畢 艷,伊正君,付玉榮
TLRs在結(jié)核桿菌感染中的作用的研究進(jìn)展
畢 艷,伊正君,付玉榮
結(jié)核病是全球范圍內(nèi)最嚴(yán)重的感染性疾病之一,其防治形勢(shì)日趨嚴(yán)峻。Toll樣受體(Toll like receptors,TLRs)是一類重要的天然模式識(shí)別受體,在機(jī)體抵御微生物的固有免疫反應(yīng)中發(fā)揮重要作用。研究表明,TLRs是介導(dǎo)宿主對(duì)結(jié)核桿菌識(shí)別及抗結(jié)核免疫反應(yīng)的關(guān)鍵分子?,F(xiàn)對(duì)TLRs在結(jié)核桿菌感染中的研究進(jìn)展進(jìn)行綜述,有助于闡明結(jié)核病的發(fā)病機(jī)制并為其治療提供新的策略。
結(jié)核分枝桿菌;Toll 樣受體;免疫;感染
當(dāng)今結(jié)核病(tuberculosis TB)仍是全球范圍內(nèi)最嚴(yán)重且傳播最廣的感染性疾病,每年至少有200萬(wàn)-300萬(wàn)人死于結(jié)核感染[1]。隨著耐藥結(jié)核菌株增多、結(jié)核和人類免疫缺陷病毒(Human Immunodeficiency Virus,HIV)共同感染患者以及卡介苗免疫失效肺結(jié)核的出現(xiàn),當(dāng)前TB的防治形勢(shì)日趨嚴(yán)峻[2-3]。因此進(jìn)一步探尋結(jié)核感染的發(fā)病機(jī)制,尋求新的防治結(jié)核感染方法成為當(dāng)前研究的熱點(diǎn)。結(jié)核分枝桿菌(MycobacteriumtuberculosisMTB)是TB的致病菌,其為典型的胞內(nèi)致病菌;MTB可借助復(fù)雜的逃逸機(jī)制來(lái)逃脫機(jī)體巨噬細(xì)胞的殺滅并在細(xì)胞內(nèi)長(zhǎng)時(shí)間存活,并逐漸降低T細(xì)胞對(duì)其免疫識(shí)別能力并誘導(dǎo)靶器官感染導(dǎo)致發(fā)病。人體依賴固有免疫系統(tǒng)和獲得免疫系統(tǒng)來(lái)共同防御結(jié)核菌的侵襲, 但機(jī)體對(duì)結(jié)核菌感染的免疫反應(yīng)的具體調(diào)節(jié)機(jī)制尚不明確[4]。Toll樣受體(Toll- like receptors, TLRs)是一類重要的天然的模式識(shí)別受體,在機(jī)體固有免疫反應(yīng)中發(fā)揮極其重要的作用[5]。隨著對(duì)TLRs的發(fā)現(xiàn)及對(duì)其作用機(jī)制研究的深入, TLRs在結(jié)核病保護(hù)性免疫反應(yīng)中的作用備受關(guān)注[6]。
TLRs是一類重要的先天性模式識(shí)別受體,其通過(guò)識(shí)別細(xì)菌的保守結(jié)構(gòu),在機(jī)體固有免疫反應(yīng)中發(fā)揮重要作用[7-8]。TLRs廣泛分布于人體各種細(xì)胞的表面:包括炎性細(xì)胞(如:?jiǎn)魏思?xì)胞、巨噬細(xì)胞、樹突狀細(xì)胞、Th1細(xì)胞、Th2細(xì)胞、B細(xì)胞等),器官和組織細(xì)胞(如:血管內(nèi)皮細(xì)胞、脂肪細(xì)胞、心肌細(xì)胞、消化道上皮細(xì)胞等);并且不同組織細(xì)胞中TLRs的種類也不同,每種組織中至少表達(dá)一種TLRs,而在脾臟和外周血中則表達(dá)全部TLRs;同時(shí)在不同器官組織中TLRs的數(shù)量也存在差異,在呼吸道和胃腸道等經(jīng)常與外界接觸的部位TLRs的種類和數(shù)量最多[5,8-9]。目前已經(jīng)在人體內(nèi)發(fā)現(xiàn)有13種TLRs, 通常稱為TLR1-TLR13[10]。TLRs主要通過(guò)兩條的信號(hào)轉(zhuǎn)導(dǎo)通路發(fā)揮作用[11]:(1)髓樣分化因子88(Myeloid differentiation factor 88, MyD88)依賴信號(hào)通路,當(dāng)TLRs被激活時(shí),誘導(dǎo)活化其下游分子MyD88和IL-1受體相關(guān)激酶(IL-1R associated kinase, IRAK),并進(jìn)一步激活核轉(zhuǎn)錄因子(nuclear transcription factor Kappa B, NF-κB)達(dá)到信號(hào)級(jí)聯(lián)放大效應(yīng)。(2)MyD88非依賴信號(hào)通路,當(dāng)TLRs被激活時(shí),誘導(dǎo)活化其下游分子腫瘤壞死因子受體相關(guān)因子6(TNFR associated factor 6, TRAF-6),并進(jìn)一步激活NF-κB達(dá)到信號(hào)級(jí)聯(lián)放大效應(yīng)。兩個(gè)通路激活的NF-κB將啟動(dòng)各種炎癥細(xì)胞因子基因的轉(zhuǎn)錄,引起機(jī)體產(chǎn)生一系列免疫和炎癥反應(yīng)[12]。幾乎所有的TLRs都利用MyD88依賴信號(hào)通路,僅TLR3和TLR4利用MyD88非依賴信號(hào)通路[13]。TLRs最突出的生物學(xué)功能是促進(jìn)細(xì)胞因子的合成與釋放,引發(fā)炎癥反應(yīng);還可以促進(jìn)抗原提呈細(xì)胞的成熟,誘導(dǎo)機(jī)體的獲得性免疫反應(yīng),因而TLRs是機(jī)體介導(dǎo)固有免疫和獲得性免疫的橋梁[14]。
當(dāng)機(jī)體感染MTB時(shí),TLRs通過(guò)識(shí)別病原相關(guān)分子模式(pathogen associated molecular patterns,PAMP)實(shí)現(xiàn)對(duì)MTB及其組分的識(shí)別,啟動(dòng)機(jī)體固有免疫的效應(yīng)機(jī)制,激活巨噬細(xì)胞并活化T淋巴細(xì)胞參與清除MTB。許多研究指出MTB感染誘發(fā)機(jī)體發(fā)生免疫反應(yīng)的過(guò)程中TLRs信號(hào)通路發(fā)揮了重要作用,尤以TLR2、TLR4、TLR7和TLR9備受關(guān)注[6]。
2.1 TLR2在結(jié)核感染中的作用 TLR2的基因定位于4號(hào)染色體,主要分布于單核巨噬細(xì)胞,識(shí)別脂蛋白、脂多肽、脂壁酸、脂阿拉伯甘露聚糖(Lipoarabinomannan, LAM)等[15]。LAM是構(gòu)成MTB細(xì)胞壁的重要成分之一,正常機(jī)體固有免疫系統(tǒng)可以通過(guò)TLR2成功識(shí)別LAM從而識(shí)別MTB,然后激活巨噬細(xì)胞進(jìn)而清除MTB[16]。同時(shí),MTB分泌的多種抗原可以明顯提高TLR2通路活化對(duì)T淋巴細(xì)胞的激活作用,增強(qiáng)機(jī)體對(duì)MTB的免疫清除能力[17]。但近期有研究指出,MTB分泌的亨廷頓蛋白相互作用蛋白1(Huntingtin-interacting protein 1, Hip1)可以明顯抑制TLR2的激活,從而抑制機(jī)體固有免疫系統(tǒng)對(duì)MTB的識(shí)別,降低機(jī)體對(duì)MTB的免疫能力,導(dǎo)致結(jié)核發(fā)病[18]。同時(shí)有研究指出,脂蛋白可以與LAM競(jìng)爭(zhēng)性結(jié)合TLR2,從而降低機(jī)體對(duì)MTB的識(shí)別能力而降低機(jī)體對(duì)MTB的清除能力[19]。還有研究指出,逃避了機(jī)體免疫清除的MTB可以降低TLR2信號(hào)依賴性主要組織相容性復(fù)合物(Major Histocompatibility Complex MHC)反式激活物表達(dá);進(jìn)而形成負(fù)反饋機(jī)制降低T細(xì)胞介導(dǎo)的炎癥反應(yīng),導(dǎo)致MTB在其感染的巨噬細(xì)胞中存活并逃避CD4+T細(xì)胞的免疫識(shí)別,從而使MTB逃脫機(jī)體的免疫攔截[8]。以上研究雖證實(shí)TLR2在MTB感染中起重要的細(xì)菌清除作用,是機(jī)體對(duì)結(jié)核防御的第一道防線;但TLR2也可以在MTB感染中起掩護(hù)作用,但TLR2的具體作用方式尚未闡明。隨著結(jié)核防治局勢(shì)的日趨嚴(yán)峻,新的增加TLR2對(duì)MTB識(shí)別能力并降低其對(duì)MTB的適應(yīng)能力的靶向藥物可能為結(jié)核的防治找到新的方向。
2.2 TLR4在結(jié)核感染中的作用 TLR4的基因定位于9號(hào)染色體,主要分布于單核巨噬細(xì)胞,識(shí)別脂多糖(lipopolysaccharide, LPS)和宿主壞死細(xì)胞釋放的熱休克蛋白(heat-shock proteins, HSP)[9]。許多研究證實(shí),因MTB分泌的抗原可以明顯抑制巨噬細(xì)胞對(duì)LPS的識(shí)別能力,因此TLR4在結(jié)核初期固有免疫反應(yīng)中的作用有限[20]。但TLR4對(duì)HSP仍有很強(qiáng)的識(shí)別能力,急性期的結(jié)核病會(huì)出現(xiàn)大量宿主細(xì)胞壞死導(dǎo)致HSP大量釋放,因此TLR4在急性期結(jié)核的機(jī)體免疫反應(yīng)中起十分重要的作用[21]。研究證實(shí)TLR4也明顯分布于T淋巴細(xì)胞,TLR4可以激活T淋巴細(xì)胞進(jìn)而參與機(jī)體自身免疫性炎癥反應(yīng),可能參與機(jī)體對(duì)MTB的清除過(guò)程[22]。同時(shí),許多研究指出TLR4基因多態(tài)性與肺結(jié)核的嚴(yán)重程度和治療效果密切相關(guān)[20]。以上研究證實(shí)TLR4信號(hào)通路對(duì)MTB早期免疫應(yīng)答和感染控制是非必需的,但是它可能在調(diào)節(jié)慢性炎癥向好的方向轉(zhuǎn)歸的過(guò)程中起關(guān)鍵作用,而且其與機(jī)體對(duì)抗結(jié)核治療的敏感性相關(guān);因此可以說(shuō)TLR4信號(hào)通路是機(jī)體抗擊MTB感染的第二道防線,靶向調(diào)節(jié)TLR4功能可能是促進(jìn)急性期結(jié)核病快速康復(fù)的有效途徑。
2.3 TLR7在結(jié)核感染中的作用 TLR7的基因定位于X號(hào)染色體,廣泛分布于呼吸道上皮細(xì)胞,主要參與機(jī)體對(duì)病毒感染的免疫反應(yīng)及自身免疫性疾病并與B細(xì)胞的激活密切相關(guān)。但近期有報(bào)道指出TLR7參與了機(jī)體的自體吞噬清除病原體的過(guò)程,并且參與了機(jī)體抗結(jié)核反應(yīng)[23]。還有報(bào)道指出,TLR7可以作為疫苗的佐劑從而增強(qiáng)疫苗的效果,有可能被運(yùn)用于提高卡介苗的效果[24]。但TLR7在機(jī)體抗結(jié)核感染免疫中的作用機(jī)制及其對(duì)卡介苗的增敏機(jī)制均尚不十分明確,TLR7在結(jié)核感染中的作用尚待進(jìn)一步研究證實(shí)。
2.4 TLR9在結(jié)核感染中的作用 TLR9的基因定位于3號(hào)染色體,主要分布于樹突狀細(xì)胞(dendritic cells,DC),具有識(shí)別細(xì)菌和病毒的CpG-DNA,激活B細(xì)胞和抗原呈遞細(xì)胞(antigen presenting cell, APC)的免疫刺激特性[15]。有研究指出DC在MTB感染過(guò)程中起重要的呈遞作用,誘導(dǎo)機(jī)體產(chǎn)生抗原抗體反應(yīng),達(dá)到進(jìn)一步清除結(jié)核菌的作用[25];但也有研究指出TLR9雖然在機(jī)體的抗結(jié)核反應(yīng)中起重要作用,但其在MTB感染的抗原遞呈過(guò)程中沒(méi)有明顯作用,與機(jī)體抗結(jié)核的TH1型免疫應(yīng)答沒(méi)有明顯相關(guān)性[26];這種截然不同的反應(yīng)可能與機(jī)體中TLR9的基因多態(tài)性有關(guān)。同時(shí)TLR9在抗結(jié)核感染過(guò)程中還存在雙面性,一方面TLR9可能與結(jié)核患者對(duì)抗結(jié)核藥物的敏感性正相關(guān),可以增強(qiáng)機(jī)體對(duì)抗結(jié)核藥物的敏感性[27];另一方面TLR9高表達(dá)可能與結(jié)核感染的免疫損傷成正相關(guān)[28]。TLR9在結(jié)核感染免疫中的雙重作用的機(jī)制尚不十分明確,TLR9在結(jié)核感染中的正向作用尚待進(jìn)一步研究證實(shí),如何進(jìn)一步提高其正向作用將成為研究新熱點(diǎn)。
2.5 其他TLR在結(jié)核感染中的作用 對(duì)于TLR家族其他成員(TLR1、TLR6、TLR8等)與結(jié)核感染的相關(guān)性的研究較少,因此其他TLR家族成員在結(jié)核感染中是否發(fā)揮作用及其機(jī)制尚不明確。有少量報(bào)道指出TLR1和TLR6基因多態(tài)性與結(jié)核治療敏感性相關(guān)并且TLR1可能參與了T細(xì)胞的激活過(guò)程[27,29-30];TLR8可能與結(jié)核的遺傳易感性相關(guān)[31];TLR家族多通路的激活可明顯增加HIV患者感染MTB的死亡率[32];但他們的機(jī)制均不十分明確,尚待進(jìn)一步研究證實(shí)。
TLRs是機(jī)體固有免疫最主要的組成部分,是機(jī)體抵抗微生物感染的重要屏障,也是誘發(fā)機(jī)體消滅侵入機(jī)體內(nèi)微生物的重要橋梁,其參與多種感染性疾病的機(jī)體免疫過(guò)程。結(jié)核是當(dāng)前世界上感染率最高的傳染性疾病,其防治形勢(shì)十分嚴(yán)峻。許多研究證實(shí)了TLRs與結(jié)核感染的相關(guān)性,由以TLR2、TLR4和TLR9與結(jié)核發(fā)病的關(guān)系最為密切,是參與機(jī)體抗結(jié)核反應(yīng)的主要炎癥受體;而TLR1、TLR6、TLR7和TLR8與結(jié)核的治療敏感性息息相關(guān)。許多研究均證實(shí)了TLRs家族與MTB感染和治療的相關(guān)性,為進(jìn)一步了解結(jié)核感染的機(jī)制,尋求更有效的防治結(jié)核的方法指明了新的方向。
[1]Dye C. The population dynamics and control of tuberculosis[J]. Science, 2010, 328 (5980):856-858. DOI:10.1126/science.1185449
[2]Gandhi NR, Nunn P, Dheda K, et al. Multidrug-resistant and extensively drug-resistant tuberculosis: a threat to global control of tuberculosis[J]. Lancet, 2010, 375 (9728):1830-1843. DOI:10.1016/S0140-6736(10)60410-2
[3]Lawn SD, Mwaba P, Bates M, et al. Advances in tuberculosis diagnostics: the Xpert MTB/RIF assay and future prospects for a point-of-care test[J]. Lancet Infect Dis, 2013, 13 (4):349-361. DOI:10.1016/S1473-3099(13)70008-2
[4]Suhail A. Pathogenesis, immunology, and diagnosis of latentMycobacteriumtuberculosisinfection[J]. Clin Devel Immunol, 2011, 814943: DOI:10.1155/2011/814943
[5]Moresco EMY, Diantha LV, Bruce B.Toll-like receptors [J]. Curr Bio, 2011, 21: 488-493. DOI:10.1016/j.cub.2011.05.039
[6]Harding CV, Boom WH. Regulation of antigen presentation by Mycobacterium tuberculosis: a role for Toll-like receptors[J]. Nat Rev Microbiol, 2010, 8: 296-307. DOI:10.1038/nrmicro2321
[7]Yuk JM, Jo EK.Toll-like receptors and innate immunity[J]. J Bacteriol Virol,2011, 41: 225-235. DOI:10.4167/jbv.2011.41.4.225
[8]McGettrick AF, O’Neill LAJ. Localisation and trafficking of Toll-like receptors: an important mode of regulation[J]. Curr Opin Immunol, 2010, 22 :20-27. DOI:10.1016/j.coi.2009.12.002
[9]Yamamoto M, Takeda K. Current views of toll-like receptor signaling pathways[J]. Gastroenterol Res Pract, 2010, 240365. DOI:10.1155/2010/240365.
[10]Jin YK, Lee JO. Structural biology of the toll-like receptor family[J]. Ann Rev Bio, 2011, 80 : 917-941. DOI:10.1146/annurev-biochem-052909-141507
[11]Chang ZL. Important aspects of Toll-like receptors, ligands and their signaling pathways[J].Inflammat Res,2010, 59 (10):791-808. DOI:10.1007/s00011-010-0208-2
[12]Blasius AL, Beutler B. Intracellular Toll-like receptors[J]. Immunity, 2010, 23(3): 305-315. DOI:10.1016/j.immuni.2010.03.012
[13]Lee CC, Avalos AM, Ploegh HL. Accessory molecules for Toll-like receptors and their function[J]. Nat Rev Immunol, 2012, 12 (3):168-179. DOI:10.1038/nri3151
[14]K?nner AC, Brüning JC. Toll-like receptors: linking inflammation to metabolism[J]. Trends Endocrinology Metabolism, 2010, 22 (1):16-23. DOI:10.1016/j.tem.2010.08.007.
[15]Round JL, Lee SM, Li J, et al. The Toll-like receptor 2 pathway establishes colonization by a commensal of the human microbiota[J]. Science, 2011, 332 (6032):974-977. DOI:10.1126/science.1206095.
[16]Józefowski S, Sobota A, Hamasur B, et al.Mycobacteriumtuberculosislipoarabinomannan enhances LPS-induced TNF-α production and inhibits NO secretion by engaging scavenger receptors[J].Microbial Pathogenesis, 2011, 50 (6):350-359. DOI:10.1016/j.micpath.2011.03.001.
[17]Samit C, Ved Prakash D, Yogesh S, et al. Early secreted antigen ESAT-6 ofMycobacteriumtuberculosispromotes protective T helper 17 cell responses in a Toll-like receptor-2-dependent manner[J]. PLoS One, 2011,7 (11):e1002378. DOI:10.1371/journal.ppat.1002378.
[18]Ranjna ML, Katia VP, Fabio R,et al.MycobacteriumtuberculosisHip1 dampens macrophage proinflammatory responses by limiting Toll-like receptor 2 activation[J]. Infect Immun, 2011, 79 (12):4828-4838. DOI:10.1128/IAI.05574-11.
[19]Michael GD, Han-Chun T, Nicole DP, et al.Mycobacteriumtuberculosislipoprotein LprG (Rv1411c) binds triacylated glycolipid agonists of Toll-like receptor 2[J]. Nat Struc Mol Biol, 2010, 17 (9):1088-1095. DOI:10.1038/nsmb.1869.
[20]Najmi N, Kaur G, Sharma SK, et al. Human Toll-like receptor 4 polymorphisms TLR4 Asp299Gly and Thr399Ile influence susceptibility and severity of pulmonary tuberculosis in the Asian Indian population[J]. Cell Mol Bio,2010, 76 (2):102-109. DOI:10.1111/j.1399-0039.
[21]Feruglio SL, Troseid M, Damas JK, et al. Soluble markers of the Toll-like receptor 4 pathway differentiate between active and latent tuberculosis and are associated with treatment responses[J]. PLoS One, 2013, 8 (7):e69896. DOI:10.1371/journal.pone.
[22]Reynolds JM, Martinez GJ, Chung Y, et al. Toll-like receptor 4 signaling in T cells promotes autoimmune inflammation[J]. Trends Endocrinol Metab,2012, 22 (1):16-23. DOI:10.1016/j.tem.2010.08.007.
[23]Yu XW, Li CM, Hong WL, et al. Autophagy duringMycobacteriumtuberculosisinfection and implications for future tuberculosis medications[J]. Cell Signall, 2013, 25 (5):1272-1278. DOI:10.1016/j.cellsig.2013.02.011.
[24]Vasilakos JP, Tomai MA. The use of Toll-like receptor 7/8 agonists as vaccine adjuvants[J]. Exp Rev, 2013, 12 (7):809-819. DOI:10.1586/14760584.2013.811208.
[25]Dong H, Stanek O, Salvador FR, et al. Induction of protective immunity againstMycobacteriumtuberculosisby delivery of ESX antigens into airway dendritic cells[J]. Mucosal Immunol, 2013, 6 (3):522-534. DOI:10.1038/mi.2012.92.
[26]Carvalho NB, Oliveira FS, Duraes FV, et al. Toll-like receptor 9 is required for full host resistance toMycobacteriumaviuminfection but plays no role in induction of Th1 responses [J]. Infect Immu, 2011, 79 (4):1638-1646. DOI:10.1128/IAI.01030-10.
[27]Sun LP, Song YP, Riaz H, et al. Polymorphisms in toll-like receptor 1 and 9 genes and their association with tuberculosis susceptibility in Chinese Holstein cattle[J]. Vet Immunol Immunopa, 2012, 147 (3/4):195-201. DOI:10.1016/j.vetimm.2012.04.016.
[28]Chen L, Shi WL, Li H, et al. Critical role of Toll-like receptor 9 in morphine andMycobacteriumtuberculosisinduced apoptosis in mice[J]. PLoS One, 2010, 5 (2):e9205.DOI:10.1371/journal.pone.0009205.
[29]Lancioni CL, Li Q, Thomas JJ, et al.Mycobacteriumtuberculosislipoproteins directly regulate human memory CD4+T cell activation via Toll-like receptors 1 and 2[J]. Infect Immun, 2011, 79 (2):663-673. DOI:10.1128/IAI.00806-10.
[30]Shey MS, Randhawa AK, Bowmaker M, et al. Single nucleotide polymorphisms in toll-like receptor 6 are associated with altered lipopeptide and mycobacteria-induced interleukin-6 secretion[J].GenesImmun, 2010, 11 (7):561-572. DOI:10.1038/gene.2010.14.
[31]Dalgic N, Tekin D, Kayaalti Z, et al. Relationship between toll-like receptor 8 gene polymorphisms and pediatric pulmonary tuberculosis[J]. Dis Markers,2011, 31 (1):33-38. DOI:10.3233/DMA-2011-0800.
[32]Ranjbar S, Jasenosky LD, Chow N, et al. Regulation ofMycobacteriumtuberculosis-dependent HIV-1 transcription reveals a new role for NFAT5 in the toll-like receptor pathway[J]. PLoS Pathog, 2012,8 (4):e1002620. DOI:10.1371/journal.ppat.1002620
Research progress on role of Toll-like receptors in infection ofMycobacteriumtuberculosis
BI Yan,YI Zheng-jun,FU Yu-rong
(WeifangMedicalUniversity,ShandongProvincialKeyLaboratoryofClinicalLaboratoryDiagnostics,Weifang261031,China)
Tuberculosis (TB) is the serious infectious disease in the world and its a enormous challenge for TBs prophylaxis and treatment. Toll-like receptors(TLRs),a family of pattern recognition receptors expressed on mammalian cell surface,play a crucial role in innate immunity. Many studies showed that TLRs are key elements in host-mediated recognition ofMycobacteriumtuberculosisand anti-TB immune response. We review the researches on TLRs contributes to the infection of TB in order to illuminate the pathogenesis of TB and provide the new strategy for its treatment.
Mycobacteriumtuberculosis;Toll-like receptors;immunity;infection
Fu Yu-rong, Email:yifuyurong@163.com
國(guó)家自然科學(xué)基金資助項(xiàng)目( No.81170080,No.30972639 )
付玉榮,Email:yifuyurong@163.com
濰坊醫(yī)學(xué)院,山東省臨床檢驗(yàn)診斷學(xué)高校重點(diǎn)實(shí)驗(yàn)室,濰坊 261031
10.3969/cjz.j.issn.1002-2694.2015.01.015
R378
A
1002-2694(2015)01-0070-04
2014-02-17;
2014-07-22
Supported by the National Natural Science Foundation of China (Grant No.81170080&30972639 ).