仍有待深入探討的兩個(gè)問題,即刺激參數(shù)的選擇及經(jīng)顱直流電刺激與任務(wù)執(zhí)行的時(shí)間關(guān)系。

經(jīng)顱直流電刺激;機(jī)制;進(jìn)展;綜述

[本文著錄格式]吳春薇,謝瑛.經(jīng)顱直流電刺激的研究進(jìn)展[J].中國康復(fù)理論與實(shí)踐,2015,21(2):171-175.

CITED AS:Wu CW,Xie Y.Advance of transcranial direct current stimulation(review)[J].Zhongguo Kangfu Lilun Yu Shijian,2015,21(2):171-175.

經(jīng)顱直流電刺激(transcranial direct current stimulation,tDCS)是通過置于顱骨的電極產(chǎn)生微弱直流電(通常1~2 mA)的一種非侵入性腦刺激方法,因其一定程度上可改變皮質(zhì)神經(jīng)元的活動(dòng)及興奮性而誘發(fā)腦功能變化,因此作為一種無創(chuàng)而高效的腦功能調(diào)節(jié)技術(shù),在治療慢性疼痛、神經(jīng)疾病、精神疾病等疾患中展示出極具潛力的價(jià)值。由于認(rèn)知行為的發(fā)生源于腦興奮性的理化改變,因而采用tDCS改善認(rèn)知功能也迅速成為近年來康復(fù)醫(yī)學(xué)研究的一個(gè)熱點(diǎn)領(lǐng)域。因此,本文檢索了2004年~2014年P(guān)ubMed數(shù)據(jù)庫,檢索詞為“tDCS、transcranial direct current stimulation、noninvasive brain stimulation”,在回顧tDCS的起源與發(fā)展基礎(chǔ)上,重點(diǎn)綜述其作用機(jī)制,并通過分析相關(guān)文獻(xiàn)總結(jié)研究結(jié)果,提出tDCS進(jìn)一步臨床研究的切入點(diǎn)。

1 起源與發(fā)展

關(guān)于tDCS的系統(tǒng)研究始于20世紀(jì)60年代,但直到2000 年tDCS被證實(shí)可通過微弱的恒定電流使大腦皮層發(fā)生極化從而導(dǎo)致興奮性改變[1],此技術(shù)才逐漸回歸人們的視線,至今盡管此技術(shù)未被大范圍應(yīng)用到臨床[2],但國外近十年的研究已經(jīng)確立tDCS應(yīng)用于人類大腦皮質(zhì)的有效性,并基本確立了其刺激模式。除慢性疼痛外,tDCS應(yīng)用于神經(jīng)、精神疾病領(lǐng)域治療的研究增加很快。如神經(jīng)病學(xué):腦卒中[3-4]、阿爾茨海默?。ˋlzheimer's disease,AD)[5]和難治性癲癇[6]、帕金森病[7];精神病學(xué):抑郁[8-9]、成癮[10]、纖維肌痛[11]。到近5年tDCS結(jié)合功能磁共振成像(fMRI)、單光子發(fā)射斷層成像(PET)、腦電信號分析(EEG)等現(xiàn)代醫(yī)學(xué)信號分析技術(shù)和成像技術(shù),使單純電刺激進(jìn)入到了更可靠的腦組織功能分析和神經(jīng)生理學(xué)的層面,再度使tDCS技術(shù)成為了研究熱點(diǎn)[12]。

2 作用機(jī)制

對于tDCS的基本機(jī)制,主流觀點(diǎn)認(rèn)為是tDCS對神經(jīng)元靜息膜電位的閾下調(diào)節(jié),誘導(dǎo)了參與突觸可塑性形成的N-甲基天冬氨酸(N-methyl-d-aspartate,NMDA)受體功能發(fā)生極性-依賴性修飾[13],產(chǎn)生神經(jīng)重塑,使得刺激時(shí)皮層興奮性增加或降低,刺激后作用仍可持續(xù)1 h,但其確切機(jī)制目前尚未明確。而隨著經(jīng)顱磁刺激(transcranial magnetic stimulation,TMS)、藥

3 存在的問題

國外近10年的研究提示,tDCS應(yīng)用于大腦皮層功能可塑性調(diào)節(jié)取得了良好的效果,也設(shè)立了一些基本刺激模式,但達(dá)到期望效果所需的最佳參數(shù)、治療時(shí)機(jī)以及如何保持療效,仍是目前諸多研究所關(guān)注的焦點(diǎn)。

3.1 刺激參數(shù)的選擇

目前對tDCS的刺激強(qiáng)度、時(shí)間及電極大小等參數(shù)的認(rèn)識尚無統(tǒng)一標(biāo)準(zhǔn)。十余年前的早期研究提出,陽極tDCS的作用效果及持續(xù)時(shí)間均可控。0.2~1 mA的電流強(qiáng)度和1~5 min的刺激時(shí)間內(nèi),刺激強(qiáng)度越大,時(shí)間越長,效果越明顯[1]。之后十余年的研究表明,刺激參數(shù)和最終效果間并非絕對的線性關(guān)系。不同刺激強(qiáng)度產(chǎn)生的刺激效果可能相同,Kuo等報(bào)道tDCS刺激10 min,2 mA和1 mA的效果一樣[43],也有研究報(bào)道小電流密度的刺激效果甚至更強(qiáng),Bastani等觀察到0.013 mA/cm2的電流密度所產(chǎn)生的皮質(zhì)興奮性要強(qiáng)于常用的0.029 mA/cm2,而與密度更大的0.058 mA/cm2以及0.083 mA/cm2的刺激效果間無統(tǒng)計(jì)學(xué)差異[44]。延長刺激時(shí)間也未必能強(qiáng)化療效,Monte-Silva報(bào)道26 min的1 mA、35 cm2的陽極tDCS產(chǎn)生的興奮性低于13 min的刺激[45],均提示刺激參數(shù)和興奮性間的非線性關(guān)系。

在臨床實(shí)踐中參數(shù)的選擇,還需結(jié)合具體疾病本身特點(diǎn)綜合考慮,有報(bào)道提出,由于耳鳴、抑郁癥等患者可能存在LTP效應(yīng)樣的弱化狀態(tài),使患者對tDCS興奮性增強(qiáng)效應(yīng)的耐受性更高,適當(dāng)延長刺激時(shí)間和強(qiáng)度可以更好地緩解類似癥狀[21]。但考慮到刺激強(qiáng)度增加到3 mA可產(chǎn)生疼痛和2 mA時(shí)的眩暈,對于增加刺激電流強(qiáng)度還應(yīng)加以謹(jǐn)慎[46]。

另外對于電極的選擇,有研究認(rèn)為減小電極面積為常規(guī)1/ 3可增強(qiáng)陽極tDCS效果[47],其原因可能是大電極覆蓋刺激中心區(qū)周邊部位,對作用中心可能產(chǎn)生了抑制效果。

3.2 tDCS與任務(wù)執(zhí)行的時(shí)間關(guān)系

多數(shù)康復(fù)流程在設(shè)計(jì)中,常將學(xué)習(xí)性tDCS與任務(wù)執(zhí)行同步進(jìn)行,可能是考慮到這樣設(shè)置不但可以有NMDA受體的參與,還有鈣通道介導(dǎo)的細(xì)胞內(nèi)鈣離子的增加,可誘導(dǎo)產(chǎn)生tDCS-依賴的膜去極化,而研究實(shí)踐也多可得到有效的陽性結(jié)果[48-49]。但以刺激效果最大化為目的,對兩者施行的時(shí)間順序選擇迄今沒有定論,有人嘗試改變tDCS介入任務(wù)的時(shí)間點(diǎn),對觀察結(jié)果多有不同報(bào)道。Pirulli[50]和Giacobbe[51]的研究均顯示,tDCS在執(zhí)行學(xué)習(xí)任務(wù)前介入,效果優(yōu)于訓(xùn)練中及訓(xùn)練后,與之相反的是Tecchio的研究顯示訓(xùn)練后施予的tDCS可改善程序性認(rèn)知的早期固化,而訓(xùn)練同時(shí)進(jìn)行的tDCS未顯示其有效性[52]。也有報(bào)道提出刺激效果更多取決于任務(wù)本身的特性,而與tDCS是在任務(wù)前還是任務(wù)過程中施行的時(shí)間點(diǎn)無關(guān)[53]。

對于任務(wù)中和任務(wù)前tDCS有效性的可能的解釋是,在執(zhí)行學(xué)習(xí)任務(wù)過程中的陽極tDCS,通過刺激誘導(dǎo)可塑性的某些途徑發(fā)生效應(yīng),這種途徑可能由活性-依賴鈣內(nèi)流介導(dǎo),而任務(wù)之前的陽性刺激開啟了任務(wù)-相關(guān)可塑性閘門[21]。所以,對于tDCS與所執(zhí)行任務(wù)的時(shí)間關(guān)系,有待今后更多更加細(xì)致的試驗(yàn)設(shè)計(jì),以及根據(jù)刺激部位和可能的機(jī)制更深入的探討。

4 展望

經(jīng)歷5~10年的飛躍式發(fā)展,對tDCS有了新的認(rèn)識,尤其在神經(jīng)-精神病學(xué)認(rèn)知方面,隨著認(rèn)知任務(wù)的設(shè)計(jì)更加復(fù)雜和系統(tǒng)化,以及先進(jìn)技術(shù)的引入,如前面提到的MI-BCI、事件相關(guān)電位及事件相關(guān)波譜擾動(dòng),以及涉及到特定腦區(qū)基因?qū)DCS作用的影響,這些新手段新方法無疑推進(jìn)了tDCS的研究,擴(kuò)大了其應(yīng)用領(lǐng)域,可以看到,tDCS雖未被廣泛應(yīng)用于臨床,但其以無創(chuàng)、高效、安全、易操作、低價(jià)、便攜等特點(diǎn),將會越來越多的應(yīng)用在臨床實(shí)踐中。

[1]Nitsche MA,Paulus W.Excitability changes induced in the human motor cortex by weak transcranialdirect current stimulation[J].J Physiol,2000,527(Pt 3):633-639.

[2]Been G,Ngo TT,Miller SM,et al.The use of tDCS and CVS as methods of non-invasive brain stimulation[J].Brain Res Rev,2007,56(2):346-361.

[3]Wu D,Qian L,Zorowitz RD,et al.Effects on decreasing upper-limb poststroke muscle tone using transcranial directcurrent stimulation:a randomized sham-controlled study[J].Arch Phys Med Rehabil,2013,94(1):1-8.

[4]Shigematsu T,F(xiàn)ujishima I,Ohno K.Transcranial direct current stimulation improves swallowing function in strokepatients[J]. Neurorehabil Neural Repair,2013,27(4):363-369.

[5]Boggio PS,Khoury LP,Martins DC,et al.Temporal cortex direct current stimulation enhances performance on a visualrecognition memory task in Alzheimer disease[J].J Neurol Neurosurg Psychiatry,2009,80(4):444-447.

[6]San-Juan D,Calcaneo JD,Gonzalez-Aragon MF,et al.Transcranial direct current stimulation in adolescent and adult Rasmussen'sencephalitis[J].Epilepsy Behav,2011,20(1): 126-131.

[7]Pereira JB,Junque C,Bartres-Faz D,et al.Modulation of verbal fluency networks by transcranial direct current stimulation (tDCS)in Parkinson's disease[J].Brain Stimul,2013,6(1): 16-24.

[8]Martin DM,Alonzo A,Ho KA,et al.Continuation transcranial direct current stimulation for the prevention ofrelapse in major depression[J].JAffect Disord,2013,144(3):274-278.

[9]Alonzo A,Chan G,Martin D,et al.Transcranial direct current stimulation(tDCS)for depression:analysis of response using a three-factor structure of the Montgomery-Asberg depression rating scale[J].JAffect Disord,2013,150(1):91-95.

[10]da SMC,Conti CL,Klauss J,et al.Behavioral effects of transcranial Direct Current Stimulation(tDCS)induceddorsolateral prefrontal cortex plasticity in alcohol dependence[J].J PhysiolParis,2013,107(6):493-502.

[11]Villamar MF,Wivatvongvana P,Patumanond J,et al.Focal modulation of the primary motor cortex in fibromyalgia using 4×1-ring high-definition transcranial direct current stimulation (HD-tDCS):immediate and delayed analgesic effects of cathodal and anodal stimulation[J].J Pain,2013,14(4):371-383.

[12]錢龍,李一言,蔣巍巍,等.無創(chuàng)腦刺激在神經(jīng)退行性疾病治療中的應(yīng)用研究進(jìn)展[J].中國醫(yī)療器械信息,2011,17(12): 38-43.

[13]Knotkova H,Portenoy RK,Cruciani RA.Transcranial direct current stimulation(tDCS)relieved itching in a patient withchronic neuropathic pain[J].Clin J Pain,2013,29(7):621-622. [14]Rizzo V,Terranova C,Crupi D,et al.Increased transcranial direct current stimulation after effects during concurrentperipheral electrical nerve stimulation[J].Brain Stimul,2014,7(1): 113-121.

[15]Ardolino G,Bossi B,Barbieri S,et al.Non-synaptic mechanisms underlie the after-effects of cathodal transcutaneousdirect current stimulation of the human brain[J].J Physiol,2005,568(Pt 2):653-663.

[16]Lafontaine MP,Theoret H,Gosselin F,L et al.Transcranial direct current stimulation of the dorsolateral prefrontal cortexmodulates repetition suppression to unfamiliar faces:an ERP study[J].PLoS One,2013,8(12):e81721.

[17]Tohyama T,F(xiàn)ujiwara T,Matsumoto J,et al.Modulation of event-related desynchronization during motor imagery withtranscranial direct current stimulation in a patient with severe hemipareticstroke:a case report[J].Keio J Med,2011,60(4): 114-118.

[18]Feng WW,Bowden MG,Kautz S.Review of transcranial direct current stimulation in poststroke recovery[J].Top Stroke Rehabil,2013,20(1):68-77.

[19]Siebner HR,Lang N,Rizzo V,et al.Preconditioning of low-frequency repetitive transcranial magnetic stimulationwith transcranial direct current stimulation:evidence for homeostatic plasticityin the human motor cortex[J].J Neurosci,2004,24 (13):3379-3385.

[20]Monte-Silva K,Kuo MF,Hessenthaler S,et al.Induction of late LTP-like plasticity in the human motor cortex by repeated non-invasive brain stimulation[J].Brain Stimul,2013,6(3): 424-432.

[21]Kuo MF,Paulus W,Nitsche MA.Therapeutic effects of non-invasive brain stimulation with direct currents(tDCS)in neuropsychiatric diseases[J].Neuroimage,2014,85(Pt 3): 948-960.

[22]Batsikadze G,Paulus W,Kuo MF,et al.Effect of serotonin on paired associative stimulation-induced plasticity in the human motor cortex[J].Neuropsychopharmacology,2013,38(11): 2260-2267.

[23]Monte-Silva K,Liebetanz D,Grundey J,et al.Dosage-dependent non-linear effect of L-dopa on human motor cortex plasticity[J].J Physiol,2010,588(Pt 18):3415-3424.

[24]Krause B,Marquez-Ruiz J,Kadosh RC.The effect of transcranial direct current stimulation:a role for cortical excitation/inhibition balance[J].Front Hum Neurosci,2013,7:602.

[25]Clark VP,Coffman BA,Trumbo MC,et al.Transcranial direct current stimulation(tDCS)produces localized and specificalterations in neurochemistry:a(1)H magnetic resonance spectroscopy study[J].Neurosci Lett,2011,500(1):67-71.

[26]Rowland LM,Kontson K,West J,et al.In vivo measurements ofglutamate,GABA,andNAAG inschizophrenia[J]. Schizophr Bull,2013,39(5):1096-1104.

[27]Rojas DC,Singel D,Steinmetz S,et al.Decreased left perisylvian GABA concentration in children with autism and unaffected siblings[J].Neuroimage,2014,86:28-34.

[28]Radman T,Ramos RL,Brumberg JC,et al.Role of cortical cell type and morphology in subthreshold and suprathresholduniform electric field stimulation in vitro[J].Brain Stimul,2009,2(4):215-228,228.e1-e3.

[29]Kim JH,Kim DW,Chang WH,et al.Inconsistent outcomes of transcranial direct current stimulation may originatefrom anatomical differences among individuals:electric field simulation usingindividual MRI data[J].Neurosci Lett,2014,564: 6-10.

[30]Kabakov AY,Muller PA,Pascual-Leone A,et al.Contribution of axonal orientation to pathway-dependent modulation of excitatory transmission by direct current stimulation in isolated rat hippocampus[J].J Neurophysiol,2012,107(7):1881-1889. [31]Motohashi N,Yamaguchi M,F(xiàn)ujii T,et al.Mood and cognitive function following repeated transcranial direct currentstimulation in healthy volunteers:a preliminary report[J].Neurosci Res,2013,77(1-2):64-69.

[32]Chrysikou EG,Hamilton RH,Coslett HB,et al.Noninvasive transcranial direct current stimulation over the left prefrontalcortex facilitates cognitive flexibility in tool use[J].Cogn Neurosci,2013,4(2):81-89.

[33]Zheng X,Alsop DC,Schlaug G.Effects of transcranial direct current stimulation(tDCS)on human regionalcerebral blood flow[J].Neuroimage,2011,58(1):26-33.

[34]Wachter D,Wrede A,Schulz-Schaeffer W,et al.Transcranial direct current stimulation induces polarity-specific changes ofcortical blood perfusion in the rat[J].Exp Neurol,2011,227 (2):322-327.

[35]Stagg CJ,Lin RL,Mezue M,et al.Widespread modulation ofcerebral perfusion induced during and after transcranialdirect current stimulation applied to the left dorsolateral prefrontal cortex[J].J Neurosci,2013,33(28):11425-11431.

[36]Paquette C,Sidel M,Radinska BA,et al.Bilateral transcranial direct current stimulation modulates activation-inducedregional blood flow changes during voluntary movement[J].J Cereb Blood Flow Metab,2011,31(10):2086-2095.

[37]Mielke D,Wrede A,Schulz-Schaeffer W,et al.Cathodal transcranial direct current stimulation induces regional,long-lastingreductions of cortical blood flow in rats[J].Neurol Res,2013,35(10):1029-1037.

[38]van Beek AH,Lagro J,Olde-Rikkert MG,et al.Oscillations in cerebral blood flow and cortical oxygenation in Alzheimer'sdisease[J].NeurobiolAging,2012,33(2):428.e21-31.

[39]Shafi MM,Westover MB,F(xiàn)ox MD,et al.Exploration and modulation of brain network interactions with noninvasive brainstimulation in combination with neuroimaging[J].Eur J Neurosci,2012,35(6):805-825.

[40]Polania R,Paulus W,Antal A,et al.Introducing graph theory to track for neuroplastic alterations in the restinghuman brain: a transcranial direct current stimulation study[J].Neuroimage,2011,54(3):2287-2296.

[41]Polania R,Nitsche MA,Paulus W.Modulating functional connectivity patterns and topological functionalorganization of the human brain with transcranial direct current stimulation[J]. Hum Brain Mapp,2011,32(8):1236-1249.

[42]Carter AR,Astafiev SV,Lang CE,et al.Resting interhemispheric functional magnetic resonance imaging connectivitypredicts performance after stroke[J].Ann Neurol,2010,67(3): 365-375.

[43]Kuo HI,Bikson M,Datta A,et al.Comparing cortical plasticity induced by conventional and high-definition 4×1 ring tDCS: a neurophysiological study[J].Brain Stimul,2013,6(4): 644-648.

[44]Bastani A,Jaberzadeh S.Differential modulation of corticospinal excitability by different currentdensities of anodal transcranial direct current stimulation[J].PLoS One,2013,8(8): e72254.

[45]Monte-Silva K,Kuo MF,Hessenthaler S,et al.Induction of late LTP-like plasticity in the human motor cortex by repeatednon-invasive brain stimulation[J].Brain Stimul,2013,6(3): 424-432.

[46]O'Connell NE,Cossar J,Marston L,et al.Rethinking clinical trials of transcranial direct current stimulation:participant and assessor blinding is inadequate at intensities of 2 mA[J].PLoS One,2012,7(10):e47514.

[47]Bastani A,Jaberzadeh S.a-tDCS differential modulation of corticospinal excitability:the effects of electrode size[J].Brain Stimul,2013,6(6):932-937.

[48]Andrews SC,Hoy KE,Enticott PG,et al.Improving working memory:the effect of combining cognitive activity and anodaltranscranial direct current stimulation to the left dorsolateral prefrontalcortex[J].Brain Stimul,2011,4(2):84-89.

[49]Coffman BA,Trumbo MC,F(xiàn)lores RA,et al.Impact of tDCS on performance and learning of target detection:interaction with stimulus characteristics and experimental design[J].Neuropsychologia,2012,50(7):1594-1602.

[50]Pirulli C,F(xiàn)ertonani A,Miniussi C.The role of timing in the induction of neuromodulation in perceptual learning by transcranial electric stimulation[J].Brain Stimul,2013,6(4): 683-689.

[51]Giacobbe V,Krebs HI,Volpe BT,et al.Transcranial direct current stimulation(tDCS)and robotic practice in chronicstroke: the dimension of timing[J].NeuroRehabilitation,2013,33(1): 49-56.

[52]Tecchio F,Zappasodi F,Assenza G,et al.Anodal transcranial direct current stimulation enhances procedural consolidation[J].J Neurophysiol,2010,104(2):1134-1140.

[53]Nozari N,Woodard K,Thompson-Schill SL.Consequences of cathodal stimulation for behavior:when does it help and whendoes it hurt performance[J].PLoS One,2014,9(1): e84338.

Advance of Transcranial Direct Current Stimulation(review)

WU Chun-wei,XIE Ying.Department of Rehabilitation Medicine,Beijing Friendship Hospital Affiliated to Capital Medical University,Beijing 100050,China

Transcranial direct current stimulation is one of the non-invasive brain-stimulation techniques.Based on the introduction of the origin and development,this article gave an overview of the mechanisms emphatically,the current view is that the transcranial direct current stimulation may exert effect on neuromodulation by changing cortical excitability,increasing synaptic plasticity,impacting cortical excitation/inhibition balance,altering regional cerebral blood flow,modulating the activity within and between different cortical networks.In this review,clinical studies and analysis findings were compared,and then 2 problems should be discussed for ideal effects:choice of stimulating parameters and timing of the stimulation in relation to task performance.

transcranial direct current stimulation;mechanism;advances;review

R454.1

A

1006-9771(2015)02-0171-05

首都醫(yī)科大學(xué)附屬北京友誼醫(yī)院康復(fù)科,北京市100050。作者簡介:吳春薇(1977-),女,漢族,廣東廣州市人,碩士,主治醫(yī)師,主要研究方向:神經(jīng)康復(fù)。通訊作者:謝瑛(1971-),女,漢族,湖南婁底市人,博士,主任醫(yī)師,主要研究方向:神經(jīng)康復(fù)。E-mail:nancy13529@126.com。理學(xué)研究以及神經(jīng)影像等技術(shù)的引入,近10年里對其機(jī)制的了解有了實(shí)質(zhì)性進(jìn)展。

2.1 改變皮層興奮性

tDCS在細(xì)胞水平的機(jī)制尚未完全明確[14],其即時(shí)效應(yīng)可能是神經(jīng)元細(xì)胞膜功能的某些基本理化機(jī)制共同作用的結(jié)果。有研究報(bào)道tDCS的恒定電場改變了局部pH值(依賴于電解相關(guān)氫離子濃度變化)及離子濃度(如細(xì)胞內(nèi)鈣離子濃度)是tDCS非突觸作用的基礎(chǔ)[15]。臨床研究中,tDCS可通過改變刺激極性、強(qiáng)度和持續(xù)時(shí)間改變運(yùn)動(dòng)皮質(zhì)興奮性。有研究通過TMS誘發(fā)的運(yùn)動(dòng)誘發(fā)電位(motor evoked potential,MEP)振幅的變化,證實(shí)陽極tDCS可短暫而明顯地增強(qiáng)皮質(zhì)興奮性,陰極tDCS減低皮質(zhì)興奮性[14]。

利用這一特性,有研究結(jié)合事件相關(guān)電位(event-related potential,ERP)探討不同腦區(qū)的功能及潛在作用機(jī)制[16],也有報(bào)道在重度癱瘓患者中,將tDCS與事件相關(guān)去同步化(event-related desynchronization,ERD)聯(lián)用,給基于腦電圖的運(yùn)動(dòng)成像人機(jī)交互(motor imagery brain-computer interface,MI-BCI)的臨床應(yīng)用創(chuàng)造更多機(jī)會[17],提高了患肢重獲運(yùn)動(dòng)能力的可能。

2.2 增加突觸可塑性

20~30 min的tDCS刺激產(chǎn)生的行為效應(yīng)可持續(xù)約90 min,也有研究表明5次刺激產(chǎn)生的運(yùn)動(dòng)效果在3個(gè)月后依然可檢測到[18],這種長時(shí)效應(yīng)可能源于跨膜蛋白系統(tǒng),如NMDA受體在突觸水平對長時(shí)程增強(qiáng)(long-term potentiation,LTP)、長時(shí)程抑制(long-term depression,LTD)過程的介導(dǎo)[19],LTP/LTD是學(xué)習(xí)、記憶過程中重要的神經(jīng)生理學(xué)機(jī)制,對突觸間連接起著持久的功能性促進(jìn)/抑制作用[20]。而研究也表明,tDCS在突觸水平的參與不只涉及NMDA這種谷氨酰能蛋白[15],可能還有γ-氨基丁酸能(gamma-aminobutyric acid,GABA)、多巴胺能以及其他蛋白系統(tǒng)的修飾而使突觸可塑性增加[21]。

利用此特性,可通過使用不同藥物人為延長或抑制tDCS的后效應(yīng),NMDA受體激動(dòng)劑,如5-羥色胺再攝取抑制劑被用于增強(qiáng)陽極tDCS的作用[22]。而左旋多巴可增加陰極刺激的后效應(yīng),并呈非線性計(jì)量依賴[23]。

2.3 對皮質(zhì)興奮/抑制(excitation/inhibition,E/I)平衡的影響

tDCS作用于臨床不同領(lǐng)域的疾患,如AD、耳鳴、疼痛,甚至兒科精神疾患均可取得較好療效,對健康人也可顯示其有效性,提示tDCS在病理及生理兩種狀態(tài)下均可發(fā)揮作用。因此有人提出tDCS可能是通過調(diào)節(jié)神經(jīng)遞質(zhì)濃度,改變了E/I性遞質(zhì)比值,從而誘導(dǎo)出可介導(dǎo)皮質(zhì)重組的LTP/LTD過程的發(fā)生[24]。這里的神經(jīng)遞質(zhì)主要指興奮性遞質(zhì)谷氨酸及抑制性遞質(zhì)GABA,磁共振波譜研究顯示,陽極tDCS可減少GABA的局部濃度,而陰極tDCS則降低谷氨酸水平[25]。在精神分裂癥[26]、孤獨(dú)癥[27]等神經(jīng)精神疾患中已發(fā)現(xiàn)其局部GABA濃度的異常。以谷氨酸/GABA比值評價(jià)皮質(zhì)E/I平衡,其在不同腦區(qū)向不同水平的偏移,可產(chǎn)生不同的臨床特征。

因此,把握不同個(gè)體E/I比值的差異,對如極性、強(qiáng)度、作用時(shí)間及電極位置等tDCS的各項(xiàng)參數(shù)的選擇將更有指導(dǎo)意義。另外對tDCS結(jié)果的解釋,一般認(rèn)為是取決于個(gè)體的神經(jīng)形態(tài)[28]、解剖差異[29],以及胞體-樹突軸和電場作用下的神經(jīng)通路的走向[30],而對于少數(shù)研究中出現(xiàn)的與主流結(jié)論結(jié)果相反的情況,如陽極tDCS不能提高高級皮層功能[31],以及陰極tDCS可促進(jìn)認(rèn)知任務(wù)完成[32]的原因,也可以嘗試從E/I比值基線不同的角度分析。如多數(shù)陽極tDCS研究提示行為學(xué)上的改善源于陽極tDCS增高了局部E/I比值,而對一些E/I比值基線本身偏高的個(gè)體,陽極tDCS刺激可能將非病理性E/I失衡進(jìn)一步推向過度活化狀態(tài),使得到的行為學(xué)結(jié)果可能出現(xiàn)與主流觀點(diǎn)相悖的情況不能出現(xiàn)預(yù)計(jì)效果[24]。

2.4 改變局部腦血流(regional cerebral blood flow,rCBF)

多項(xiàng)研究報(bào)道tDCS可調(diào)節(jié)rCBF變化[33-34]。陽極tDCS可增加作用于前額葉背外側(cè)皮質(zhì)(dorsolateral prefrontal cortex,DLPFC)相應(yīng)區(qū)域電極下的腦血流灌注[35],而初級運(yùn)動(dòng)皮質(zhì)的rCBF在陰極下明顯降低,并與陰極刺激下MEP振幅的降低相關(guān)[36]。陰極tDCS在動(dòng)物實(shí)驗(yàn)中亦可誘導(dǎo)出長達(dá)90 min的可逆性rCBF減低,并且血流減低區(qū)域并不局限于刺激部位[37]。這些試驗(yàn)提示,有腦微血管結(jié)構(gòu)和CBF改變病理基礎(chǔ)[38]的AD,以及腦卒中或蛛網(wǎng)膜下腔出血后血管痙攣可能誘發(fā)缺血的患者,tDCS也許是可以選擇的治療之一。

2.5 對局部皮層和腦網(wǎng)聯(lián)系的調(diào)節(jié)

PET、EEG以及fMRI等腦成像技術(shù)的發(fā)展,將人們對腦的孤立化的結(jié)構(gòu)-對應(yīng)功能關(guān)系的簡單認(rèn)識,推進(jìn)到了功能性連接網(wǎng)絡(luò)的領(lǐng)域,腦功能是一個(gè)復(fù)雜網(wǎng)絡(luò)體系,運(yùn)動(dòng)、記憶,或語言的產(chǎn)生,分散于腦解剖的不同區(qū),但相互間有著緊密聯(lián)系[39]。因此過去對tDCS的研究多以電極下局域效應(yīng)作為關(guān)注點(diǎn),現(xiàn)在越來越多的研究開始著眼于其對皮質(zhì)內(nèi)及不同皮質(zhì)間網(wǎng)絡(luò)聯(lián)系的調(diào)節(jié)活性。

利用fMRI,發(fā)現(xiàn)tDCS對初級運(yùn)動(dòng)中樞的刺激,可增強(qiáng)皮質(zhì)-皮質(zhì)間、皮質(zhì)-皮質(zhì)下(包括運(yùn)動(dòng)前皮質(zhì)、頂葉、丘腦、尾狀核)運(yùn)動(dòng)神經(jīng)網(wǎng)成分的連接活性[40],另一項(xiàng)EEG研究也得到類似的結(jié)論,發(fā)現(xiàn)陽極tDCS刺激初級運(yùn)動(dòng)皮質(zhì)M1處,可明顯增加其所作用半球的運(yùn)動(dòng)前區(qū)、運(yùn)動(dòng)區(qū)以及感覺運(yùn)動(dòng)區(qū)的功能性連接,在所有被檢測的頻帶(包括θ、α、β,高低頻帶γ)tDCS均誘導(dǎo)出了明顯的半球內(nèi)及半球間的連接變化,進(jìn)一步印證tDCS可誘發(fā)腦功能的同步及功能性解剖重構(gòu)作用[41]。除了運(yùn)動(dòng)皮質(zhì),前額葉tDCS也影響其他網(wǎng)絡(luò)活性,tDCS刺激腦電圖10-20系統(tǒng)F3處,可增加DLPFC血流灌注,同時(shí)伴有雙丘腦血流的功能性減低,提示tDCS可能參與調(diào)節(jié)了DLPFC和丘腦間的功能性連接[35]。

對腦卒中、抑郁等局域及腦網(wǎng)功能下降或失調(diào)的神經(jīng)精神疾患而言,tDCS是可選擇的一種有效手段。以腦卒中為例,偏癱的產(chǎn)生及嚴(yán)重度與半球間以及半球內(nèi)補(bǔ)充運(yùn)動(dòng)區(qū)和初級運(yùn)動(dòng)區(qū)M1的連接效能的減弱相關(guān)。而忽略癥也與注意網(wǎng)絡(luò)中的腹側(cè)和背側(cè)間連接力下降相關(guān)[42],而tDCS則可以改變及重構(gòu)皮質(zhì)網(wǎng)絡(luò)功能的方式參與到此類疾患的臨床治療中。

2014-07-17

2014-08-25)

10.3969/j.issn.1006-9771.2015.02.011

猜你喜歡
興奮性經(jīng)顱皮質(zhì)
趙經(jīng)緯教授團(tuán)隊(duì)成果揭示生長分化因子11抑制p21延緩興奮性神經(jīng)元衰老和腦衰老并改善認(rèn)知老年化新機(jī)制
經(jīng)顱電刺激技術(shù)對運(yùn)動(dòng)性疲勞作用效果的研究進(jìn)展
基于基因組學(xué)數(shù)據(jù)分析構(gòu)建腎上腺皮質(zhì)癌預(yù)后模型
皮質(zhì)褶皺
迎秋
睿士(2020年11期)2020-11-16 02:12:27
經(jīng)顱直流電刺激技術(shù)在阿爾茨海默癥治療中的研究進(jìn)展
經(jīng)顱磁刺激對脊髓損傷后神經(jīng)性疼痛及大腦皮質(zhì)興奮性的影響分析
經(jīng)顱磁刺激定位方法的研究進(jìn)展
重復(fù)經(jīng)顱磁刺激對酒依賴合并焦慮抑郁患者的影響
興奮性氨基酸受體拮抗劑減輕宮內(nèi)窘迫誘發(fā)的新生鼠Tau蛋白的過度磷酸化和認(rèn)知障礙
大洼县| 长沙县| 凤山县| 香格里拉县| 南江县| 开平市| 军事| 新泰市| 玛曲县| 务川| 宁远县| 宜兰县| 嘉定区| 扶余县| 雅安市| 舟曲县| 赣榆县| 卢湾区| 通州区| 庄浪县| 玛沁县| 柳州市| 阜宁县| 万安县| 遵化市| 增城市| 阜新| 瓮安县| 伊春市| 万山特区| 辰溪县| 观塘区| 余江县| 荣昌县| 忻州市| 钦州市| 绥化市| 东兰县| 济宁市| 南昌县| 团风县|