李晨睿,孟志遠(yuǎn),牛銀波,翟遠(yuǎn)坤,潘亞磊,謝 麗,梅其炳(西北工業(yè)大學(xué)生命學(xué)院空間生物實(shí)驗(yàn)?zāi)M技術(shù)國防重點(diǎn)學(xué)科實(shí)驗(yàn)室,陜西西安 710072)
?
黃芩苷通過Wnt/β-catenin信號(hào)通路對(duì)大鼠骨髓間充質(zhì)干細(xì)胞成骨分化的促進(jìn)作用
李晨睿,孟志遠(yuǎn),牛銀波,翟遠(yuǎn)坤,潘亞磊,謝麗,梅其炳
(西北工業(yè)大學(xué)生命學(xué)院空間生物實(shí)驗(yàn)?zāi)M技術(shù)國防重點(diǎn)學(xué)科實(shí)驗(yàn)室,陜西西安710072)
中國圖書分類號(hào): R-332; R284.1; R329.24; R345.61; R394.2; R681; R977. 3
摘要:目的研究黃芩苷(baicalin)對(duì)大鼠骨髓間充質(zhì)干細(xì)胞(rat bone marrow derived mesenchymal stem cells,rBMSC)成骨分化過程中Wnt/β-catenin信號(hào)通路的影響。方法采用貼壁篩選法體外培養(yǎng)rBMSC,給予黃芩苷3、5、7 d后,比
網(wǎng)絡(luò)出版時(shí)間:2015-6-5 11:22網(wǎng)絡(luò)出版地址: http://www.cnki.net/kcms/detail/34.1086.R.20150605.1122.007.html
梅其炳(1953-),男,博士,教授,博士生導(dǎo)師,研究方向:骨丟失發(fā)生機(jī)制及其藥物防護(hù),通訊作者,Tel: 029-84779212,E-mail: qbmei@ nwpu.edu.cn較藥物處理組與對(duì)照組之間堿性磷酸酶(ALP)的活性。同時(shí)檢測(cè)給予黃芩苷對(duì)堿性磷酸酶陽性克隆和礦化結(jié)節(jié)形成的影響。提取總mRNA和總蛋白,用實(shí)時(shí)熒光定量PCR檢測(cè)黃芩苷對(duì)Wnt10a、GSK-3β、β-catenin以及LEF1 mRNA水平的影響。免疫印跡檢測(cè)藥物處理對(duì)β-catenin以及Runx2蛋白表達(dá)量的影響。結(jié)果黃芩苷明顯提高ALP的活性。10 μmol·L-1濃度的黃芩苷還可增加堿性磷酸酶克隆數(shù)和鈣化結(jié)節(jié)的形成。黃芩苷還可提高Wnt10a、β-catenin、GSK-3β、LEF1以及osteocalcin的mRNA水平,并提高β-catenin和Runx2的蛋白表達(dá)量。結(jié)論黃芩苷在0. 1~50 μmol·L-1的給藥濃度下可促進(jìn)rBMSC的成骨分化成熟,Wnt/β-catenin信號(hào)可能參與調(diào)控rBMSC的成骨分化。
關(guān)鍵詞:黃芩苷;大鼠骨髓間充質(zhì)干細(xì)胞;成骨分化; Wnt/βcatenin信號(hào)通路;堿性磷酸酶
骨髓間充質(zhì)干細(xì)胞(bone marrow derived mesenchymal stem cells,BMSCs)來源于骨髓,是具有自我更新及多向分化功能的細(xì)胞[1]。BMSCs的成骨分化能力隨年齡增加而減弱,并在微重力環(huán)境下被抑制,這可能是導(dǎo)致骨質(zhì)流失的重要原因之一[2-4]。Wnt/β-catenin信號(hào)通路是調(diào)控BMSCs成骨分化的重要信號(hào)通路[5]。近年來研究表明,多種植物藥或天然藥物單體能有效防治骨質(zhì)疏松,如續(xù)斷、蛇床子素等[6-8]。黃芩為唇形科植物,富含黃酮類化合物,黃芩苷是其中的主要活性組分(化學(xué)結(jié)構(gòu)見Fig 1)。在不同結(jié)構(gòu)的36個(gè)黃酮類化合物中,黃芩苷對(duì)原代成骨細(xì)胞堿性磷酸酶活性促進(jìn)作用最為明顯,并且通過上調(diào)Wnt/β-catenin信號(hào)促進(jìn)成骨細(xì)胞分化[9]。然而,黃芩苷對(duì)rBMSC的成骨分化的作用及其分子機(jī)制還未見報(bào)道。本實(shí)驗(yàn)以大鼠rBMSC為對(duì)象,研究黃芩苷對(duì)細(xì)胞增殖及成骨分化和成熟的影響,以及對(duì)Wnt/β-catenin信號(hào)通路的調(diào)控。
Fig 1 Chemical structure of baicalin
1.1實(shí)驗(yàn)材料體質(zhì)量220~250 g的Sprague-Dawley大鼠4只,購自中國人民解放軍第四軍醫(yī)大學(xué)實(shí)驗(yàn)動(dòng)物中心(動(dòng)物合格證號(hào): SCXK軍2007-007)。DMEM/F12培養(yǎng)液、胎牛血清、青-鏈霉素及0.25% Trypsin-EDTA購自Thermo Scientific Hyclone公司。黃芩苷(純度≥99%)、抗壞血酸、β-甘油磷酸鈉、地塞米松、MTT試劑、固藍(lán)RR、茜素紅、二甲基亞砜(DMSO)均購自Sigma-Aldrich公司。堿性磷酸酶測(cè)定試劑盒購自南京建成生物工程研究所??俁NA提取試劑盒(離心柱型)、反轉(zhuǎn)錄試劑盒、SYBR Green熒光定量預(yù)混試劑均購自天根生化科技(北京)有限公司。引物由北京奧科鼎盛生物科技有限公司設(shè)計(jì)合成。β-catenin、Runx-2單克隆抗體以及辣根過氧化物酶標(biāo)記的二抗購自Abcam公司。
1.2實(shí)驗(yàn)方法
1.2.1大鼠骨髓間充質(zhì)干細(xì)胞的分離培養(yǎng)大鼠頸椎脫臼處死,于75%酒精中浸泡10 min,在無菌條件下快速分離股骨及脛骨,切除兩端骨骺,用5 mL注射器抽取一定量DMEM/F12培養(yǎng)液沖洗骨髓腔至液體澄清。收集沖洗液,用微量移液器吹打后靜置5 min。取上清液,于1 000 r·min-1離心5 min,棄上清,用含10%體積分?jǐn)?shù)胎牛血清的DMEM/F12使細(xì)胞重懸,反復(fù)吹打后計(jì)數(shù),以104個(gè)/cm2的密度接種于6孔板中,置于37℃、5% CO2培養(yǎng)箱中培養(yǎng)。3d后首次換液,每日觀察細(xì)胞生長情況,待貼壁細(xì)胞達(dá)80%融合后用胰酶進(jìn)行消化傳代培養(yǎng)(此為第一代P1)。待細(xì)胞傳代至P3時(shí)進(jìn)行實(shí)驗(yàn),96孔板、24孔板、6孔板接種密度為2×103、2 ×105、4×105細(xì)胞/孔。
1.2.2 ALP活性測(cè)定細(xì)胞接種于96孔板,培養(yǎng)24h后進(jìn)行成骨性誘導(dǎo)(誘導(dǎo)培養(yǎng)液中抗壞血酸、β-甘油磷酸鈉和地塞米松濃度分別為0. 284、10、2× 10-3mmol·L-1)。同時(shí)進(jìn)行給藥處理,系列黃芩苷終濃度為0. 1、0. 5、1、5、10、50 μmol·L-1,每組設(shè)6個(gè)復(fù)孔。給藥組與對(duì)照組培養(yǎng)液均含有1‰的DMSO。于37℃、5%CO2培養(yǎng)箱中培養(yǎng)3、5、7 d,每3 d換液1次。棄培養(yǎng)液,PBS洗2次,每孔加入緩沖液和基質(zhì)液各50 μL,混勻于37℃水浴15 min,加入150 μL顯影液,于520 nm波長下測(cè)吸光度(OD)。根據(jù)試劑盒說明配制酚標(biāo)液標(biāo)準(zhǔn)曲線,根據(jù)酚標(biāo)液及樣本的吸光度值計(jì)算酶活性,結(jié)果以每孔15 min內(nèi)產(chǎn)生酚的摩爾量表示。
1.2.3堿性磷酸酶陽性克隆(CFU-FALP)分析細(xì)胞接種于12孔板,培養(yǎng)24 h后成骨誘導(dǎo),給藥組給予10 μmol·L-1黃芩苷,對(duì)照組加入空白誘導(dǎo)培養(yǎng)基,給藥組與對(duì)照組培養(yǎng)液均含有1‰的DMSO。7 d后采用偶氮偶合法進(jìn)行ALP組織化學(xué)染色。PBS 洗2遍,10%甲醛溶液固定1 min,加入基質(zhì)液(含0.1%的α-萘基磷酸鈉和固藍(lán)RR鹽的Michaelis氏巴比妥鈉-HCl緩沖液,pH 8.9)中反應(yīng)30 min。出現(xiàn)褐色斑點(diǎn)時(shí)棄掉基質(zhì)液,PBS洗后固定,照相保存結(jié)果,用Image-Pro Plus 6.0軟件掃描CFU-FALP的面積、數(shù)量和灰度,進(jìn)行統(tǒng)計(jì)學(xué)分析。
1.2.4礦化結(jié)節(jié)形成細(xì)胞接種于24孔板,培養(yǎng)24h后成骨誘導(dǎo),給藥組給予10 μmol·L-1黃芩苷,對(duì)照組加入空白誘導(dǎo)培養(yǎng)基,給藥組與對(duì)照組培養(yǎng)液均含有1‰的DMSO。d12棄培養(yǎng)液,PBS洗2次,10%甲醛固定5 min。加入茜素紅染色劑,37℃孵育1 h,觀察礦化結(jié)節(jié)的形成情況。照相保存結(jié)果,用Image-Pro Plus 6.0軟件掃描礦化結(jié)節(jié)的面積、數(shù)量和灰度,進(jìn)行統(tǒng)計(jì)學(xué)分析。
1.2.5 Real time-qPCR分析細(xì)胞接種于6孔板,培養(yǎng)24h后成骨誘導(dǎo),給藥組給予10 μmol·L-1黃芩苷,對(duì)照組加入空白誘導(dǎo)培養(yǎng)基,給藥組與對(duì)照組培養(yǎng)液均含有1‰的DMSO。8、24、48 h后,按試劑盒方法提取總RNA,用超微量紫外可見分光光度計(jì)檢測(cè)濃度和純度,調(diào)整RNA濃度至1 μg,取1 μL逆轉(zhuǎn)錄為cDNA。在體系中加入引物(見Tab 1)和SYBR Green試劑,于Bio-Rad CFX96型實(shí)時(shí)熒光定量PCR儀上,以兩步法對(duì)cDNA進(jìn)行擴(kuò)增。預(yù)變性階段,在95反應(yīng)10 min,一個(gè)循環(huán)。PCR反應(yīng)階段,分別為95反應(yīng)15 s、57反應(yīng)30 s、72反應(yīng)30 s,共40個(gè)循環(huán)。記錄CT(cycle threshold)值,通過ΔΔCT =(CT目的基因-CT內(nèi)參基因)處理組-(CT目的基因-CT內(nèi)參基因)對(duì)照組,計(jì)算各組2-ΔΔCT,即得該目的基因給藥組mRNA表達(dá)與對(duì)照組mRNA的倍數(shù)。
Tab 1 Specific primer sequences for Real-time qPCR
1.2.6 Western blot分析細(xì)胞接種于6孔板,培養(yǎng)24 h后成骨誘導(dǎo),給藥組給予1、10、50 μmol· L-1濃度黃芩苷,對(duì)照組加入空白誘導(dǎo)培養(yǎng)基,給藥組與對(duì)照組培養(yǎng)液均含有1‰的DMSO。處理3 d后,每孔用300 μL細(xì)胞裂解液(含有PMSF 1 mmol ·L-1)提取總蛋白。用超微量紫外可見分光光度計(jì)檢測(cè)蛋白濃度,加入含有溴酚藍(lán)的上樣緩沖液,于95℃變性5 min,經(jīng)12 % SDS-PAGE電泳分離后,將待測(cè)蛋白轉(zhuǎn)移至PVDF膜上,用5 %脫脂奶粉于室溫下?lián)u床封閉1 h,加入用TBST稀釋的β-catenin、Runx2、β-actin的一抗(稀釋比例為1∶1 000),4℃過夜。次日用TBST將PVDF膜洗3次后,加入用TBST稀釋的辣根過氧化物酶標(biāo)記的二抗,室溫下?lián)u動(dòng)2 h。洗膜3次后,將發(fā)光液涂抹于PVDF膜上,于暗室曝光。將膠片進(jìn)行拍照,用IPP6.0軟件對(duì)條帶的灰度值進(jìn)行測(cè)定,用相對(duì)定量進(jìn)行分析。
2.1不同濃度黃芩苷對(duì)堿性磷酸酶活性的影響如Fig 2所示,rBMSC經(jīng)成骨誘導(dǎo)后,ALP活性隨時(shí)間而增加,誘導(dǎo)7 d后ALP活性最高。不同濃度黃芩苷在5、7 d均能增加ALP活性(P<0. 01),并呈現(xiàn)出濃度依賴性,其中10 μmol·L-1黃芩苷對(duì)ALP活性增加最為明顯,而在50 μmol·L-1時(shí)ALP活性略有降低。
Fig 2 Effect of baicalin on ALP activityat various concentrations(n =6)*P<0. 05,**P<0. 01 vs con
2.2黃芩苷對(duì)堿性磷酸酶活性陽性克隆形成的影響如Fig 3所示,rBMSC經(jīng)成骨誘導(dǎo)7 d后,對(duì)照組與給藥組均能形成堿性磷酸酶活性陽性克隆(CFU-FALP)。通過IPP 6.0軟件對(duì)進(jìn)行CFU-FALP灰度掃描(Tab 2),給予黃芩苷1、10、50 μmol·L-1后,CFU-FALP的面積、數(shù)量和相對(duì)灰度高于對(duì)照組,且兩組間差異有統(tǒng)計(jì)學(xué)意義(P<0. 05或P<0. 01)。
Tab 2 Intensity scanning of CFU-FALPformation 7 days after osteogenic induction(n =4)
2.3黃芩苷對(duì)鈣化結(jié)節(jié)形成的影響如Fig 4所示,rBMSC經(jīng)成骨誘導(dǎo)12 d后,對(duì)照組與黃芩苷組均形成鈣化結(jié)節(jié)。給予黃芩苷1、10、50 μmol·L-1后,鈣化結(jié)節(jié)形成數(shù)量多于對(duì)照組。經(jīng)IPP6.0軟件分析(Tab 3),鈣化結(jié)節(jié)的面積、數(shù)量和相對(duì)灰度高于對(duì)照組,且兩組間差異有顯著性(P<0. 01)。
Fig 3 Effect of baicalin at various concentrations on CFU-FALPformation 7 daysafter osteogenic induction.A: CON,B: baicalin at 1μmol·L-1; C: baicalin at 10μmol·L-1; D: baicalin at 50 μmol·L-1
Fig 4 Effect of baicalin at various concentrations on mineralized nodule formation 12 days after osteogenic inductionA: CON; B: baicalin at 1 μmol·L-1; C: baicalin at 10 μmol· L-1; D: baicalinat 50 μmol·L-1
2.4黃芩苷對(duì)Wnt/β-catenin信號(hào)通路相關(guān)基因表達(dá)的影響經(jīng)10μmol·L-1黃芩苷處理原代rBMSC 12、24、36 h后,Real time-qPCR檢測(cè)Wnt/β-catenin信號(hào)通路表達(dá)的變化,用相對(duì)定量法2-ΔΔCT分析檢測(cè)結(jié)果。如Tab4所示,給藥組在12、24、36 h均
Tab 3 Intensity scanning of mineralized nodule formation 12 days after osteogenic induction(±s,n =4)
Tab 3 Intensity scanning of mineralized nodule formation 12 days after osteogenic induction(±s,n =4)
AreaNumber Group/mm2·well-1/mineralized nodule·well-1Intensity CON 30.34±6.53 702.78±49.50 21955.34±2397.71 1 μmol·L-1 54.55±6.23** 973.64±74.70** 71181.98±5769.01**10 μmol·L-1 68.14±4.93** 1218.64±147.13** 90613.62±6423.42**50 μmol·L-1 64.03±5.41** 1157.68±85.70** 74511.73±5773.22***P<0. 05,**P<0. 01 vs CON
Tab 4 Effect of baicalin at 10 μmol·L-1on mRNA expression of Wnt/β-catenin molecular 12,24,36 h after osteogenic differentiation(±s,n =3)
Tab 4 Effect of baicalin at 10 μmol·L-1on mRNA expression of Wnt/β-catenin molecular 12,24,36 h after osteogenic differentiation(±s,n =3)
Gene 12 h 24 h 36 h Wnt10a 15.17±2.49** 20.22±2.72** 25.82±2.84**GSK-3β 2.68±0.32** 4.61±0.24** 9.65±0.04**β-catenin 4.50±0.07** 4.15±0.30** 5.14±0.16**LEF1 3.47±0.03** 3.43±0.87* 16.63±1.10***Osteocalcin 2.66±0.03** 6.67±1.15** 8.57±1.19***P<0. 05;**P<0. 01 vs CON
可明顯提高Wnt10a、GSK-3β、β-catenin、LEF1和osteocalcin的基因表達(dá)量(P<0. 05 or P<0. 01)。其中黃芩苷在36 h對(duì)Wnt10a以及LEF1mRNA表達(dá)水平影響最為明顯,與同時(shí)間對(duì)照組相比,相對(duì)于管家基因GAPDH分別提高25. 82倍和16. 63倍。
2.5黃芩苷對(duì)β-catenin和Runx2蛋白表達(dá)量的影響經(jīng)1、10、50 μmol·L-1黃芩苷處理原代rBMSC 3 d后,采用Western blot檢測(cè)β-catenin和Runx2蛋白表達(dá)量。結(jié)果如Fig 5所示,黃芩苷僅在10 μmol·L-1濃度下能明顯提高Runx2的蛋白表達(dá)量,而黃芩苷在1、10、50 μmol·L-1的給藥濃度下均能提高β-catenin的蛋白表達(dá)量。
近年來研究表明,植物藥在防治骨質(zhì)疏松方面具有巨大潛力。在傳統(tǒng)中藥方劑的基礎(chǔ)上開發(fā)和改良出多個(gè)抗骨質(zhì)疏松中成藥。Wang等[10]總結(jié)了12項(xiàng)抗骨質(zhì)疏松中成藥的隨機(jī)對(duì)照試驗(yàn)并評(píng)價(jià)其有效性,受試者包括1 816名骨質(zhì)疏松患者。結(jié)果表明,受試中藥制劑都明顯增加了患者腰椎的骨密度。多種黃酮類化合物在細(xì)胞或動(dòng)物水平顯示出明顯促成骨作用,如淫羊藿苷、染料木黃酮、白藜蘆醇、蛇床子素等[10-14]。與傳統(tǒng)治療骨質(zhì)疏松藥物相比,植物藥來源廣泛且毒副作用較低,因此具有較大的應(yīng)用開發(fā)價(jià)值。
Fig 5 Effect of baicalin at various concentrations on protein expression of β-catenin and Runx2 after osteogenic differentiation for 3 days*P<0. 05,**P<0. 01 vs CON
BMSCs源于骨髓,具有自我更新及多向分化功能,在一定條件下能夠分化為成骨細(xì)胞、脂肪細(xì)胞、成肌細(xì)胞、成軟骨細(xì)胞、神經(jīng)細(xì)胞等[1]。促進(jìn)BMSCs的成骨分化,能夠增加骨形成及骨強(qiáng)度。近年來,應(yīng)用BMSCs對(duì)骨相關(guān)疾病進(jìn)行細(xì)胞治療引起極大關(guān)注,BMSCs在骨組織工程中也表現(xiàn)出巨大的應(yīng)用潛力[15-17]。本實(shí)驗(yàn)結(jié)果表明,黃芩苷能夠促進(jìn)BMSCs的成骨分化成熟,明顯提高ALP活性、ALP陽性克隆形成、鈣化結(jié)節(jié)形成,并提高Runx2基因及蛋白表達(dá),所測(cè)定指標(biāo)均與細(xì)胞成骨分化密切相關(guān)。
Wnt/β-catenin信號(hào)通路在調(diào)控BMSC成骨分化過程中發(fā)揮重要作用,但文獻(xiàn)報(bào)道有正、負(fù)調(diào)控兩種結(jié)果。轉(zhuǎn)染W(wǎng)nt1、Wnt10a、Wnt10b及β-catenin 的ST2細(xì)胞經(jīng)成骨誘導(dǎo)后,細(xì)胞ALP活性及鈣化能力明顯提高[5]。整體動(dòng)物水平,F(xiàn)ABP4-Wnt10b轉(zhuǎn)基因小鼠的骨量為野生型小鼠的4倍[18]。GSK-3α/β抑制劑603281-31-8能促進(jìn)C3H10T1/2細(xì)胞的骨向分化[19]。C3H10T1/2細(xì)胞轉(zhuǎn)染W(wǎng)nt3A腺病毒載體后,通過上調(diào)CNN1/Cyr61表達(dá)增加其骨向分化[20]。然而Wnt3a抑制人BMSC的ALP活性并抑制其礦化[21-22]。實(shí)驗(yàn)結(jié)果的不一致可能與采用的細(xì)胞類型及Wnt信號(hào)分子的水平高低密切相關(guān)。除了誘導(dǎo)BMSC分化,Wnt/β-catenin信號(hào)的過度激活能誘導(dǎo)BMSC衰老[23]。并且利用轉(zhuǎn)基因小鼠,在骨細(xì)胞持續(xù)激活β-catenin表達(dá)能夠明顯增加松質(zhì)骨骨量,但減弱骨力學(xué)性能[24]。因此,Wnt/β-catenin信號(hào)強(qiáng)弱對(duì)調(diào)控結(jié)果的影響,以及Wnt/β-catenin信號(hào)在不同細(xì)胞譜系、細(xì)胞周期所起的作用值得深入研究。
據(jù)報(bào)道,黃芩苷促進(jìn)成骨細(xì)胞分化并非通過雌激素信號(hào)通路發(fā)揮作用,而是通過激活Wnt/β-catenin信號(hào)[7]。我們發(fā)現(xiàn)黃芩苷能夠提高Wnt10a、GSK-3β、β-catenin和LEF1的基因表達(dá),并在蛋白水平提高β-catenin的表達(dá)量,表明黃芩苷可能通過調(diào)控Wnt/β-catenin信號(hào)而促進(jìn)BMSCs的分化成熟。BMSCs的分化成熟是復(fù)雜的過程,在黃芩苷調(diào)控rBMSC成骨分化的過程中是否有其他Wnt/β-catenin信號(hào)分子或其他信號(hào)通路的參與還有待于進(jìn)一步研究。
參考文獻(xiàn):
[1]Guan M,Yao W,Liu R,et al.Directing mesenchymal stem cells to bone to augment bone formation and increase bone mass[J].Nat Med,2012,18(3): 456-62.
[2]Baker N,Boyette L B,Tuan R S.Characterization of bone marrow -derived mesenchymal stem cells in aging[J].Bone,2015,70C: 37-47.
[3]張晨,呂東媛,孫樹津,等.地基微重力效應(yīng)模擬影響骨髓間充質(zhì)干細(xì)胞生物學(xué)行為及其調(diào)控機(jī)理研究進(jìn)展[J].醫(yī)用生物力學(xué),2014,29(3): 285-91.
[3]Zhang C,Lyu D Y,Sun S J,et al.Impacts of ground-based microgravity simulation on biological responses of bone marrow mesenchymal stem cells and its underlying mechnisms: a mini-review [J].J Med Biomechanics,2014,29(3): 285-91.
[4]Qian X,Zhang C,Chen G,et al.Effects of BMP-2 and FGF2 on the osteogenesis of bone marrow-derived mesenchymal stem cells in hindlimb unloaded rats[J].Cell Biochem Biophys,2014,70(2): 1127-36.
[5]Cawthorn W P,Bree A J,Yao Y,et al.Wnt6,Wnt10a and Wnt10b inhibit adipogenesis and stimulate osteoblastogenesis through a β-catenin-dependent mechanism[J].Bone,2012,50(2): 477-89.
[6]Li C R,Li Q,Liu R J,et al.Medicinal herbs in the prevention and treatment of osteoporosis[J].Am J Chin Med,2014,42(1): 1-22.
[7]牛銀波,潘亞磊,李晨睿,等.續(xù)斷防治骨質(zhì)疏松的研究進(jìn)展[J].中國藥理學(xué)通報(bào),2013,29(7): 892-4.
[8]Niu Y B,Pan Y L,Li C R,et al.Research progress of Radix dipsaci in the prevention and treatment of osteoporosis[J].Chin Pharmacol Bull,2013,29(7): 892-4.
[7]鮑君杰,謝梅林,朱路佳.蛇床子素治療去卵巢大鼠骨質(zhì)疏松的實(shí)驗(yàn)研究[J].中國藥理學(xué)通報(bào),2011,27(4): 591-2.
[8]Bao J J,Xie M L,Zhu L J.Treatment of osthol on osteoporosis inovariectomized rats[J].Chin Pharmacol Bull,2011,27(4): 591 -2.
[9]Guo A J,Choi R C,Cheung A W,et al.Baicalin,a flavone,induces the differentiation of cultured osteoblasts: an action via the Wnt/beta-catenin signaling pathway[J].J Biol Chem,2011,286(32): 27882-93.
[10]Wang Z Q,Li J L,Sun Y L,et al.Chinese herbal medicine for osteoporosis: a systematic review of randomized controlled trails [J].Evid Based Complement Alternat Med,2013,2013:356260.
[11]Zhai Y K,Guo X Y,Ge B F,et al.Icariin stimulates the osteogenic differentiation of rat bone marrow stromal cells via activating the PI3K-AKT-eNOS-NO-cGMP-PKG[J].Bone,2014,66: 189 -98.
[12]Yang L,Yu Z,Qu H,Li M.Comparative effects of hispidulin,genistein,and icariin with estrogen on bone tissue in ovariectomized rats[J].Cell Biochem Biolhys,2014,70(1): 485-90.
[13]Durbin S M,Jackson J R,Ryan M J,et al.Resveratrol supplementation influences bone properties in the tibia of hindlimb-suspended mature Fisher 344×Brown Norway male rats[J].Appl Physiol Nutrit Metabol,2012,37(6):1179-88.
[14]Zhai Y K,Pan Y L,Niu Y B,et al.The importance of the prenyl group in the activities of osthole in enhancing bone formation and inhibiting bone resorption in vitro[J].Int J Endocrinal,2014,2014:921954.
[15]Bianco P,Cao X,F(xiàn)renette P S,et al.The meaning,the sense and the significance: translating the science of mesenchymal stem cells into medicine[J].Nat Med,2013,19(1): 35-42.
[16]Guan M,Yao W,Liu R,et al.Directing mesenchymal stem cells to bone to augment bone formation and increase bone mass[J].Nat Med,2012,18(3): 456-62.
[17]Ovares-Navarrete R,Hyzy S L,Haithcock D A,et al.Coordinated regulation of mesenchymal stem cell differentiation on microstructured titanium surfaces by endogenous bone morphogenetic proteins[J].Bone,2015,73:208-16.
[18]Bennett C N,Longo K A,Wright W S,et al.Regulation of osteoblastogenesis and bone mass by Wnt10b[J].Proc Natl Acad Sci USA,2005,102(9): 3324-9.
[19]Kulkarni N H,Onyia J E,Zeng Q,et al.Orally bioavailable GSK-3alpha/beta dual inhibitor increases markers of cellular differentiation in vitro and bone mass in vivo[J].J Bone Miner Res,2006,21(6): 910-20.
[20]Si W,Kang Q,Luu H H,et al.CCN1/Cyr61 is regulated by the canonical Wnt signal and plays an important role in Wnt3A-induced osteoblast differentiation of mesenchymal stem cells[J].Mol Cell Biol,2006,26(8): 2955-64.
[21]De Boer J,Siddappa R,Gaspar C,et al.Wnt signaling inhibits osteogenic differentiation of human mesenchymal stem cells[J].Bone,2004,34(5): 818-26.
[22]Boland G M,Perkins G,Hall D J,et al.Wnt 3a promotes proliferation and suppresses osteogenic differentiation of adult human mesenchymal stem cells[J].J Cell Biochem,2004,93(6): 1210-30.
[23]Zhang D Z,Wang H J,Tan Y Z.Wnt/β-catenin signaling induces the aging of mesenchymal stem cells through the DNA damage response and the p53/p21 pathway[J].PLoS One,2011,6(6): E21397.
[24]Chen S X,F(xiàn)eng J Q,Bao Q W,et al.Adverse effects of osteocytic constitutive activation of β-catenin on bone strength and bone growth[J].J Bone Miner Res.doi: 10.1002/jbmr.2453,2015
Baicalin induces osteogenic differentiation of rat bone marrow derived mesenchymal stem cells via Wnt/β-catenin signaling pathway
LI Chen-rui,MENG Zhi-yuan,NIU Yin-bo,ZHAI Yuan-kun,PAN Ya-lei,XIE Li,MEI Qi-bing
(Key Laboratory for Space Bioscience and Biotechnology,School of Life Sciences,Northwestern Polytechnical University,Xi’an 710072,China)
Abstract:Aim To investigate the role of Wnt/β-catenin signaling pathway on the baicalin-induced osteogenic differentiation in rat bone marrow derived mesenchymal stem cells(rBMSC).Methods rBMSC was isolated and cultured by adherence screening method.Alkaline phosphatase(ALP)amount,CFU-FALP and mineralized nodules were compared between each baicalin group and vehicle control group at different time points.Real time q-PCR was employed to evaluate the mRNA level of Wnt signaling-related marker(Wnt10a,GSK-3β,β-catenin and LEF1)after baicalin treatment.Protein expression of β-catenin and Runx2 was measured by Western blot.Results Baicalin significantly increased ALP activities from day 3 to day 7.The formation of CFU-FALP and mineralized nodules remarkably increased after rBMSC was treated with1,10,50 μmol·L-1baicalin.mRNA levels of Wnt10a,β-catenin,GSK-3β,LEF1and osteocalcin were enhanced significantly in baicalin-treated group compared to control group.Protein expression of βcatenin and Runx2 was also elevated.Conclusion Baicalin(0. 1 to 50 μmol·L-1)promotes the osteogenic differentiation and maturation of rBMSC,in which Wnt/β-catenin signaling pathway might be involved.
Key words:baicalin; rat bone marrow derived mesenchymal stem cells(rBMSC); osteogenic differentiation; Wnt/β-catenin signaling pathway; alkaline phosphatase
作者簡介:李晨睿(1982-),女,博士,博士后,研究方向:骨丟失發(fā)生機(jī)制及其藥物防護(hù),E-mail: chenruilee525@126.com;
基金項(xiàng)目:中央高校基本科研業(yè)務(wù)費(fèi)專項(xiàng)資金資助(No 3102014JKY15009,3102014KYJD020)
收稿日期:2015-03-30,修回日期:2015-04-28
文獻(xiàn)標(biāo)志碼:A
文章編號(hào):1001-1978(2015)07-0919-06
doi:10.3969/j.issn.1001-1978.2015.07.007