柳云恩,韓秀敏,張玉彪,佟昌慈,侯明曉
1.沈陽(yáng)軍區(qū)總醫(yī)院急診醫(yī)學(xué)部,全軍重癥戰(zhàn)創(chuàng)傷中心實(shí)驗(yàn)室,遼寧省重癥創(chuàng)傷和器官保護(hù)重點(diǎn)實(shí)驗(yàn)室,遼寧 沈陽(yáng) 110016;2.沈陽(yáng)軍區(qū)總醫(yī)院先心內(nèi)科,遼寧沈陽(yáng)110016
心力衰竭是指由任何原因引起的心肌結(jié)構(gòu)和功能變化,導(dǎo)致心室充盈和射血障礙而引起的一組臨床綜合征[1]。研究發(fā)現(xiàn),冠心病、高血壓、心律失常、瓣膜異常和甲亢都可引起心力衰竭[2]。目前,歐洲心力衰竭患者達(dá)1 400萬(wàn)人,美國(guó)心力衰竭患者約4 800萬(wàn)人,2010年印度心力衰竭患者約490萬(wàn)人~1 800萬(wàn)人[3]。2013年我國(guó)心血管病報(bào)告指出,35~74歲人群心力衰竭患病率為0.9%[4]。然而,對(duì)于心力衰竭的治療策略,目前除使用藥物干預(yù)影響其進(jìn)展外,尚無(wú)特異性治療手段。隨著世界人口日趨老齡化,尋找有針對(duì)性的治療心力衰竭新方法是目前亟待解決的醫(yī)學(xué)難題之一。
microRNA是真核生物中一種長(zhǎng)度約為22個(gè)核苷酸大小、參與基因轉(zhuǎn)錄后調(diào)控的非編碼單鏈小分子RNA。它可特異性識(shí)別和結(jié)合靶標(biāo)mRNA 3’-非編碼區(qū),在轉(zhuǎn)錄水平降解或抑制靶mRNA翻譯,從而調(diào)控基因轉(zhuǎn)錄表達(dá),參與疾病的發(fā)生、發(fā)展及轉(zhuǎn)歸[5]。目前,在心血管基礎(chǔ)研究領(lǐng)域,microRNA對(duì)心力衰竭調(diào)控機(jī)制是當(dāng)前研究的熱點(diǎn)之一。因此,本文對(duì)與心力衰竭相關(guān)的microRNA研究進(jìn)展作一綜述。
在心力衰竭發(fā)生、發(fā)展過(guò)程中,經(jīng)常發(fā)生心肌細(xì)胞凋亡。通過(guò)對(duì)凋亡調(diào)控的研究發(fā)現(xiàn),持續(xù)低氧刺激可以誘發(fā)心肌細(xì)胞凋亡,microRNA-21在凋亡的心肌細(xì)胞中表達(dá)下調(diào),而FasL蛋白表達(dá)上調(diào);同時(shí),激活心肌細(xì)胞中Akt信號(hào)途徑可以上調(diào) micro RNA-21表達(dá)并下調(diào) FasL蛋白表達(dá)[6]。相反,microRNA-21過(guò)表達(dá)可以抑制心肌細(xì)胞 PTEN和FasL蛋白表達(dá)上調(diào),導(dǎo)致心肌梗死面積縮小,并延緩心力衰竭進(jìn)展[6]。
心力衰竭是一系列心血管疾病的最終結(jié)果,在心力衰竭進(jìn)展過(guò)程中的典型表現(xiàn)是心肌重構(gòu)和心肌間質(zhì)纖維化。研究發(fā)現(xiàn),microRNA-21在心力衰竭者的心臟成纖維細(xì)胞中表達(dá)上調(diào),明顯高于其在正常心肌細(xì)胞中的表達(dá)量。在應(yīng)激狀態(tài)下,心臟成纖維細(xì)胞microRNA-21過(guò)表達(dá)可以明顯激活ERKMAPK通路蛋白,促進(jìn)成纖維細(xì)胞增殖和纖維化[7]。microRNA-21對(duì)心臟成纖維細(xì)胞增殖和纖維化影響可能與細(xì)胞外信號(hào)調(diào)節(jié)激酶(extracellular signal-regulated kinase,ERK)/絲裂原激活的蛋白激酶(mitogen-activated protein kinase,MAPK)通路抑制劑SPRY1相關(guān),SPRY1可能是 microRNA-21的靶基因[8]。研究發(fā)現(xiàn),在敲除microRNA-21基因的心肌肥大和心力衰竭小鼠,低表達(dá)的microRNA-21可明顯降低心肌ERK-MAPK通路蛋白表達(dá),抑制心臟間質(zhì)纖維化,改善小鼠的心功能。據(jù)報(bào)道,低表達(dá)的microRNA-21可以改善心肌肥大,逆轉(zhuǎn)應(yīng)激性條件下誘導(dǎo)的心臟重構(gòu)[9]。與手術(shù)對(duì)照組相比,主動(dòng)脈狹窄患者心肌和循環(huán)microRNA-21表達(dá)升高,這種過(guò)表達(dá)僅限于細(xì)胞外基質(zhì),且與其靶基因之一PD-CD4呈負(fù)相關(guān)[10]。因此,microRNA-21通過(guò)抑制靶基因PTEN和FasL表達(dá),抑制心肌細(xì)胞凋亡,緩解心力衰竭的進(jìn)展。
microRNA-208是心臟特異性 microRNA,它由MHC基因的一個(gè)內(nèi)含子編碼。研究發(fā)現(xiàn),micro RNA-208缺失能夠阻止小鼠心肌細(xì)胞在受到甲狀腺素或血流動(dòng)力學(xué)負(fù)荷過(guò)重刺激時(shí)發(fā)生肥大,抑制MHC表達(dá)上調(diào),避免心肌纖維化[11]。研究表明,microRNA-208是心力衰竭橋接應(yīng)激信號(hào)和下游蛋白表達(dá)的關(guān)鍵信號(hào)節(jié)點(diǎn),此外,MHC基因除編碼心肌收縮蛋白外,還通過(guò)表達(dá)microRNA-208來(lái)調(diào)控應(yīng)激調(diào)節(jié)下的心肌基因表達(dá)。最近研究顯示,micro RNA-208與甲狀腺素誘導(dǎo)性心臟重構(gòu)的一種介質(zhì)甲狀腺素受體相關(guān)蛋白1的編碼基因啟動(dòng)子區(qū)相結(jié)合,提示二者間存在某種聯(lián)系[12]。因此,控制microRNA-208表達(dá)可能是治療心力衰竭的潛在策略之一。
研究表明,microRNA-195基因在終末期心力衰竭患者血清中的表達(dá)上調(diào),采用高表達(dá)的microRNA-195基因轉(zhuǎn)染離體成年大鼠心肌細(xì)胞,可以使新生兒心肌細(xì)胞形態(tài)改變,導(dǎo)致調(diào)控心肌肥大的基因激活[13]。Northern印記分析特發(fā)性終末期心力衰竭患者調(diào)節(jié)肥大的microRNA-195基因表達(dá)增加。此外,研究還通過(guò)對(duì)野生型和CnA轉(zhuǎn)基因小鼠心臟組織Northern印記分析證實(shí)了microRNA-195表達(dá)增加。體外研究發(fā)現(xiàn),microRNA-195過(guò)表達(dá)促進(jìn)心臟細(xì)胞生長(zhǎng),甚至?xí)谏wmicroRNA-1對(duì)心肌細(xì)胞生長(zhǎng)的抑制作用,轉(zhuǎn)基因小鼠心肌microRNA-195過(guò)表達(dá)導(dǎo)致心肌細(xì)胞肥厚和排列紊亂,從而誘發(fā)心力衰竭和擴(kuò)張性心肌病[14]。有報(bào)道,心力衰竭早期患者的microRNA-195表達(dá)上調(diào),使用microRNA-195類(lèi)似物或抑制劑在原代培養(yǎng)的新生兒心肌細(xì)胞中也存在上述改變,表明microRNA-195可能對(duì)成人心臟基因亞型有特殊的調(diào)控作用[15]。
研究發(fā)現(xiàn),冠狀動(dòng)脈左前降支結(jié)扎4 h后,在原代培養(yǎng)的大鼠心肌細(xì)胞中microRNA-24表達(dá)上調(diào)[16]。此外,分別通過(guò)microRNA-24類(lèi)似物過(guò)表達(dá)和microRNA-24抑制劑轉(zhuǎn)染,可以抑制缺血心肌細(xì)胞凋亡和壞死,提示microRNA-24可能對(duì)心肌細(xì)胞有保護(hù)作用,這種保護(hù)作用可能與抑制編碼大鼠心肌細(xì)胞B細(xì)胞白血病/淋巴瘤樣蛋白11(BCL2L11)基因有關(guān)[16]。不同病因心力衰竭患者的心肌細(xì)胞中,microRNA-24表達(dá)均上調(diào),microRNA-19在擴(kuò)張性心臟病和主動(dòng)脈瓣狹窄的心力衰竭中表達(dá)下調(diào)[17]。體內(nèi)外研究發(fā)現(xiàn),microRNA-24通過(guò)抑制鈉鈣交換器1(NCX1)、Ca2+/鈣調(diào)蛋白依賴(lài)的蛋白激酶和BCL2樣11(BIM)基因?qū)θ毖?再灌注心肌損傷發(fā)揮保護(hù)作用[18]。
研究表明,心力衰竭患者 microRNA-21、-195和-214表達(dá)上調(diào),而 microRNA-378表達(dá)下調(diào)[19]。終末期擴(kuò)張性心臟病患者microRNA-378和micro RNA-7表達(dá)下調(diào),而microRNA-181b和 microRNA-214表達(dá)上調(diào),這些microRNAs變化經(jīng)心衰患者和主動(dòng)脈縮窄術(shù)小鼠(C57BL/6)證實(shí)。microRNA-378、-214和-181b在終末期心力衰竭的心功能障礙早期發(fā)生改變,它們可能潛在的調(diào)節(jié)心肌信號(hào)網(wǎng)絡(luò),導(dǎo)致心肌發(fā)生病理改變。microRNA-7預(yù)測(cè)靶標(biāo)是酪氨酸蛋白激酶ErbB-2受體和Collagen 1基因;microRNA-214的靶標(biāo)是肝癌衍生生長(zhǎng)因子(hepatoma derived growth factor,HDGF)和 BCL1基因;microRNA-378是心肌營(yíng)養(yǎng)素樣細(xì)胞因子1(cardiotrophin like cytokine factor,CLCF1)和溶質(zhì)載體家族2A基因(SLC2A)[19]。microRNA-378 在心肌缺血大鼠模型及處于缺氧環(huán)境中的H9c2心肌細(xì)胞中表達(dá)下調(diào),通過(guò)抑制Caspase-3表達(dá),microRNA-378過(guò)表達(dá)可明顯改善細(xì)胞活力,抑制細(xì)胞凋亡和壞死。micro RNA-378抑制物有相反的效果,提示使用心肌保護(hù)性的microRNA可作為擴(kuò)張性心力衰竭的潛在治療手段[20]。
研究發(fā)現(xiàn),非心力衰竭呼吸困難和健康人群循環(huán)水平的microRNA-423-5p表達(dá)增加。只有臨床心力衰竭患者microRNA-423-5p表達(dá)上調(diào)。與非動(dòng)脈粥樣硬化心力衰竭相比,動(dòng)脈粥樣硬化心力衰竭microRNA-423-5p表達(dá)上調(diào),呼吸困難患者micro RNA-675表達(dá)上調(diào),與健康人群相比,非心力衰竭患者循環(huán)microRNA-423-5p表達(dá)明顯上調(diào)[21]。有研究通過(guò)比較心力衰竭患者、慢性阻塞性肺疾病患者,其他呼吸困難患者和對(duì)照組循環(huán)microRNAs表達(dá)譜,發(fā)現(xiàn)心力衰竭患者microRNA-423-5p呈低水平表達(dá),缺氧誘導(dǎo)microRNA-103表達(dá),microRNA-27b參與丙酮酸和脂代謝,microRNA-423-5p由缺氧誘導(dǎo),可增加血管生成[22]。收縮性心力衰竭患者血清microRNA-423-5p表達(dá)升高,它與反映心力衰竭臨床預(yù)后的重要參數(shù)如血清腦尿肽(brain natriuretic peptide,BNP)濃度升高、寬幅QRS波、左室擴(kuò)張和左房擴(kuò)張等指標(biāo)密切相關(guān)[23]。擴(kuò)張性心力衰竭患者循環(huán)microRNA-423-5p水平升高,可能與N端腦尿肽前體(NT-proBNP)水平相關(guān),反映擴(kuò)張性心力衰竭的嚴(yán)重程度[24]。相反,有研究發(fā)現(xiàn),射血分?jǐn)?shù)減少的患者microRNA-423-5p水平與對(duì)照組類(lèi)似[16]。
研究發(fā)現(xiàn),與健康受試者相比,心力衰竭患者血漿microRNA-126水平降低,它與心力衰竭經(jīng)典標(biāo)準(zhǔn)物血漿BNP濃度呈反比;事實(shí)上,該研究還發(fā)現(xiàn)高水平的microRNA-126與患者的臨床狀況轉(zhuǎn)好有關(guān)[25]。在慢性心力衰竭患者血管生成的早期生長(zhǎng)細(xì)胞和循環(huán)CD34+細(xì)胞及其相關(guān)的靶標(biāo)SPRED-1和同源盒基因A5(HOXA5)microRNA-126明顯缺失[26]。然而,在microRNA-126敲除的小鼠實(shí)驗(yàn)中發(fā)現(xiàn),microRNA-126通過(guò)調(diào)節(jié)血管形成,在心肌血管新生過(guò)程中發(fā)揮著關(guān)鍵作用。microRNA-126過(guò)表達(dá)防止由血管內(nèi)皮生長(zhǎng)因子(vascular endothelial growth factor,VEGF)和成纖維細(xì)胞生長(zhǎng)因子(fibroblast growth factors,F(xiàn)GF)活化導(dǎo)致的信號(hào)通路中SPRER-1 表達(dá),促進(jìn)血管生成[27]。
Dahl鹽敏感心力衰竭大鼠血漿microRNAs芯片分析表明,microRNA-210表達(dá)上調(diào)[24]。對(duì)重度心力衰竭患者芯片結(jié)果證實(shí),microRNA-210表達(dá)水平明顯增加[28]。紅細(xì)胞中microRNA-451表達(dá)水平較高,溶血伴充血性心力衰竭患者可能與 micro RNA-451表達(dá)上調(diào)有關(guān)。表達(dá)上調(diào)的microRNA-494激活A(yù)kt途徑和促凋亡、抗凋亡蛋白靶標(biāo),可能是缺血-再灌注心肌損傷的一個(gè)保護(hù)因素[28]。此外,血漿microRNA-210水平與心力衰竭標(biāo)志物BNP密切相關(guān),是一個(gè)很好的心力衰竭預(yù)后輔助標(biāo)志物[28]。心力衰竭患者血清和臍帶血中 microRNA-210和microRNA-30a表達(dá)上調(diào),缺氧狀態(tài)下HIF-α誘導(dǎo)microRNA-210表達(dá)且在大鼠H9c2心肌細(xì)胞中表達(dá)上調(diào)[29]。此外,microRNA-210可能通過(guò)抑制鐵硫簇裝配蛋白保護(hù)細(xì)胞免于凋亡。
研究發(fā)現(xiàn),5個(gè) microRNAs(microRNA-22、-142-3p、-181d、-24-2和-450a)被確定為心肌肥厚的負(fù)調(diào)節(jié)因子,因?yàn)樗鼈兡軠p輕去甲腎上腺素誘導(dǎo)的新生大鼠心肌細(xì)胞肥大,轉(zhuǎn)染這些抗microRNA可以明顯改善去甲腎上腺素誘導(dǎo)的心肌肥厚[30]。與野生型小鼠相比,轉(zhuǎn)基因小鼠microRNA-22過(guò)表達(dá)導(dǎo)致細(xì)胞和器官肥大,體外培養(yǎng)的乳鼠心肌細(xì)胞micro RNA-22促進(jìn)心肌細(xì)胞肥大[31]。而microRNA-22敲除的小鼠心肌肥厚和心臟重構(gòu)減輕,microRNA-22抑制去乙酰化酶1和組蛋白去乙?;?兩種重要的心臟功能表觀遺傳調(diào)節(jié)器[32]。
microRNA-133a是骨骼肌特有的,能促進(jìn)肌性分化,同時(shí)在確定心肌細(xì)胞肥大上發(fā)揮關(guān)鍵作用。小鼠microRNA-133a過(guò)表達(dá)可通過(guò)抑制心肌細(xì)胞RhoA蛋白,細(xì)胞分裂調(diào)控蛋白42等靶標(biāo)蛋白導(dǎo)致細(xì)胞肥大減輕[33-34]。主動(dòng)脈狹窄患者主動(dòng)脈瓣膜替換術(shù)后1年,循環(huán)microRNA-133a較殘存的肥大患者表達(dá)高。microRNA-133a作為心肌肥厚的關(guān)鍵調(diào)節(jié)因子之一,聯(lián)合其他臨床參數(shù)可能會(huì)被用于預(yù)測(cè)左室肥厚是否可逆[35]。
有研究發(fā)現(xiàn),與對(duì)照組相比,心力衰竭患者僅有microRNA-499表達(dá)水平明顯升高[36]。而另一項(xiàng)研究發(fā)現(xiàn),對(duì)照組和心力衰竭組血漿均未檢測(cè)到microRNA-499表達(dá)[37]。與對(duì)照組相比,擴(kuò)張性心肌病患者microRNA-107、-139和-142-5p表達(dá)下調(diào),而microRNA-142-3p和-29b表達(dá)增加[38]。擴(kuò)張性心肌病患者心肌microRNA-107表達(dá)下調(diào),而microRNA-29b表達(dá)上調(diào)[39]。microRNA-497表達(dá)水平較健康人群明顯降低,且仍然發(fā)現(xiàn)在終末期心力衰竭患者表達(dá)[40]。重度纖維化患者較非纖維化和對(duì)照組,其microRNA-122表達(dá)明顯下調(diào),它可能通過(guò)上調(diào)轉(zhuǎn)化生長(zhǎng)因子(transforming growth factor,TGF)β1 實(shí)現(xiàn)[41]。
綜上所述,心力衰竭患者多種microRNAs表達(dá)失常,其中microRNA-423-5p與心力衰竭的臨床診斷關(guān)系最密切,而microRNA-675表達(dá)在呼吸困難患者中上調(diào)最明顯。microRNA-423-5p表達(dá)水平升高似乎與擴(kuò)張性心肌病程度有關(guān),且與BNP濃度呈正相關(guān)。實(shí)驗(yàn)研究表明,microRNA-126能刺激心肌血管新生和改善心功能。microRNA-133a聯(lián)合其他臨床參數(shù)可能被用作治療可逆性左室肥厚的一種手段。
[1]Garbi M,McDonagh T,Cosyns B,et al.Appropriateness criteria for cardiovascular imaging use in heart failure:report of literature review[J].Eur Heart J Cardiovasc Imaging,2015,16(2):147-153.
[2]Staniute M,Brozaitiene J,Burkauskas J,et al.Type D personality,mental distress,social support and health-related quality of life in coronary artery disease patients with heart failure:a longitudinal observational study [J].Health Qual Life Outcomes,2015,13(1):1.
[3]Verhaegen J,F(xiàn)lamaing J,De Backer W,et al.Epidemiology and outcome of invasive pneumococcal disease among adults in Belgium,2009-2011[J].Euro Surveill,2014,19(31):14-22.
[4]陳偉偉,高潤(rùn)霖,劉力生,等.中國(guó)心血管病報(bào)告2013概要[J].中國(guó)循環(huán)雜志,2014,29(7):487-491.
[5]Bronze-da-Rocha E.MicroRNAs expression profiles in cardiovascular diseases[J].Biomed Res Int,2014:985408.
[6]唐艷,王夢(mèng)洪.微小RNA-21在心血管疾病方面的研究進(jìn)展[J].臨床心血管病雜志,2011,27(5):323-326.
[7]Olson JM,Yan Y,Bai X,et al.Up-regulation of MicroRNA-21 Mediates Isoflurane-induced Protection of Cardiomyocytes[J].Anesthesiology,2014,Dec 22.[Epub ahead of print].
[8]Thum T,Gross C,F(xiàn)iedler J,et al.MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts[J].Nature,2008,456(7224):980-984.
[9]Adam O,L?hfelm B,Thum T,et al.Role of miR-21 in the pathogenesis ofatrialfibrosis[J].Basic Res Cardiol,2012,107(5):278.
[10]Villar AV,García R,Merino D,et al.Myocardial and circulating levels of microRNA-21 reflect left ventricular fibrosis in aortic stenosis patients[J].Int J Cardiol,2013,167(6):2875-2881.
[11]Satoh M,Minami Y,Takahashi Y,et al.Expression of microRNA-208 is associated with adverse clinical outcomes in human dilated cardiomyopathy[J].J Card Fail,2010,16(5):404-410.
[12]Rawal S,Manning P,Katare R,et al.Cardiovascular microRNAs:as modulators and diagnostic biomarkers of diabetic heart disease[J].Cardiovasc Diabetol,2014,13:44.
[13]Thum T,Galuppo P,Wolf C,et al.MicroRNAs in the human heart:a clue to fetal gene reprogramming in heart failure[J].Circulation,2007,116(3):258-267.
[14]van Rooij E,Sutherland LB,Liu N,et al.A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure[J].Proc Natl Acad Sci USA,2006,103(48):18255-18260.
[15]Sucharov C,Bristow MR,Port JD.MiRNA expression in the failing human heart:functional correlates[J].J Mol Cell Cardiol,2008,45(2):185-192.
[16]Li DF,Tian J,Guo X,et al.Induction of microRNA-24 by HIF-1 protects against ischemic injury in rat cardiomyocytes[J].Physiol Res,2012,61(6):555-565.
[17]Latronico MV,Catalucci D,Condorelli G.Emerging role of microRNAs in cardiovascular biology [J].Circ Res,2007,101(12):1225-1236.
[18]Aurora AB,Mahmoud AI,Luo X.MicroRNA-214 protects the mouse heart from ischemic injury by controlling Ca2+overload and cell death[J].J Clin Invest,2012,122(4):1222-1232.
[19]Naga Prasad SV,Duan ZH,Gupta MK,et al.Unique microRNA profile in end-stage heart failure indicates alterations in specific cardiovascular signaling networks[J].J Biol Chem,2009,284(40):27487-27499.
[20]Fang J,Song XW,Tian J,et al.Overexpression of microRNA-378 attenuates ischemia-induced apoptosis by inhibiting caspase-3 expression in cardiac myocytes[J].Apoptosis,2012,17(4):410-423.
[21]Tijsen AJ,Creemers EE,Moerland PD,et al.MiR423-5p as a circulating biomarker for heart failure[J].Circ Res,2010,106(6):1035-1039.
[22]Ellis KL,Cameron VA,Troughton RW,et al.Circulating microRNAs as candidate markers to distinguish heart failure in breathless patients[J].Eur J Heart Fail,2013,15(10):1138-1147.
[23]Goren Y,Kushnir M,Zafrir B,et al.Serum levels of microRNAs in patients with heart failure[J].Eur J Heart Fail,2012,14(2):147-154.
[24]Fan KL,Zhang HF,Shen J,et al.Circulating microRNAs levels in Chinese heart failure patients caused by dilated cardiomyopathy[J].Indian Heart J,2013,65(1):12-16.
[25]Fukushima Y,Nakanishi M,Nonogi H,et al.Assessment of plasma miRNAs in congestive heart failure[J].Circ J,2011,75(2):336-340.
[26]Jakob P,Doerries C,Briand S,et al.Loss of angiomiR-126 and 130a in angiogenic early outgrowth cells from patients with chronic heart failure:role for impaired in vivo neovascularization and cardiac repair capacity[J].Circulation,2012,126(25):2962-2975.
[27]Wang S,Aurora AB,Johnson BA,et al.The endothelial specific microRNA miR-126 governs vascular integrity and angiogenesis[J].Dev Cell,2008,15(2):261-271.
[28]Endo K,Naito Y,Ji X,et al.MicroRNA 210 as a biomarker for congestive heart failure [J].Biol Pharm Bull,2013,36(1):48-54.
[29]Zhao DS,Chen Y,Jiang H,et al.Serum miR-210 and miR-30a expressions tend to revert to fetal levels in Chinese adult patients with chronic heart failure[J].Cardiovasc Pathol,2013,22(6):444-450.
[30]Jeong MH,Lee JS,Kim DH,et al.Identification of novel microRNAs negatively regulating cardiac hypertrophy[J].Biochem Biophys Res Commun,2012,428(1):191-196.
[31]Gurha P,Wang T,Larimore AH,et al.MicroRNA-22 promotes heart failure through coordinate suppression of PPAR/ERR-nuclear hormone receptor transcription[J].PLoS One,2013,8(9):e75882.
[32]Huang ZP,Chen J,Seok HY,et al.MicroRNA-22 regulates cardiac hypertrophy and remodeling in response to stress[J].Circ Res,2013,112(9):1234-1243.
[33]Carè A,Catalucci D,F(xiàn)elicetti F,et al.MicroRNA-133 controls cardiac hypertrophy[J].Nat Med,2007,13(5):613-618.
[34]Townley-Tilson WH,Callis TE,Wang D.MicroRNAs 1,133,and 206:critical factors of skeletal and cardiac muscle development,function,and disease[J].Int J Biochem Cell Biol,2010,42(8):1252-1255.
[35]García R,Villar AV,Cobo M,et al.Circulating levels of miR-133a predict the regression potential of left ventricular hypertrophy after valve replacement surgery in patients with aortic stenosis[J].J Am Heart Assoc,2013,2(4):e000211.
[36]Torres M,Moayedi S.Evaluation of the acutely dyspneic elderly patient[J].Clin Geriatr Med,2007,23(2):307-325.
[37]Corsten MF,Dennert R,Jochems S,et al.Circulating microRNA-208b and microRNA-499 reflect myocardial damage in cardiovascular disease[J].Circulation,2010,3(6):499-506.
[38]Voellenkle C,van Rooij J,Cappuzzello C,et al.MicroRNA signatures in peripheral blood mononuclear cells of chronic heart failure patients[J].Physiol Genomics,2010,42(3):420-426.
[39]Matkovich SJ,Van Booven DJ,Youker KA,et al.Reciprocal regulation of myocardial microRNAs and messenger RNA in human cardiomyopathy and reversal of the microRNA signature by biomechanical support[J].Circulation,2009,119(9):1263-1271.
[40]Thum T,Catalucci D,Bauersachs J.MicroRNAs:novel regulators in cardiac development and disease[J].Cardiovasc Res,2008,79(4):562-570.
[41]Beaumont J,López B,Hermida N,et al.microRNA-122 down-regulation may play a role in severe myocardial fibrosis in human aortic stenosis through TGF-β1 up-regulation[J].Clin Sci,2014,126(7):497-506.
創(chuàng)傷與急危重病醫(yī)學(xué)2015年3期