張新毅 魏玉帥** 王成善 張小龍 商詠梅
ZHANG XinYi1,2,WEI YuShuai1,2**,WANG ChengShan1,2,ZHANG XiaoLong1,2 and SHANG YongMei1,2
1. 中國(guó)地質(zhì)大學(xué)地球科學(xué)與資源學(xué)院,北京 100083
2. 中國(guó)地質(zhì)大學(xué)青藏高原地質(zhì)研究中心,北京 100083
1. School of the Earth Sciences and Resources,China University of Geosciences,Beijing 100083,China
2. Research Center for Tibetan Plateau Geology,China University of Geosciences,Beijing 100083,China
2014-01-06 收稿,2014-10-08 改回.
喜馬拉雅地體位于西藏高原南緣(圖1a),是55 ±10Ma以來印度板塊與歐亞板塊碰撞形成的增生地體(Hodges,2000),由于碰撞導(dǎo)致的喜馬拉雅造山帶的隆起已被廣泛關(guān)注并發(fā)表大量研究成果(Le Fort et al.,1983;Harrison et al.,1997;Hodges,2000;Yin and Harrison,2000;Yin,2006)。喜馬拉雅地體不同構(gòu)造-地層單元中寒武紀(jì)地層的同位素年代學(xué)證據(jù)表明:在印度板塊與歐亞板塊碰撞之前,喜馬拉雅地體被認(rèn)為是印度板塊北部被動(dòng)大陸邊緣的典型代表,隨后在新生代與歐亞板塊碰撞中發(fā)生強(qiáng)烈變形而分成低喜馬拉雅、高喜馬拉雅及特提斯喜馬拉雅由南向北依次展布(Myrow et al.,2003)。
圖1 喜馬拉雅位置(a)、藏南構(gòu)造分區(qū)圖(b,據(jù)Wang et al.,2012 修改)和研究區(qū)地質(zhì)簡(jiǎn)圖及剖面位置(c,據(jù)河北地質(zhì)調(diào)查院區(qū)域地質(zhì)調(diào)查所,2006①河北省地質(zhì)調(diào)查院區(qū)域地質(zhì)調(diào)查所. 2006. 西藏1∶25 萬(wàn)霍爾巴幅與巴巴扎東幅區(qū)域地質(zhì)調(diào)查報(bào)告修改)Fig.1 Location of the Himalaya (a),simplified tectonic map of southern Tibet (b,modified after Wang et al.,2012)and geological sketch map of studying area and measured profile spot (c)
沉積巖的物源分析是認(rèn)識(shí)盆-山演化的重要途徑,利用物源分析不僅能確定物源區(qū)的母巖類型、構(gòu)造背景,還能解釋盆山耦合關(guān)系,并可以對(duì)物源區(qū)的構(gòu)造演化歷史提供制約(Bhatia,1983;王成善和李祥輝,2003;Weltje and Von Eynatten,2004)。野外地質(zhì)調(diào)查過程中,在藏南仲巴地區(qū)發(fā)現(xiàn)一套位于特提斯喜馬拉雅北亞帶的白堊紀(jì)地層,整體為黃綠色火山巖屑砂巖,局部層位可見頁(yè)巖與灰?guī)r,為一套深海海底扇沉積組合,根據(jù)野外露頭、剖面實(shí)測(cè)、室內(nèi)鏡下觀察、鋯石定年、巖石組合特征、沉積環(huán)境分析、構(gòu)造單元?dú)w屬確定及區(qū)域地層對(duì)比將其確定為日朗組(K1r),本文地層仍采用Hu et al.(2008)年根據(jù)江孜地區(qū)床得剖面所建立的地層格架,該套地層在1∶25 萬(wàn)區(qū)域地質(zhì)調(diào)查中(河北地質(zhì)調(diào)查院區(qū)域地質(zhì)調(diào)查所,2006)被劃入達(dá)?;祀s巖組(J1-2dm)和蹬崗混雜巖組(E1-2dgm)中(圖1c)。本文試圖通過對(duì)該套地層進(jìn)行重新厘定和仲巴地區(qū)日朗組進(jìn)行沉積特征研究及物源分析,為印度大陸北緣早白堊世火山事件提供證據(jù)。
表1 日朗組砂巖碎屑組分Table 1 Detrital components of sandstone from Rilang Formation
喜馬拉雅地體位于喜馬拉雅前陸盆地以北,雅魯藏布江縫合帶以南,為典型的陸陸碰撞形成的增生地體(Yin,2006;Dai et al.,2008),被北傾的主中央逆沖斷層(MCT)和藏南拆離系(STD)由南向北分為低喜馬拉雅、高喜馬拉雅和特提斯喜馬拉雅三個(gè)構(gòu)造帶(圖1b)。低喜馬拉雅帶南部以主邊緣逆沖斷層(MBT)為界與喜馬拉雅前陸盆地相鄰,主體由中元古代至寒武紀(jì)地層組成,被認(rèn)為直接沉積于太古代和早元古代印度板塊基底之上。高喜馬拉雅帶主體由古元古代至奧陶紀(jì)變質(zhì)結(jié)晶巖系組成(Yin,2006),變質(zhì)程度在邊界較低,而在中央地帶較高(Le Fort,1996)。特提斯喜馬拉雅記錄了印度被動(dòng)大陸北緣從寒武紀(jì)至始新世的連續(xù)海相沉積,以崗巴-定日逆沖斷層為界分為南北兩個(gè)亞帶。南帶由一套奧陶紀(jì)至始新世的連續(xù)海相地層組成,主要巖石組合為一套海相碳酸鹽巖和碎屑巖(Willems et al.,1996;萬(wàn)曉樵和丁林,2002;Wan et al.,2005),是一套淺水相陸棚碳酸鹽和鈣質(zhì)陸源碎屑沉積(Gaetani and Garzanti,1991);北帶主要出露中生代地層,主要巖石組合為泥巖和砂巖為主的碎屑巖夾薄層硅質(zhì)巖和灰?guī)r(王成善等,2000;Ding et al.,2005;Li et al.,2005),是一套較深水外陸架沉積,被認(rèn)為形成于被動(dòng)大陸邊緣盆地到殘余洋盆環(huán)境(Liu and Einsele,1994;Jadoul et al.,1998;萬(wàn)曉樵等,2000;陳曦等,2008)。本文所研究仲巴地區(qū)日朗組屬于特提斯喜馬拉雅北亞帶,主體巖性為黃綠色火山巖屑砂巖。
砂巖碎屑組分分析是物源區(qū)分析的重要途徑,其中Dickson 圖解是最為有效的方法之一,可以直接反映物源區(qū)母巖性質(zhì)及構(gòu)造背景(Dickinson and Suczek,1979;Dickinson et al.,1983;Dickinson,1985;王成善和李祥輝,2003;Garzanti et al.,2007)。本次研究對(duì)仲巴地區(qū)日朗組12 件樣品進(jìn)行碎屑顆粒統(tǒng)計(jì),樣品變質(zhì)程度低,改造較小。用于碎屑顆粒統(tǒng)計(jì)的樣品均為中細(xì)粒砂巖,雜基含量小于5%。碎屑顆粒統(tǒng)計(jì)采用Gazzi-Dickson 計(jì)點(diǎn)法(Ingersoll et al.,1984),每個(gè)樣品統(tǒng)計(jì)顆粒數(shù)不少于300 顆(表1)。
砂巖中的各種沉積構(gòu)造,如槽模構(gòu)造、交錯(cuò)層理等,是判斷物源方向、進(jìn)行物源分析的有效方法(Kuenen,1953;李祥輝等,2003;Weislogel et al.,2006)。本次在西藏仲巴地區(qū)對(duì)日朗組地層進(jìn)行了實(shí)測(cè)剖面(S11)控制,剖面起點(diǎn)坐標(biāo)29°56′39.2″N,83°35′46.8″E,海拔4860m,剖面方向149°。在剖面第8 層發(fā)現(xiàn)槽模構(gòu)造,形態(tài)為一系列規(guī)則但不連續(xù)的舌狀突起。本文以野外直接測(cè)取的數(shù)據(jù),進(jìn)行校正并投影出玫瑰花圖,依此指示物源區(qū)方位。
圖2 藏南仲巴地區(qū)日朗組實(shí)測(cè)剖面綜合地層柱狀圖(維美組與加不拉組沉積環(huán)境參考陳曦等,2008)Fig.2 Histogram of Rilang Formation section in Zhongba area,southern Tibet (sedimentary environment of Weimei Formation and Gyabula Formation is according to Chen et al.,2008)
鋯石U-Pb 法為物源分析提供母巖的地層年代信息,并通過結(jié)合周圍構(gòu)造單元年齡特征、出露情況及構(gòu)造演化特征判斷物源區(qū)(Cai et al.,2011;Nie et al.,2012;Mohanty,2012)。本次在S11 剖面第8 層中采集了巖屑石英砂礫巖鋯石樣(S11-08U1),用電感耦合等離子質(zhì)譜儀(ICP-MS)進(jìn)行碎屑鋯石分析。鋯石U-Pb 年齡測(cè)試在中國(guó)科學(xué)院青藏高原研究所環(huán)境變化與地表過程重點(diǎn)實(shí)驗(yàn)室完成,激光束直徑為35μm,激光脈沖頻率為8Hz。儀器分析條件和數(shù)據(jù)獲取方法見文獻(xiàn)(Yuan et al.,2004;Jackson et al.,2004;Yang et al.,2006;He et al.,2009)。鋯石U-Pb 定年數(shù)據(jù)除年齡校正外,還根據(jù)碎屑鋯石定量化界限進(jìn)行選取(對(duì)于年齡>1000Ma的樣品,由于放射性成因鉛的含量高,采用207Pb/206Pb 的表面年齡;對(duì)于年齡<1000Ma 的樣品,由于放射性成因鉛的含量低,采用206Pb/238U 的表面年齡;Griffin et al.,2004)。
本次對(duì)藏南仲巴縣崗久地區(qū)日朗組進(jìn)行了剖面測(cè)制(圖1c),日朗組(K1r)為剖面的2 ~15 層,厚度為181.4m,出露于背斜構(gòu)造的西北翼,地層未發(fā)生倒轉(zhuǎn)。剖面實(shí)測(cè)顯示日朗組與上覆地層加不拉組整合接觸,與下伏地層維美組整合接觸(圖2)。
圖3 日朗組野外露頭(a)及鏡下照片(b)(a)剖面第7 層出現(xiàn)的鮑馬序列ABDE 段(含礫砂巖、石英砂巖、粉砂巖及頁(yè)巖);(b)樣品S11-08b1,取自剖面第8 層Fig.3 Field picture (a)and photomicrograph (b)(a)Bouma sequences appear in the 7th layer of the measured section;(b)Sample S11-08b1 from the 8th layer of the measured section
加不拉組:主體為一套灰?guī)r夾硅質(zhì)巖、頁(yè)巖。以紫紅-藍(lán)灰色中到薄層含有孔蟲灰?guī)r、硅質(zhì)-鈣質(zhì)頁(yè)巖為主,偶見巖屑雜砂巖。與下伏地層呈整合接觸。
日朗組:以黃綠色火山巖屑砂巖為特征,野外露頭發(fā)育球形風(fēng)化,局部層位可見薄層硅質(zhì)巖、頁(yè)巖及灰?guī)r。可見鮑馬序列(圖3a)、槽模等沉積構(gòu)造,單層厚度較小。與下伏地層整合接觸。
維美組二段:以淺灰色厚層-塊狀中粗粒(長(zhǎng)石)石英砂巖、含礫石英砂巖為特征。風(fēng)化面土黃色或紅褐色,新鮮面淺灰黃色,中-厚層狀,單層厚度在40 ~70cm 之間。
日朗組主要由砂巖、粉砂巖和頁(yè)巖組成,可見少量硅質(zhì)巖和泥巖夾層及灰?guī)r巖塊。
粉砂巖和砂巖可占80%以上,粉砂巖的巖石學(xué)特征與砂巖相似。
砂巖:主要為巖屑石英砂巖(圖3b)、石英砂巖、含礫砂巖。巖屑砂巖一般為黃綠色,主要包括礦物碎屑石英(平均含量60%)、長(zhǎng)石(以更長(zhǎng)石和正長(zhǎng)石為主,平均含量5%)、絹云母、綠泥石、電氣石、褐鐵礦(后四者總含量小于5%),巖石碎屑蝕變火山巖(平均含量25%),填隙物為硅質(zhì)膠結(jié)物(平均含量5%);分選差至中等,顆粒多為次棱角狀;砂質(zhì)結(jié)構(gòu)。
頁(yè)巖:灰綠色或紅褐色,以硅質(zhì)頁(yè)巖為主,少量粉砂質(zhì)頁(yè)巖。
硅質(zhì)巖:紅褐色,富含放射蟲,隱晶結(jié)構(gòu),內(nèi)部發(fā)育小褶皺,為同沉積構(gòu)造。
泥巖:灰黑色,與頁(yè)巖互層,發(fā)育水平層理。
灰?guī)r:深灰色,風(fēng)化面呈土黃色,呈巖塊產(chǎn)出于砂巖中,為生物碎屑灰?guī)r,生物碎屑砂屑結(jié)構(gòu),生物類型多為有孔蟲,含量25%,充填膠結(jié)物以亮晶方解石為主。
日朗組剖面7 ~12 層發(fā)育大量鮑馬序列,并具有旋回性,在第8 層兩個(gè)旋回的交界處發(fā)育槽模構(gòu)造(圖4)。下部層位中鮑馬序列發(fā)育較完整,上部以C、D 段為主,巖性為粉砂巖和泥頁(yè)巖,各個(gè)旋回中層厚向上有變厚的趨勢(shì)。日朗組內(nèi)部出現(xiàn)泥巖、硅質(zhì)巖和生物碎屑灰?guī)r,生物碎屑主要為有孔蟲,指示日朗組為深海沉積。日朗組的整體沉積特征與Shanmugam and Moiola(1988)提出的海底扇相模式一致,因此,本文認(rèn)為仲巴地區(qū)日朗組為一套深海海底扇沉積組合,該結(jié)果與陳曦等(2008)提出的江孜地區(qū)日朗組為斜坡下部重力流沉積成因一致。
本次研究的12 件樣品中S11-02b1 至S11-13b1 等10 件樣品來源于日朗組主干剖面S11,PM011-11b1 和PM011-12b1 二件樣品來源于輔助剖面PM011(GPS:29°41′09.7″N,84°11′09.1″E,H=4805 ±11m)。按照統(tǒng)計(jì)數(shù)據(jù)進(jìn)行投點(diǎn),繪制出QmFLt(圖5;Dickinson et al.,1983)三角圖解。從QmFLt 圖解來看,日朗組樣品點(diǎn)集中于克拉通內(nèi)部及石英再旋回區(qū),少數(shù)落入過渡再旋回區(qū),沒有樣品落入巖屑再旋回區(qū),說明日朗組砂巖碎屑組分主要來源于克拉通內(nèi)部及石英再旋回區(qū)。
古流向數(shù)據(jù)采集于剖面第8 層槽模構(gòu)造,數(shù)據(jù)在346° ~40°范圍內(nèi)。根據(jù)野外所采集的古流向數(shù)據(jù)進(jìn)行數(shù)字投影得古流向玫瑰花圖,日朗組顯示出向北發(fā)散的古流向,從北北西到北北東方向均有,以北北東方向?yàn)橹?圖4)。
圖4 日朗組中含礫粗砂巖與頁(yè)巖交界處發(fā)育的舌狀槽模構(gòu)造及其古流向玫瑰花圖(n=10)Fig.4 The tongue-shaped trough model structure developed between the junction of pebbly coarse sandstone and shale in Rilang Formation and its paleocurrent directionrose diagram (n=10)
圖5 藏南仲巴地區(qū)日朗組砂巖碎屑成分QmFLt 三角圖解(據(jù)Dickinson et al.,1983)Qm-單晶石英;F-單晶長(zhǎng)石;L-不穩(wěn)定巖屑;Lt-多晶質(zhì)巖屑(L +多晶石英)Fig.5 QmFLt triplot of sandstone clastic compostion from Rilang Formation of Zhongba area,southern Tibet (after Dickinson et al.,1983)
本次所采碎屑鋯石U-Pb 樣(S11-08U1)重4kg,從5000余粒鋯石中隨機(jī)選擇500 粒進(jìn)行制靶并對(duì)其中90 粒進(jìn)行了U-Pb 年齡測(cè)試,年齡測(cè)試結(jié)果(見電子版附表1)中有4 個(gè)年齡不協(xié)和點(diǎn),其余86 顆鋯石均得協(xié)和年齡值,由年齡分布頻率圖可見剩余86 個(gè)點(diǎn)位的碎屑鋯石年齡特點(diǎn)。本文所用鋯石中Th/U 比值大于0.4 的鋯石數(shù)量占73.3%,且其稀土元素模式也表現(xiàn)出明顯的Ce 正異常和Eu 負(fù)異常,代表為巖漿成因鋯石(Vavra et al.,1996,1999;Belousova et al.,2002)。U-Pb 年齡值變化于133 ±4Ma ~2759 ±26Ma,鋯石有效年齡集中分布于411 ~1246Ma、2056 ~2312Ma 和2408~2497Ma 三個(gè)區(qū)間,總體鋯石年齡峰值分布在~500Ma(~30 顆)、~770Ma(~13 顆)、~870Ma(~18 顆)和~2470Ma(~8 顆)(圖6h)。碎屑鋯石最年輕年齡為133 ±4Ma,最老年齡為2759 ±26Ma。
日朗組砂巖巖屑母巖主要為火山巖(具有蝕變特征),沉積巖和變質(zhì)巖含量較少(可見粉砂巖、硅質(zhì)巖、石英巖及板巖),體現(xiàn)了日朗組砂巖的火山巖繼承性及近源物源特點(diǎn)。日朗組砂巖長(zhǎng)石含量極少(≤5%),含有大量的外來巖屑,成分成熟度低,說明日朗組物質(zhì)成分在沉積前經(jīng)歷了較弱的風(fēng)化作用及短距離的搬運(yùn)過程。此外,碎屑顆粒多為次棱角狀,分選較差,結(jié)構(gòu)成熟度低,同樣說明日朗組碎屑顆粒具有短距離搬運(yùn)的特點(diǎn),表明日朗組具有近源物質(zhì)供給特點(diǎn)。
從古流向分析結(jié)果來看,槽模構(gòu)造顯示日朗組的古流向以北北東方向?yàn)橹鳎豢紤]強(qiáng)烈的構(gòu)造短縮和變形情況下,物源區(qū)應(yīng)位于仲巴南南西方向。岡瓦納古陸的古地理重建結(jié)果顯示早白堊世印度大陸從澳大利亞-南極大陸裂解,印度被動(dòng)大陸邊緣處于海相環(huán)境,陸向海方向由印度克拉通依次過度為陸棚和大陸斜坡環(huán)境,外側(cè)毗鄰開放的特提斯洋盆(Ali and Aitchison,2008)。早白堊世印度大陸北緣陸棚(即特提斯喜馬拉雅南亞帶)和大陸斜坡(即特提斯喜馬拉雅北亞帶)均為沉積區(qū),均沉積了這套早白堊世火山碎屑砂巖:南亞帶如Zanskar 地區(qū)Pingdon La 組(Garzanti,1991),Kumaon地區(qū)Glumal Sandstone(Sinha,1989),Thakkhola 地區(qū)Tangbe組(Gradstein et al.,1989;Gibling et al.,1994),臥龍地區(qū)、古錯(cuò)地區(qū)臥龍火山碎屑砂巖(Jadoul et al.,1998;Hu et al.,2010);北亞帶如江孜地區(qū)日朗組(Hu et al.,2008;陳曦等,2008)。因此,綜合近源物源供給特點(diǎn)、古流向證據(jù)及古地理重建結(jié)果,本文認(rèn)為仲巴地區(qū)日朗組物源區(qū)為印度穩(wěn)定大陸邊緣,加上一套火山碎屑物質(zhì)的輸入。
圖6 碎屑鋯石年齡對(duì)比圖(a)低喜馬拉雅碎屑鋯石(Gehrels et al.,2008);(b)高喜馬拉雅碎屑鋯石(Gehrels et al.,2006a,b);(c-g)特提斯喜馬拉雅碎屑鋯石(Hu et al.,2010;Zhu et al.,2011;Myrow et al.,2009;Gehrels et al.,2008);(h)-日朗組碎屑鋯石(本文)Fig.6 Relaitve U-Pb age probability for detrital zircons from different area(a)Lesser Himalaya (Gehrels et al.,2008);(b)High Himalaya (Gehrels et al.,2006a,b);(c-g)Tethyan Himalaya (Hu et al.,2010;Zhu et al.,2011;Myrow et al.,2009;Gehrels et al.,2008);(h)Rilang Formation (this text)
基于碎屑鋯石U-Pb 年代學(xué)方法在物源分析方面的成熟性及前人在喜馬拉雅地區(qū)開展的大量研究工作,為進(jìn)一步驗(yàn)證本次分析結(jié)果的正確性及更為精確地定位物源區(qū),我們認(rèn)為有必要在本區(qū)域內(nèi)進(jìn)行物源分析對(duì)比?;谌绽式M地層出露位置,本文從低喜馬拉雅、高喜馬拉雅和特提斯喜馬拉雅進(jìn)行具體對(duì)比分析(圖6)。
仲巴地區(qū)日朗組的碎屑鋯石年齡分布范圍為133 ~2759Ma,特征年齡區(qū)間為450 ~600Ma、700 ~900Ma 和2400~2500Ma,年齡峰值為500Ma、770Ma、870Ma 和2470Ma,主峰值為500Ma(圖6h)。
低喜馬拉雅的碎屑鋯石年齡(圖6a)總體都較老(Gehrels et al.,2008),顯示在1870Ma 和2550Ma 出現(xiàn)明顯峰值,特征年齡峰值出現(xiàn)在1870Ma。對(duì)比高喜馬拉雅的碎屑鋯石年齡譜圖(圖6b),明顯缺失1170Ma 及1000Ma 之前的年齡峰值;與特提斯喜馬拉雅諸多地層的碎屑鋯石年齡(圖6c-g)對(duì)比,發(fā)現(xiàn)其缺失特提斯喜馬拉雅~500Ma 典型的年齡峰值。
高喜馬拉雅的碎屑鋯石年齡譜圖(圖6b)顯示在530Ma、950Ma、1170Ma 和~2500Ma(Gehrels et al.,2006a,b)均出現(xiàn)了明顯的峰值,主峰值出現(xiàn)在950Ma。Decelles et al.(2000)通過鋯石U-Pb 測(cè)試尼泊爾高喜馬拉雅地層巖石,同樣顯示在~500Ma 和956Ma 出現(xiàn)明顯年齡峰值,特征年齡峰值出現(xiàn)在956Ma,指示高喜馬拉雅原巖起源于晚元古代泛非造山時(shí)期的東非造山帶北部端元,巖石增生至岡瓦納大陸北部,并被寒武-奧陶期間的地殼熔融所侵位。
與特提斯喜馬拉雅對(duì)比發(fā)現(xiàn),日朗組碎屑鋯石年齡譜線特征與尼泊爾中部奧陶-志留紀(jì)砂巖(圖6c)、聶拉木寒武紀(jì)砂巖(圖6d)、色龍二疊紀(jì)石英砂巖(圖6e)、古錯(cuò)地區(qū)古錯(cuò)組石英砂巖(圖6f)及古錯(cuò)地區(qū)早白堊世臥龍火山碎屑砂巖(圖6g)相似,均存在~500Ma 的特征峰值,Gehrels et al.(2006a)及Myrow et al.(2009)將寒武-奧陶這一碎屑鋯石群歸因于沿岡瓦納大陸印度板塊邊緣的早古生代造山運(yùn)動(dòng),指示具有相同的物源特征。此外,日朗組峰值500Ma、770Ma、870Ma、2470Ma(圖6h)與藏南古錯(cuò)地區(qū)早白堊世臥龍火山碎屑砂巖(圖6g)四個(gè)年齡峰值505Ma、760Ma、870Ma、2490Ma(Hu et al.,2010)一一對(duì)應(yīng),且均具有向北的古流向特征(Hu et al.,2010),所以推測(cè)二者具有相同的物源區(qū)。已有研究結(jié)果顯示古錯(cuò)組物源區(qū)為印度克拉通,而臥龍火山碎屑砂巖的物源區(qū)為穩(wěn)定大陸邊緣,加之一套火山碎屑物質(zhì)的加入(Hu et al.,2010),所以本文認(rèn)為仲巴地區(qū)日朗組的物源區(qū)為印度大陸北部穩(wěn)定大陸邊緣,外加一套早白堊世火山碎屑物質(zhì)的加入,該結(jié)果與Dickinson 圖解構(gòu)造背景分析結(jié)果一致。
根據(jù)仲巴地區(qū)日朗組砂巖中槽模構(gòu)造的古水流指向標(biāo)志,物質(zhì)來源于南側(cè)印度大陸。巖屑砂巖含有不穩(wěn)定的長(zhǎng)石礦物及大量的火山巖屑,說明火山物質(zhì)的物源區(qū)較近。并且這套火山碎屑物質(zhì)是早白堊世時(shí)期的,因?yàn)橄虏康貙?如維美組)中并沒有出現(xiàn)這套火山碎屑物質(zhì)。仲巴地區(qū)日朗組中出現(xiàn)大量的火山碎屑物質(zhì)說明早白堊世(大致與日朗組沉積同期)仲巴以南地區(qū)發(fā)生了一次強(qiáng)烈的火山活動(dòng),形成的火山巖經(jīng)歷快速的風(fēng)化剝蝕、短距離搬運(yùn)沉積于仲巴地區(qū)。
印度被動(dòng)大陸北緣早白堊世火山事件在特提斯喜馬拉雅構(gòu)造帶有大量的沉積記錄,自西向東依次出現(xiàn)在印度Zanskar 地區(qū)Pingdon La 組(Garzanti,1991)和Kumaon 地區(qū)Glumal 砂 巖(Sinha,1989)、尼 泊 爾 中 部Thakkhola 地 區(qū)Tangbe 組(Gradstein et al.,1989;Gibling et al.,1994)、藏南古錯(cuò)地區(qū)和臥龍地區(qū)臥龍火山碎屑砂巖(Jadoul et al.,1998;陳蕾等,2007;Hu et al.,2008,2010)及江孜地區(qū)日朗組(Hu et al.,2008;陳曦等,2008),且這些沉積記錄和早白堊世這次火山事件是同期的。新發(fā)現(xiàn)的仲巴地區(qū)日朗組同樣含有大量的早白堊世火山巖屑,為其增加了新的證據(jù)。
對(duì)印度大陸北緣早白堊世火山事件主要有以下3 種成因假說:裂谷作用成因(Gaetani et al.,1986;Gradstein et al.,1991;Garzanti,1993;Dürr and Gibling,1994)、地幔熱柱成因(Zhu et al.,2007;朱弟成等,2008)和深部斷裂成因(Hu et al.,2010)。本文支持Hu et al.(2010)提出的深部斷裂成因模型,理由如下:(1)深部斷裂成因模型是基于古錯(cuò)地區(qū)臥龍火山碎屑巖物源區(qū)研究及特提斯喜馬拉雅構(gòu)造帶自西向東呈線狀分布的早白堊世火山碎屑巖提出的,碎屑鋯石U-Pb 年齡譜線顯示仲巴地區(qū)日朗組與古錯(cuò)地區(qū)臥龍火山碎屑砂巖具有相同的物源區(qū)特征,因此深部斷裂構(gòu)造模型解釋仲巴地區(qū)日朗組火山碎屑物質(zhì)成因也應(yīng)該是合理的;(2)早白堊世古地理重建結(jié)果(Ali and Aitchison,2008)顯示特提斯喜馬拉雅構(gòu)造帶在早白堊世緊鄰印度板塊穩(wěn)定大陸邊緣,深部斷裂模型指出早白堊世印度大陸從澳大利亞-南極洲大陸裂解導(dǎo)致印度大陸北緣區(qū)域應(yīng)力場(chǎng)方向改變,伴隨微弱的逆時(shí)針旋轉(zhuǎn),沿穩(wěn)定大陸邊緣伸展產(chǎn)生一條切穿地殼的深部斷裂,可以解釋仲巴地區(qū)日朗組的近源物源供給特點(diǎn);(3)物源區(qū)研究結(jié)果顯示日朗組物源區(qū)為印度穩(wěn)定大陸邊緣,加上一套火山碎屑物質(zhì)的輸入,深部斷裂模型可以很好地解釋這一物源區(qū)特征:來自深部斷裂噴發(fā)的火山碎屑及穩(wěn)定大陸邊緣物質(zhì)成分共同組成了日朗組的物質(zhì)來源;(4)早白堊世仲巴地區(qū)古地理位置為印度板塊北東緣斜坡地帶,深部斷裂模型指出深部斷裂發(fā)育于印度大陸北東緣,可以解釋日朗組北北東的古流向特征;(5)深部斷裂模型指出深部斷裂發(fā)育于板內(nèi)構(gòu)造環(huán)境,可以解釋日朗組物源區(qū)的克拉通內(nèi)部構(gòu)造背景。因此,本文認(rèn)為仲巴地區(qū)日朗組物源特征及火山碎屑組分反映了印度大陸北緣早白堊世由深部斷裂引起的一次強(qiáng)烈的火山作用,與印度大陸從澳大利亞-南極大陸裂解有關(guān)。
(1)日朗組為一套深海海底扇沉積的巖石組合,其砂巖的成分成熟度和結(jié)構(gòu)成熟度均不高,為近源物源沉積結(jié)果;
(2)砂巖碎屑組分統(tǒng)計(jì)結(jié)果表明日朗組的物源區(qū)構(gòu)造背景屬于克拉通內(nèi)部及石英再旋回區(qū);
(3)對(duì)日朗組槽模構(gòu)造的古流向分析表明其物質(zhì)組分來源于仲巴以南地區(qū);
(4)日朗組碎屑鋯石U-Pb 年齡出現(xiàn)峰值500Ma、770Ma、870Ma 和2470Ma,特征年齡峰值500Ma,其頻譜圖與特提斯喜馬拉構(gòu)造帶諸多地層相似,尤其與古錯(cuò)地區(qū)臥龍火山碎屑砂巖契合,二者顯示出相同的物源特征。物源區(qū)綜合研究表明仲巴地區(qū)日朗組的物源區(qū)為印度大陸北部穩(wěn)定大陸邊緣,外加一套早白堊世火山碎屑物質(zhì)的輸入。仲巴地區(qū)日朗組物源特征及火山碎屑組分反映了印度大陸北緣早白堊世由深部斷裂引起的一次強(qiáng)烈的火山作用,可能與印度大陸從澳大利亞-南極大陸裂解有關(guān)。
致謝 野外工作得到南京大學(xué)李祥輝教授、中國(guó)地質(zhì)大學(xué)(北京)李亞林教授的幫助;鋯石U-Pb 年齡測(cè)試得到中國(guó)科學(xué)院青藏高原研究所環(huán)境變化與地表過程重點(diǎn)實(shí)驗(yàn)室岳雅慧老師的支持與幫助;在成文過程中,李祥輝教授和夏瑛博士提供了非常中肯的建議;在此一并表示感謝。
Ali JR and Aitchison JC. 2008. Gondwana to Asia:Plate tectonics,paleogeography and the biological connectivity of the Indian subcontinent from the Middle Jurassic through Latest Eocene (166 ~35Ma). Earth-Science Reviews,88(3 -4):145 -166
Belousova E,Griffin WL,O’Reilly SY and Fisher N. 2002. Igneous zircon:Trace element composition as an indicator of source rock type. Contributions to Mineralogy and Petrology,143(5):602-622
Bhatia MR. 1983. Plate tectonics and geochemical composition of sandstones. The Journal of Geology,91(6):611 -627
Cai FL,Ding L and Yue YH. 2011. Provenance analysis of Upper Cretaceous strata in the Tethys Himalaya, southern Tibet:Implications for timing of India-Asia collision. Earth and Planetary Science Letters,305(1 -2):195 -206
Chen L,Hu XM and Huang ZC. 2007. Constrains from Early Cretaceous volcaniclastic sandstones in southern Tibet on a volcanic event in the northern margin of the Indian Continent. Acta Geologica Sinica,81(4):501 -510 (in Chinese with English abstract)
Chen X,Wang CS,Hu XM,Huang YJ,Wei YS and Wang PK. 2008.Petrology and evolution history from Late Jurassic to Paleogene of Gyangze basin,Southern Tibet. Acta Petrologica Sinica,24(3):616 -624 (in Chinese with English abstract)
Dai JG,Yin A,Liu WC and Wang CS. 2008. Nd isotopic compositions of the Tethyan Himalayan Sequence in southeastern Tibet. Science in China (Series D),51(9):1306 -1316
DeCelles PG,Gehrels GE,Quade J,LaReau B and Spurlin M. 2000.Tectonic implications of U-Pb zircon ages of the Himalayan orogenic belt in Nepal. Science,288(5465):497 -499
Dickinson WR and Suczek CA. 1979. Plate tectonics and sandstone compositions. AAPG Bulletin,63(12):2164 -2182
Dickinson WR,Beard LS,Brakenridge GR,Erjavec JL,F(xiàn)erguson RC,Inman KF,Knepp RA,Lindberg FA and Ryberg PT. 1983.Provenance of North American Phanerozoic sandstones in relation to tectonic setting. Geological Society of America Bulletin,94(2):222 -235
Dickinson WR. 1985. Interpreting provenance relations from detrital modes of sandstones. Provenance of Arenites,148:333 -361
Ding L,Kapp P and Wan XQ. 2005. Paleocene-Eocene record of ophiolite obduction and initial India-Asia collision,south central Tibet. Tectonics,24(3),doi:10.1029/2004TC001729
Dürr SB and Gibling MR. 1994. Early Cretaceous volcaniclastic and quartzose sandstones from north central Nepal: Composition,sedimentology and geotectonic significance. Geologische Rundschau,83(1):62 -75
Gaetani M,Casnedi R,F(xiàn)ois E,Garzanti E,Jadoul F,Nicora A and Tintori A. 1986. Stratigraphy of the Tethys Himalaya in Zanskar,Ladakh. Riv. It. Paleont. Strat.,91(4):443 -478
Gaetani M and Garzanti E. 1991. Multicyclic history of the Northern India continental margin (northwestern Himalaya). AAPG Bulletin,75(9):1427 -1446
Garzanti E. 1991. Stratigraphy of the Early Cretaceous Giumal Group(Zanskar Range,northern India). Rivista Italiana di Paleontologiae Stratigrafia,97(3 -4):485 -510
Garzanti E. 1993. Sedimentary evolution and drowning of a passive margin shelf (Giumal Group;Zanskar Tethys Himalaya,India):Palaeoenvironmental changes during final break-up of Gondwanaland. Geological Society of London,Special Publications,74:277 -298
Garzanti E,Doglioni C,Vezzoli G and Ando S. 2007. Orogenic belts and orogenic sediment provenance. The Journal of Geology,115(3):315 -334
Gehrels GE,DeCelles PG,Ojha TP and Upreti BN. 2006a. Geologic and U-Th-Pb geochronologic evidence for early Paleozoic tectonism in the Kathmandu thrust sheet,central Nepal Himalaya. Geological Society of America Bulletin,118(1 -2):185 -198
Gehrels GE,DeCelles PG,Ojha TP and Upreti BN. 2006b. Geologic and U-Pb geochronologic evidence for Early Paleozoic tectonism in the Dadeldhura thrust sheet,far-west Nepal Himalaya. Journal of Asian Earth Sciences,28(4 -6):385 -408
Gehrels GE,Valencia VA and Ruiz J. 2008. Enhanced precision,accuracy,efficiency,and spatial resolution of U-Pb ages by laser ablation-multicollector-inductively coupled plasma-mass spectrometry. Geochemistry,Geophysics,Geosystems,9(3),doi:10.1029/2007GC001805
Gibling MR,Gradstein FM,Kristiansen IL,Nagy J,Sarti M and Wiedmann J. 1994. Early Cretaceous strata of the Nepal Himalayas:Conjugate margins and rift volcanism during Gondwanan breakup.Journal of the Geological Society,151(2):269 -290
Gradstein FM,Gibling MR,Jansa LF,Kaminski MA,Ogg JG,Sarti M,Thurow J, VonRad U and Westermann G. 1989. Mesozoic Stratigraphy of Thakkhola,Central Nepal. Dalhousie:Spec. Rep.Cent. Marine Geol. Dalhousie Univ.,1 -115
Gradstein FM,Gibling M,Sarti M,VonRad U,Thurow J,Ogg JG,Jansa LF,Kaminski M and Westermann G. 1991. Mesozoic Tethyan strata of Thakkhola,Nepal:Evidence for the drift and breakup of Gondwana. Palaeogeography,Palaeoclimatology,Palaeoecology,88(3 -4):193 -218
Griffin WL,Belousova EA,Shee SR,Pearson NJ and O’reilly SY.2004. Archean crustal evolution in the northern Yilgarn Craton:UPb and Hf-isotope evidence from detrital zircons. Precambrian Research,131(3 -4):231 -282
Harrison TM,Ryerson FJ,Le Fort P,Yin A,Lovera OM and Catlos EJ.1997. A Late Miocene-Pliocene origin for the central Himalayan inverted metamorphism. Earth and Planetary Science Letters,146(1-2):E1 -E7
He ZY,Xu XS,Yu Y and Zou HB. 2009. Origin of the Late Cretaceous syenite from Yandangshan,SE China,constrained by zircon U-Pb and Hf isotopes and geochemical data. International Geology Review,51(6):556 -582
Hodges KV. 2000. Tectonics of the Himalaya and southern Tibet from two perspectives. Geological Society of America Bulletin,112(3):324-350
Hu XM,Jansa L and Wang CS. 2008. Upper Jurassic-Lower Cretaceous stratigraphy in south-eastern Tibet:A comparison with the western Himalayas. Cretaceous Research,29(2):301 -315
Hu XM,Jansa L,Chen L,Griffin WL,O’Reilly SY and Wang JG.2010. Provenance of Lower Cretaceous W?long volcaniclastics in the Tibetan Tethyan Himalaya:Implications for the final breakup of eastern Gondwana. Sedimentary Geology,223(3 -4):193 -205
Ingersoll RV,F(xiàn)ullard TF,F(xiàn)ord RL,Grimm JP,Pickle JD and Sares SW. 1984. The effect of grain size on detrital modes:A test of the Gazzi-Dickinson point-counting method. Journal of Sedimentary Research,54(1):103 -116
Jackson SE,Pearson NJ,Griffin WL and Belousova EA. 2004. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology. Chemical Geology,211(1 -2):47 -69
Jadoul F,Berra F and Garzanti E. 1998. The Tethys Himalayan passive margin from Late Triassic to Early Cretaceous(South Tibet). Journal of Asian Earth Sciences,16(2 -3):173 -194
Kuenen PH. 1953. Significant features of graded bedding. AAPG Bulletin,37(5):1044 -1066
Le Fort P,Debon F and Sonet J. 1983. The Lower Paleozoic“Lesser Himalayan”granitic belt:Emphasis on the Simchar pluton of central Nepal. Granites of the Himalayas,Karakorum,and Hindu Kush:Lahore,Punjab University,235 -256
Le Fort P. 1996. Evolution of the Himalaya. World and Regional Geology,95 -109
Li GB,Wan XQ,Liu WC,Liang DY and Hyesu Y. 2005. Discovery of Paleogene marine stratum along the southern side of Yarlung-Zangbo suture zone and its implications in tectonics. Science in China(Series D),48(5):647 -661
Li XH,Zeng QG and Wang CS. 2003. Palaeocurrent data:Evidence for the source of the Langjiexue Group in southern Tibet. Geological Review,49(2):132 -137 (in Chinese with English abstract)
Liu GH and Einsele G. 1994. Sedimentary history of the Tethyan basin in the Tibetan Himalayas. Geologische Rundschau,83(1):32 -61
Mohanty S. 2012. Spatio-temporal evolution of the Satpura Mountain Belt of India:A comparison with the Capricorn Orogen of Western Australia and implication for evolution of the supercontinent Columbia. Geoscience Frontiers,3(3):241 -267
Myrow PM,Hughes NC,Paulsen TS,Williams IS,Parcha SK,Thompson KR,Bowring SA,Peng SC and Ahluwalia AD. 2003.Integrated tectonostratigraphic analysis of the Himalaya and implications for its tectonic reconstruction. Earth and Planetary Science Letters,212(3 -4):433 -441
Myrow PM,Hughes NC,Searle MP,F(xiàn)anning CM,Peng SC and Parcha SK. 2009. Stratigraphic correlation of Cambrian-Ordovician deposits along the Himalaya:Implications for the age and nature of rocks in the Mount Everest region. The Geological Society of America Bulletin,121(3 -4):323 -332
Nie JS,Horton BK,Saylor JE,Mora A,Mange M,Garzione CN,Basu A,Moreno CJ,Caballero V and Parra M. 2012. Integrated provenance analysis of a convergent retroarc foreland system:U-Pb ages,heavy minerals,Nd isotopes,and sandstone compositions of the Middle Magdalena Valley basin,northern Andes,Colombia.Earth-Science Reviews,110(1 -4):111 -126
Shanmugam G and Moiola RJ. 1988. Submarine fans:Characteristics,models, classification, and reservoir potential. Earth-Science Reviews,24(6):383 -428
Sinha AK. 1989. Geology of the Higher Central Himalaya. New York:Wiley,219
Vavra G,Gebauer D,Schmid R and Compston W. 1996. Multiple zircon growth and recrystallization during polyphase Late Carboniferous to Triassic metamorphism in granulites of the Ivrea Zone (Southern Alps):An ion microprobe (SHRIMP)study. Contributions to Mineralogy and Petrology,122(4):337 -358
Vavra G,Schmid R and Gebauer D. 1999. Internal morphology,habit and U-Th-Pb microanalysis of amphibolite-to-granulite facies zircons:Geochronology of the Ivrea Zone (Southern Alps). Contributions to Mineralogy and Petrology,134(4):380 -404
Wan XQ,Zhao WJ and Li GB. 2000. Restudy of the Upper Cretaceous in Gamba,Tibet. Geoscience,14(3):281 -285 (in Chinese with English abstract)
Wan XQ and Ding L. 2002. Discovery of the Latest Cretaceous planktonic foraminifera from Gyirong of southern Tibet and its chronostratigraphic significance. Acta Palaeontologica Sinica,41(1):89 -95 (in Chinese with English abstract)
Wan XQ,Lamolda MA,Si JL and Li GB. 2005. Foraminiferal stratigraphy of Late Cretaceous red beds in southern Tibet.Cretaceous Research,26(1):43 -48
Wang CS,Li XH,Wan XQ and Tao R. 2000. The Cretaceous in Gyangze,southern Xizang (Tibet):Redefined. Acta Geologica Sinica,74 (2):97 -107 (in Chinese with English abstract)
Wang CS and Li XH. 2003. Sedimentary Basin:From Principles to Analyses. Beijing:China Higher Education Press,86 - 111 (in Chinese with English abstract)
Wang CS,Li XH,Liu ZF,Li YL,Jansa L,Dai JG and Wei YS. 2012.Revision of the Cretaceous-Paleogene stratigraphic framework,facies architecture and provenance of the Xigaze forearc basin along the Yarlung Zangbo suture zone. Gondwana Research,22(2):415-433
Weislogel AL,Graham SA,Chang EZ,Wooden JL,Gehrels GE and Yang H. 2006. Detrital zircon provenance of the Late Triassic Songpan-Ganzi complex:Sedimentary record of collision of the North and South China blocks. Geology,34(2):97 -100
Weltje GJ and Von Eynatten H. 2004. Quantitative provenance analysis of sediments:Review and outlook. Sedimentary Geology,171(1 -4):1 -11
Willems H,Zhou Z,Zhang B and Gr?fe KU. 1996. Stratigraphy of the Upper Cretaceous and Lower Tertiary strata in the Tethyan Himalayas of Tibet (Tingri area,China). Geologische Rundschau,85(4):723 -754
Yang JH,Wu FY,Shao JA,Wilde SA,Xie LW and Liu XM. 2006.Constraints on the timing of uplift of the Yanshan Fold and Thrust Belt,North China. Earth and Planetary Science Letters,246(3 -4):336 -352
Yin A and Harrison TM. 2000. Geologic evolution of the Himalayan-Tibetan orogen. Annual Review of Earth and Planetary Sciences,28(1):211 -280
Yin A. 2006. Cenozoic tectonic evolution of the Himalayan orogen as constrained by along-strike variation of structural geometry,exhumation history, and foreland sedimentation. Earth-Science Reviews,76(1 -2):1 -131
Yuan HL,Gao S,Liu XM,Li HM,Günther D and Wu FY. 2004.Accurate U-Pb age and trace element determinations of zircon by laser ablation-inductively coupled plasma-mass spectrometry.Geostandards and Geoanalytical Research,28(3):353 -370
Zhu DC,Pan GT,Mo XX,Liao ZL,Jiang XS,Wang LQ and Zhao ZD.2007. Petrogenesis of volcanic rocks in the Sangxiu Formation,central segment of Tethyan Himalaya:A probable example of plumelithosphere interaction. Journal of Asian Earth Sciences,29(2 -3):320 -335
Zhu DC,Mo XX,Wang LQ,Zhao ZD and Liao ZL. 2008. Hotspot-ridge interaction for the evolution of Neo-Tethys:Insights from the Late Jurassic-Early Cretaceous magmatism in southern Tibet. Acta Petrologica Sinica,24(2):225 - 237 (in Chinese with English abstract)
Zhu DC,Zhao ZD,Niu Y,Dilek Y and Mo XX. 2011. Lhasa terrane in southern Tibet came from Australia. Geology,39(8):727 -730
附中文參考文獻(xiàn)
陳蕾,胡修棉,黃志誠(chéng). 2007. 藏南早白堊世火山巖屑砂巖對(duì)印度大陸北緣火山事件的約束. 地質(zhì)學(xué)報(bào),81(4):501 -510
陳曦,王成善,胡修棉,黃永建,魏玉帥,王平康. 2008. 西藏南部江孜盆地上侏羅統(tǒng)至古近系沉積巖石學(xué)特征與盆地演化. 巖石學(xué)報(bào),24(3):616 -624
李祥輝,曾慶高,王成善. 2003. 西藏南部郎杰學(xué)群碎屑物質(zhì)來源的古水流證據(jù). 地質(zhì)論評(píng),49(2):132 -137
萬(wàn)曉樵,趙文金,李國(guó)彪. 2000. 對(duì)西藏崗巴上白堊統(tǒng)的新認(rèn)識(shí). 現(xiàn)代地質(zhì),14(3):281 -285
萬(wàn)曉樵,丁林. 2002. 西藏吉隆白堊紀(jì)末期浮游有孔蟲的發(fā)現(xiàn)及其年代意義. 古生物學(xué)報(bào),41(1):89 -95
王成善,李祥輝,萬(wàn)曉樵,陶然. 2000. 西藏南部江孜地區(qū)白堊系的厘定. 地質(zhì)學(xué)報(bào),74(2):97 -107
王成善,李祥輝. 2003. 沉積盆地分析原理與方法. 北京:高等教育出版社,86 -111
朱弟成,莫宣學(xué),王立全,趙志丹,廖忠禮. 2008. 新特提斯演化的熱點(diǎn)與洋脊相互作用:西藏南部晚侏羅世-早白堊世巖漿作用推論. 巖石學(xué)報(bào),24(2):225 -237