王智琳 許德如 MONIKA Agnieszka Kusiak 吳傳軍 于亮亮
WANG ZhiLin1,2,XU DeRu2**,MONIKA Agnieszka Kusiak3,WU ChuanJun2,4 and YU LiangLiang2,4
1. 中南大學(xué)地球科學(xué)與信息物理學(xué)院,有色金屬成礦預(yù)測(cè)教育部重點(diǎn)實(shí)驗(yàn)室,長沙 410083
2. 中國科學(xué)院廣州地球化學(xué)研究所,中國科學(xué)院礦物學(xué)與成礦學(xué)重點(diǎn)實(shí)驗(yàn)室,廣州 510640
3. Institute of Geological Sciences,Polish Academy of Sciences,00-818 Warszawa,Poland
4. 中國科學(xué)院大學(xué),北京 100049
1. MOE Key Laboratory of Metallogenic Prediction of Nonferrous Metals,School of Geosciences and Info-Physics,Central South University,Changsha 410083,China
2. CAS Key Laboratory of Mineralogy and Metallogeny,Guangzhou Institute of Geochemistry,Chinese Academy of Sciences,Guangzhou 510640,China
3. Institute of Geological Sciences,Polish Academy of Sciences,00-818 Warszawa,Poland
4. University of Chinese Academy of Sciences,Beijing 100049,China
2014-02-17 收稿,2014-04-04 改回.
獨(dú)居石[(LREE,Th)PO4]是變質(zhì)巖中常見的副礦物,可形成于進(jìn)變質(zhì)和退變質(zhì)過程各個(gè)階段(Finger et al.,1998;王汝成等,2006;Williams et al.,2007;Zhu et al.,1997a,b)。該礦物以富輕稀土為特征,具有高的U、Th 和低的普通鉛含量,因而被廣泛用于Th-U-Pb 定年,以重塑(多相)變質(zhì)地體的構(gòu)造歷史、造山過程及變質(zhì)或熱液交代事件(Lanzirotti and Hanson,1996;Suzuki and Adachi,1998;Chen et al.,2006,2011;王汝成等,2006;Williams et al.,2007)。電子探針Th-U-Pb 化學(xué)定年(即CHIME 法:Suzuki et al.,1991;Montel et al.,1996)具有高空間分辨率(分析束斑<5μm),通過該方法可獲得與不同熱-構(gòu)造變質(zhì)事件對(duì)應(yīng)的成分均勻區(qū)域的化學(xué)年齡。結(jié)合其原位分析的優(yōu)勢(shì),可合理地解釋年齡結(jié)果所代表的地質(zhì)意義(劉樹文等,2004)。
海南島位于歐亞板塊、太平洋板塊和印度-澳大利亞板塊結(jié)合部位,這一獨(dú)特的大地構(gòu)造位置使其成為研究華南及其與特提斯洋的演化和岡瓦納大陸,以及Rodinia 超大陸聚合和裂解的理想對(duì)象(Li et al.,2002a,b,2008a,b;Metcalfe,1996;Xu et al.,2007)。國內(nèi)不同科研和生產(chǎn)部門先后在海南島開展了大量的基礎(chǔ)地質(zhì)研究和找礦工作,并取得了一系列進(jìn)展(侯威等,1996;汪嘯風(fēng)等,1991a,b,c;許德如等,2003;張業(yè)明等,1998;中國科學(xué)院華南富鐵科學(xué)研究隊(duì),1986)。然而,由于植被覆蓋廣,露頭條件差,且構(gòu)造和巖漿活動(dòng)強(qiáng)烈,島內(nèi)地層多遭受嚴(yán)重破壞和強(qiáng)烈變形變質(zhì),相關(guān)構(gòu)造運(yùn)動(dòng)及其性質(zhì)的研究程度低,特別是加里東運(yùn)動(dòng)(或稱為廣西運(yùn)動(dòng))在海南島是否存在及其響應(yīng)特征這一重要基礎(chǔ)地質(zhì)問題還存在爭議,如:海南島是否存在泥盆系地層、是否有加里東期花崗巖(付建明和趙子杰,1997;汪嘯風(fēng)等,1991a,b,c;張業(yè)明等,1998;Zhang et al.,2001)。此外,關(guān)于海南島重要的礦產(chǎn)資源——石碌鐵礦的成礦時(shí)代也存在著不同的認(rèn)識(shí),或根據(jù)生物群化石和鐵礦石的Sm-Nd同位素年齡認(rèn)為沉積鐵礦形成于青白口紀(jì)(Zhang et al.,1990;張仁杰等,1992),或根據(jù)構(gòu)造變形、變質(zhì)作用以及巖漿熱液活動(dòng)特征認(rèn)為成礦作用過程具有多階段性(Xu et al.,2013;陳國達(dá)等,1977;侯威等,1996,2007;許德如等,2009;張業(yè)明等,1998),而鐵礦的富集被認(rèn)為與石碌群的褶皺變形及伴隨的剪切和高溫塑性流動(dòng)有著密切關(guān)系(Xu et al.,2013),但關(guān)于各階段的成礦時(shí)間一直缺乏直接的同位素年代學(xué)證據(jù)。因此石碌鐵礦床的成礦時(shí)代急需有效的同位素年代學(xué)制約。本文在對(duì)石碌鐵礦的近礦圍巖、即石碌第六層透輝石透閃石巖中獨(dú)居石進(jìn)行顯微結(jié)構(gòu)觀察的基礎(chǔ)上,開展了CHIME 化學(xué)定年,目的在于獲得近礦圍巖的變形變質(zhì)年齡,不僅為深入研究石碌群構(gòu)造變形的動(dòng)力學(xué)機(jī)制、而且為進(jìn)一步探索華南加里東運(yùn)動(dòng)在海南島的可能響應(yīng)及華南(包括海南島)在岡瓦納聚合過程中的可能位置提供年代學(xué)證據(jù)。
圖1 海南島區(qū)域地質(zhì)和礦產(chǎn)簡圖(據(jù)Xu et al.,2013 修改)Fig.1 Simplified regional geological and mineral resource map of Hainan Island (modified after Xu et al.,2013)
海南島以瓊州海峽與華南大陸相隔,是我國東南陸緣海域中最大的島嶼,該特殊的大地構(gòu)造位置使其受太平洋和特提斯兩大構(gòu)造域的聯(lián)合控制,因而具有復(fù)雜的地質(zhì)構(gòu)造演化歷史。海南島構(gòu)造形跡多樣,主要呈近東西向和北東向,其次為北西向(圖1),這些構(gòu)造形跡控制了海南島不同時(shí)期的沉積建造、變質(zhì)建造、巖漿建造和成礦作用事件。除泥盆系和侏羅系地層尚無可靠證據(jù)外,海南島地層發(fā)育較全,主要出露有古生界地層,其次是元古宇和中新生界。其中元古宇地層主要出露于海南島西部,包括中元古界抱板群(約1800~1450Ma)和中-新元古界石碌群及上覆的震旦系石灰頂組(Xu et al.,2013)。海西-印支期(270 ~190Ma)和燕山期花崗巖(130 ~90Ma)是島內(nèi)主要的巖漿類型(Li et al.,2006;葛小月,2003),出露面積約占全島的60%。不同時(shí)代的噴出巖在海南島均有出現(xiàn),占全島面積的13% (汪嘯風(fēng)等,1991a,b,c),時(shí)代以中、新生代為主,主要分布于瓊北和島南地區(qū)(圖1)。
石碌鐵礦位于近EW 向昌江-瓊海深大斷裂和NE 向戈枕韌-脆性斷裂交匯部位的東南側(cè)(圖1b)。礦區(qū)內(nèi)主要控礦構(gòu)造為一軸向北西-南東向的復(fù)式向斜(圖2),該復(fù)式向斜向西揚(yáng)起、收斂,向東南傾伏開闊,自北而南,依次由北一向斜、紅房山背斜和石灰頂向斜等次級(jí)褶皺組成,鐵礦體、鈷銅礦體多賦存在該復(fù)式向斜槽部及兩翼向槽部過渡的部位。礦區(qū)出露的地層主要有中-新元古界石碌群、震旦系石灰頂組、石炭系南好組-青天峽組、二疊系峨查組-峨頂組和南龍組。其中,石碌群是鐵、鈷銅礦的主要賦礦地層,系一套以綠片巖相變質(zhì)為主(局部達(dá)角閃巖相)的淺海、淺海-瀉湖相的(火山?)碎屑沉積巖和碳酸鹽巖建造。自下而上可分為六層:第一、三、四、五層主要由石英云母片巖、云母石英片巖、石英巖和千枚巖等組成;第二層主要由結(jié)晶白云巖、透輝石透閃石化的白云巖、白云質(zhì)灰?guī)r等組成。第六層是鐵、鈷銅礦的主要賦礦層位,可分為三段:上段主要由白云巖、含泥質(zhì)或炭質(zhì)白云巖、灰?guī)r及白云質(zhì)灰?guī)r組成,夾炭質(zhì)板巖或千枚巖,含Chuaria-Tawuia(宏觀藻類)化石(Zhang et al.,1990),殘余沉積結(jié)構(gòu)發(fā)育;中段是含鐵的主要層位,由條帶狀透輝石透閃石巖、含石榴子石眼球或條帶的透輝石透閃石巖、條帶狀白云巖及鐵質(zhì)千枚巖或鐵質(zhì)砂巖組成,局部夾重晶石、石膏和碧玉層,該段夾多層赤鐵礦礦層;下段是重要的含鈷銅礦層位,以條帶狀白云巖、白云巖和條帶狀透輝石透閃石巖為主,夾硅質(zhì)巖、石英絹云母片巖等。礦區(qū)及周緣侵入巖發(fā)育,主要為印支-燕山期花崗巖(葛小月,2003;侯威等,1996)。礦區(qū)內(nèi)尚發(fā)育有花崗斑巖、閃長玢巖、煌斑巖、輝綠巖等燕山晚期巖脈(侯威等,1996;王智琳等,2011)。
圖2 海南石碌鐵礦礦區(qū)地質(zhì)簡圖(據(jù)Xu et al.,2013 修改)Fig.2 Simplified geological map of the Shilu iron ore mining,Hainan Island (modified after Xu et al.,2013)
所分析的透輝石透閃石巖樣品F8-7 采自石碌礦區(qū)北一鈷銅礦段,是鈷銅礦體的直接賦礦圍巖。巖石呈灰白色-灰綠色,主要由透閃石、陽起石、透輝石、鉀長石、石英、黑云母及少量的綠簾石等組成,副礦物有磷灰石、榍石、鋯石、獨(dú)居石等。巖石結(jié)構(gòu)以粒狀變晶結(jié)構(gòu)、纖狀變晶結(jié)構(gòu)、鱗片變晶結(jié)構(gòu)為主,構(gòu)造以由互層的鉀長石+石英、透輝石±透閃石和/或透閃石+陽起石+鉀長石組成的條紋條帶狀構(gòu)造為特征(圖3a,b)。
獨(dú)居石主要以包裹體的形式產(chǎn)出在變質(zhì)礦物如鉀長石、黑云母中(圖4),粒徑約10 ~30μm,多為長條形或米粒狀,少量獨(dú)居石顆粒呈不規(guī)則狀,甚至為不連續(xù)的碎片(見后文)。由BSE 圖像可知,少量獨(dú)居石具有成分不均一區(qū),這可能與Th 的含量變化(Janots et al.,2012)。巖相學(xué)觀察發(fā)現(xiàn)部分獨(dú)居石顯示典型的分解球冠結(jié)構(gòu)(monazite breakdown coronas),即圍繞獨(dú)居石組成的核依次出現(xiàn)磷灰石、褐簾石、綠簾石礦物集合體同心環(huán)帶(圖4c-f)。磷灰石除普遍圍繞獨(dú)居石呈集合體環(huán)帶分布外,部分磷灰石中還可見亮的釷石斑點(diǎn)(圖4e)。磷灰石和獨(dú)居石的接觸界線多為港灣狀,但若獨(dú)居石裂隙或解理發(fā)育,則磷灰石優(yōu)先沿裂隙或解理面分布(圖4e),使得獨(dú)居石被交代呈不規(guī)則狀、乃至碎片狀。此外,還可見少量獨(dú)居石呈殘留點(diǎn)狀分布在磷灰石核部,這些現(xiàn)象均說明磷灰石是直接交代獨(dú)居石形成的。褐簾石多呈他形,其邊緣往往呈釘狀或葉狀凸向綠簾石。球冠結(jié)構(gòu)最邊部的綠簾石往往呈半自形-他形,其分布范圍明顯大于褐簾石。該球冠結(jié)構(gòu)可能與獨(dú)居石的分解反應(yīng)有關(guān)(Finger et al.,1998)。
圖3 海南石碌礦區(qū)條帶狀透輝石透閃石巖的顯微組構(gòu)特征(a)由互層的鉀長石+石英與透閃石+陽起石+鉀長石組成的條紋條帶狀構(gòu)造,正交偏光;(b)粒狀變晶結(jié)構(gòu)的透輝石集合體組成的條帶與透閃石+陽起石+鉀長石組成的條帶互層,正交偏光. Kfs-鉀長石;Q-石英;Tre-透閃石;Act-陽起石;Dio-透輝石Fig.3 Microstructure of the banded diopside-tremolite rock in the Shilu mining area,Hainan Island(a)the banded structure composed by K-feldspar + quartz alternating with tremolite + actinolite + K-feldspar,doubly polarized light;(b)microbanding of aggregates of diopside with granoblastic texture and tremolite+actinolite+K-feldspar laminae,doubly polarized light. Kfs-K-feldspar;Q-quartz;Tre-tremolite;Act-actinolite;Dio-diopside
獨(dú)居石CHIME 化學(xué)定年采取在拋光良好的薄片上直接測(cè)定的方法。由于具放射性,獨(dú)居石會(huì)在寄主礦物中形成放射性暈圈,由此可在薄片中快速找到獨(dú)居石,也可根據(jù)獨(dú)居石在電子探針背散射圖像中為高亮白色來尋找。本文利用高對(duì)比度的背散射圖像和X 射線圖像,選擇顆粒較大且表面平整、沒有裂隙和包體的的獨(dú)居石核部位置進(jìn)行測(cè)點(diǎn)分析。測(cè)試分析是在斯洛伐克首都布拉迪斯拉法State Geological Institute of Dionyz Stur 電子探針實(shí)驗(yàn)室完成,儀器為Cameca SX-100 電子探針,裝有四通道波譜儀和KEVEX 能譜儀。實(shí)驗(yàn)條件為:加速電壓15kV,電流180nA,電子束直徑2 ~3μm,相關(guān)元素分析所采用的計(jì)數(shù)時(shí)間、標(biāo)樣和檢測(cè)限等條件見表1。具體實(shí)驗(yàn)分析方法、數(shù)據(jù)處理和校正及年齡計(jì)算見(Petrík and Konecˇny,2009)。
樣品F8-7 共分析了17 個(gè)獨(dú)居石顆粒,測(cè)點(diǎn)數(shù)23 個(gè),結(jié)果見表2。由表2 可知,La、Ce、Nd 占總陽離子數(shù)(除P、Si、S外)的66% ~89%,獨(dú)居石的成分主要為Ce-La-Nd 磷酸鹽[(Ce,La,Nd,Th)PO4]。樣品中ThO2含量變化范圍為0.78% ~4.61%,UO2變化范圍為0.01% ~0.05%,CaO 變化范圍為0.28% ~4.87%,PbO 變化范圍為0.01% ~0.08%。其中,ThO2含量明顯高于低綠片巖相-低角閃巖相變質(zhì)巖中的熱液獨(dú)居石(0% ~1%,大部分<0.1%),又區(qū)別于巖漿成因的獨(dú)居石(3% ~5%;Schandl and Gorton,2004),而與西格陵蘭Isua 表殼巖帶的片巖和片麻巖中的獨(dú)居石ThO2含量比較接近(約1% ~5%),暗示了其變質(zhì)成因。由分析結(jié)果可知:除測(cè)點(diǎn)3 外,其余獨(dú)居石中的Ca、Si、Ca+Si 陽離子數(shù)均與Th+U 陽離子數(shù)變化呈良好的正相關(guān)性(圖5a-c),相應(yīng)的替代關(guān)系為:Th4+/U4++ Ca2+=2REE3+、Th4+/U4++Si4+=REE3++P5+(Zhu and O’Nions,1999b)。測(cè)點(diǎn)3 明顯高的Ca 和Si 陽離子數(shù)(Ca+Si=2.28,基于24 氧原子)可能與其呈碎片狀有關(guān)(圖5a0-c0),在電子探針分析過程中易于擊穿從而測(cè)到了少量鈣硅酸鹽礦物的成分,但也可能與獨(dú)居石中的微細(xì)包裹體有關(guān)。獨(dú)居石以富釷獨(dú)居石(cheralite)組分為主(圖5d)。
表1 獨(dú)居石電子探針分析的實(shí)驗(yàn)條件Table 1 The analytical conditions of electron microprobe for monazite
)(wt%果結(jié)析分分成學(xué)化針探子電的石居獨(dú)2 表)(wt%Thechemicalcomposition formonazitesbyEPMA Table2 17/2 17/1 16 15/3 15/2 15/1 14/2 14/1 13 12/2 12/1 11 10 9 8 7/2 7/1 6 5 4 3 2 1點(diǎn)測(cè)0.67 0.57 0.30 0.37 0.26 0.36 0.29 0.58 0.29 0.40 0.34 0.20 0.37 0.27 0.10 0.17 0.23 0.43 0.62 0.47 0.25 0.36 0.48 SO3 28.55 28.87 28.94 28.38 28.87 28.97 27.81 28.57 28.22 28.44 28.95 28.75 28.87 29.05 29.21 29.08 29.61 29.03 29.62 29.49 26.21 30.23 28.11 O5 P2 0.16 0.18 0.16 0.18 0.15 0.15 0.21 0.17 0.19 0.17 0.14 0.16 0.14 0.15 0.13 0.16 0.15 0.21 0.19 0.16 0.15 0.17 0.16 O5 As2 0.14 0.33 0.26 0.30 0.20 0.15 0.85 0.19 0.53 0.41 0.24 0.33 0.21 0.35 0.40 0.48 0.20 0.38 0.27 0.30 5.08 0.35 0.46 SiO2 1.24 4.05 2.05 2.19 1.21 0.92 4.61 0.92 4.37 3.98 1.23 2.77 1.60 2.58 1.57 3.04 0.78 2.21 2.28 2.74 1.35 1.65 2.05 ThO2 0.02 0.03 0.04 0.02 0.01 0.01 0.03 0.01 0.03 0.02 0.02 0.05 0.03 0.05 0.04 0.03 0.02 0.02 0.02 0.02 0.04 0.04 0.02 UO2 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.03 0.02 0.06 0.01 0.00 0.00 1.74 0.01 0.09 O3 Al2 0.28 0.53 0.42 0.49 0.39 0.41 0.43 0.35 0.52 0.56 0.26 0.37 0.34 0.49 0.29 0.36 0.19 0.75 0.88 0.50 0.22 0.57 0.39 O3 Y2 15.88 7.42 17.01 13.01 16.69 17.73 6.73 11.59 7.56 9.41 16.49 15.48 15.88 14.68 18.47 14.53 21.77 6.68 6.03 10.71 12.88 8.91 13.18 O3 La2 28.26 33.50 32.35 32.13 33.11 32.64 24.77 33.13 28.07 30.09 33.28 32.21 32.64 32.31 32.70 32.34 32.66 26.25 25.23 31.64 30.71 28.58 32.18 O3 Ce2 3.49 4.18 3.36 3.66 3.42 3.38 4.10 4.06 4.08 4.07 3.42 3.47 3.42 3.52 3.26 3.54 2.98 4.34 4.24 4.08 3.13 4.11 3.63 O3 Pr2 18.25 11.79 11.55 13.80 11.91 11.62 20.60 15.27 17.50 16.12 11.55 12.25 12.33 12.65 11.09 12.61 9.57 21.51 21.17 15.56 10.13 18.38 13.36 O3 Nd2 1.42 3.46 1.27 1.90 1.45 1.35 4.66 2.19 3.26 2.72 1.43 1.50 1.68 1.60 1.37 1.64 1.03 5.26 5.21 2.38 1.24 3.65 1.87 O3 Sm2 0.20 0.36 0.19 0.31 0.18 0.17 0.41 0.24 0.38 0.38 0.22 0.21 0.22 0.18 0.18 0.24 0.16 0.52 0.67 0.31 0.19 0.49 0.20 O3 Eu2 0.41 1.41 0.46 0.77 0.47 0.49 1.60 0.86 1.43 1.27 0.46 0.61 0.62 0.71 0.54 0.66 0.19 2.19 2.54 1.10 0.00 1.94 0.85 O3 Gd2 0.02 0.05 0.02 0.05 0.03 0.03 0.05 0.03 0.06 0.10 0.08 0.05 0.04 0.06 0.02 0.01 0.00 0.03 0.07 0.05 0.03 0.12 0.03 O3 Tb2 0.13 0.31 0.21 0.25 0.17 0.21 0.28 0.19 0.28 0.25 0.15 0.23 0.16 0.29 0.16 0.14 0.09 0.40 0.45 0.22 0.08 0.34 0.19 O3 Dy2 0.02 0.03 0.00 0.00 0.03 0.00 0.04 0.05 0.01 0.03 0.00 0.00 0.00 0.01 0.00 0.00 0.01 0.02 0.03 0.00 0.00 0.00 0.00 O3 Ho2 0.33 0.27 0.33 0.34 0.34 0.31 0.36 0.26 0.34 0.33 0.33 0.27 0.31 0.30 0.34 0.31 0.31 0.31 0.30 0.33 0.32 0.28 0.24 O3 Er2 0.03 0.07 0.04 0.07 0.06 0.05 0.06 0.06 0.05 0.09 0.06 0.07 0.03 0.08 0.07 0.06 0.06 0.08 0.15 0.00 0.00 0.00 0.04 O3 Tm2 0.11 0.06 0.09 0.11 0.09 0.13 0.09 0.13 0.14 0.11 0.11 0.11 0.12 0.11 0.10 0.10 0.11 0.13 0.11 0.06 0.13 0.18 0.09 O3 Yb2 0.06 0.11 0.06 0.10 0.05 0.11 0.10 0.09 0.12 0.10 0.17 0.25 0.05 0.08 0.10 0.11 0.17 0.11 0.07 0.10 0.04 0.10 0.13 O3 Lu2 0.86 1.23 0.64 0.90 0.58 0.59 1.58 0.73 1.19 1.14 0.79 1.51 0.67 0.80 0.28 0.76 0.50 1.16 1.23 1.06 4.87 0.97 0.93 CaO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.63 0.00 0.00 FeO 0.10 0.06 0.05 0.02 0.04 0.05 0.04 0.05 0.04 0.08 0.04 0.03 0.06 0.04 0.04 0.05 0.04 0.05 0.08 0.05 0.05 0.08 0.07 SrO 0.03 0.08 0.04 0.04 0.03 0.02 0.06 0.01 0.08 0.07 0.02 0.05 0.03 0.05 0.03 0.06 0.02 0.04 0.04 0.05 0.03 0.04 0.03 PbO 99.83 99.76 99.88 99.38 99.75 99.83 99.77 99.73 .77 100.35 98.76 98.79 101.53 99.48 101.39 101.49 102.11 100.92 100.50 100.52 100.40 99.82 100.94 99 Total
2表續(xù)C ontinued Table2 17/2 17/1 16 15/3 15/2 15/1 14/2 14/1 13 12/2 12/1 11 10 9 8 7/2 7/1 6 5 4 3 2 1點(diǎn)測(cè)子原氧24 個(gè)于:基數(shù)子離陽0.101 0.119 0.053 0.066 0.046 0.064 0.053 0.103 0.052 0.072 0.061 0.035 0.066 0.048 0.018 0.031 0.041 0.075 0.108 0.081 0.041 0.061 0.087 S 5.741 5.770 5.806 5.749 5.813 5.813 5.641 5.749 5.749 5.721 5.805 5.741 5.801 5.801 5.835 5.803 5.854 5.730 5.803 5.801 4.923 5.886 5.705 P 0.022 0.019 0.020 0.022 0.019 0.018 0.027 0.021 0.024 0.021 0.018 0.020 0.018 0.018 0.017 0.019 0.018 0.025 0.023 0.020 0.017 0.021 0.020 As 0.080 0.034 0.062 0.071 0.048 0.035 0.204 0.046 0.127 0.097 0.056 0.077 0.050 0.083 0.094 0.113 0.047 0.088 0.062 0.070 1.126 0.080 0.109 Si 0.219 0.067 0.110 0.119 0.066 0.049 0.251 0.050 0.239 0.215 0.066 0.149 0.086 0.139 0.084 0.163 0.042 0.117 0.120 0.145 0.068 0.086 0.112 Th 0.002 0.001 0.002 0.001 0.000 0.000 0.002 0.001 0.002 0.001 0.001 0.003 0.002 0.002 0.002 0.001 0.001 0.001 0.001 0.001 0.002 0.002 0.001 U 0.001 0.000 0.010 0.000 0.000 0.000 0.000 0.000 0.009 0.000 0.001 0.001 0.000 0.001 0.009 0.007 0.017 0.004 0.000 0.000 0.455 0.002 0.026 Al 0.066 0.035 0.053 0.063 0.049 0.052 0.054 0.044 0.067 0.070 0.033 0.047 0.043 0.062 0.037 0.046 0.024 0.093 0.108 0.062 0.026 0.069 0.050 Y 0.651 1.383 1.487 1.148 1.464 1.550 0.595 1.016 0.671 0.824 1.441 1.347 1.390 1.277 1.607 1.263 1.875 0.574 0.515 0.918 1.054 0.756 1.166 La 2.457 2.895 2.807 2.815 2.883 2.832 2.173 2.883 2.473 2.617 2.887 2.782 2.836 2.790 2.825 2.791 2.792 2.240 2.138 2.692 2.494 2.407 2.825 Ce 0.362 0.300 0.290 0.319 0.296 0.292 0.358 0.352 0.358 0.353 0.296 0.298 0.296 0.303 0.281 0.304 0.254 0.369 0.358 0.346 0.253 0.344 0.318 Pr 1.548 0.994 0.978 1.179 1.011 0.984 1.763 1.296 1.504 1.368 0.977 1.032 1.045 1.066 0.935 1.062 0.798 1.791 1.750 1.292 0.803 1.510 1.144 Nd 0.283 0.115 0.104 0.157 0.119 0.110 0.386 0.179 0.271 0.223 0.117 0.122 0.138 0.130 0.112 0.133 0.083 0.423 0.416 0.191 0.095 0.290 0.155 Sm 0.029 0.016 0.015 0.025 0.015 0.014 0.034 0.019 0.031 0.031 0.018 0.017 0.018 0.015 0.015 0.019 0.012 0.041 0.053 0.024 0.015 0.038 0.016 Eu 0.111 0.032 0.036 0.061 0.037 0.038 0.127 0.068 0.114 0.100 0.036 0.048 0.049 0.055 0.042 0.051 0.015 0.169 0.195 0.085 0.000 0.148 0.067 Gd 0.004 0.001 0.001 0.004 0.002 0.002 0.004 0.003 0.005 0.008 0.006 0.004 0.003 0.004 0.001 0.001 0.000 0.003 0.005 0.004 0.002 0.009 0.003 Tb 0.024 0.010 0.016 0.020 0.013 0.016 0.022 0.015 0.021 0.019 0.011 0.017 0.012 0.022 0.012 0.010 0.007 0.030 0.034 0.017 0.005 0.025 0.015 Dy 0.002 0.001 0.000 0.000 0.002 0.000 0.003 0.004 0.000 0.002 0.000 0.000 0.000 0.001 0.000 0.000 0.001 0.001 0.002 0.000 0.000 0.000 0.000 Ho 0.020 0.024 0.025 0.026 0.025 0.023 0.027 0.019 0.026 0.024 0.025 0.020 0.023 0.022 0.025 0.023 0.023 0.023 0.022 0.024 0.022 0.020 0.018 Er 0.005 0.002 0.003 0.006 0.004 0.004 0.004 0.005 0.003 0.006 0.004 0.005 0.002 0.006 0.005 0.005 0.004 0.005 0.010 0.000 0.000 0.000 0.003 Tm 0.004 0.008 0.007 0.008 0.007 0.009 0.006 0.010 0.010 0.008 0.008 0.008 0.009 0.008 0.007 0.007 0.008 0.010 0.008 0.004 0.009 0.013 0.007 Yb 0.008 0.004 0.004 0.007 0.003 0.008 0.007 0.007 0.009 0.007 0.012 0.018 0.004 0.005 0.007 0.008 0.012 0.008 0.005 0.007 0.003 0.007 0.009 Lu 0.312 0.218 0.161 0.230 0.148 0.151 0.406 0.186 0.307 0.290 0.200 0.380 0.169 0.201 0.072 0.192 0.124 0.289 0.306 0.263 1.157 0.240 0.239 Ca 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.117 0.000 0.000 Fe 0.008 0.014 0.007 0.003 0.006 0.007 0.005 0.007 0.006 0.011 0.006 0.004 0.008 0.005 0.006 0.007 0.005 0.007 0.010 0.007 0.007 0.011 0.009 Sr 0.005 0.002 0.003 0.002 0.002 0.001 0.004 0.001 0.005 0.005 0.001 0.003 0.002 0.003 0.002 0.004 0.001 0.002 0.002 0.003 0.002 0.002 0.002 Pb 12.07 12.07 12.06 12.10 12.08 12.07 12.16 12.08 .08 12 12.10 12.09 12.18 12.07 12.07 12.05 12.06 12.06 12.12 12.05 12.06 12.69 12.03 12.11 Total
圖4 電子探針背散射圖像下的獨(dú)居石顯微特征(a、b)產(chǎn)出在鉀長石+石英條帶中的獨(dú)居石顆粒;(c-f)從邊部到核部依次由綠簾石、褐簾石和磷灰石礦物環(huán)帶組成的獨(dú)居石球冠結(jié)構(gòu). Bt-黑云母;Mnz-獨(dú)居石;Ap-磷灰石;Aln-褐簾石;Ep-綠簾石Fig.4 The microscopic characteristics of monazites in back-scatter electron images(a,b)monazite grains in microbanding composed of K-feldspar +quartz;(c-f)monazite breakdown coronas comprising mineral zones of epidote,allanite and apatite successively from rim to core. Bt-biotite;Mnz-monazite;Ap-apatite;Aln-allanite;Ep-epidote
圖5 獨(dú)居石中組分替代圖解(a-c)Ca、Si、Ca+Si 陽離子數(shù)與Th+U 陽離子數(shù)的相關(guān)性圖解,圖(a-c)分別為圖(a0-c0)中橢圓范圍內(nèi)投點(diǎn)的局部放大;(d)Th +U +Si vs. REE+Y+P 圖解Fig.5 Plots of monazite composition showing chemical replacement(a-c)plots of Ca,Si and Ca+Si vs. Th+U cations. (a-c)do not include dot 3 which is present in (a0-c0);(d)plot of Th+U+Si vs. REE+Y+P
圖6 獨(dú)居石單礦物和透輝石透閃石巖全巖的稀土配分曲線圖全巖稀土數(shù)據(jù)來自于Xu et al. (2014a),球粒隕石數(shù)據(jù)來自于Sun and McDonough (1989)Fig.6 The chondrite-normalized REE distribution patterns of monazites and its host rock,diopside-tremolite rockData for host rock from Xu et al. (2014a),data for chondrite from Sun and McDonough (1989)
獨(dú)居石中稀土含量變化范圍為50% ~59%,明顯高于其賦存巖石的全巖稀土含量(130 ×10-6;Xu et al.,2014a)。獨(dú)居石球粒隕石標(biāo)準(zhǔn)化的稀土配分形式呈輕稀土富集型((La/Yb)N=33.7 ~142)(圖6),Eu 異常較弱(δEu=0.46 ~0.82)。其中,輕稀土分異程度變化較大,(La/Sm)N值為0.74 ~13.5,可分為兩組,一組LREE 分異程度較低((La/Sm)N=0.74 ~1.56),另一組LREE 分異明顯((La/Sm)N=2.21 ~13.5),這些稀土特征與具變質(zhì)成因的獨(dú)居石特征相同(Rasmussen and Muhling,2009)。樣品的全巖稀土配分形式呈輕稀土略富集型((La/Yb)N= 7),(La/Sm)N值為2.99,具弱的Eu 負(fù)異常(δEu=0.73)(Xu et al.,2014a)。獨(dú)居石的稀土配分特征往往與圍巖及其礦物相組合有關(guān)(Zhu and O’Nions,1999a)。獨(dú)居石向上翹起的重稀土特征和全巖略平坦的重稀土特征均暗示了不存在石榴子石礦物相,兩者弱的Eu 異常也表明沒有斜長石礦物相產(chǎn)出,這與樣品中的礦物組合特征一致。
圖7 獨(dú)居石的電子背散射圖像及分析點(diǎn)的表面年齡結(jié)果Fig. 7 The back-scatter electron images for monazites marked by the apparent ages of analysis points
獨(dú)居石的Th-U-Pb 年齡測(cè)試結(jié)果見表3 和圖7。CHIME化學(xué)定年結(jié)果表明:獨(dú)居石表觀年齡變化于614Ma 和341Ma之間。其中,分析點(diǎn)1 和14/2 的年齡值較低,分別為341Ma和386Ma,可能出現(xiàn)了鉛丟失現(xiàn)象,這與兩個(gè)分析點(diǎn)均靠近獨(dú)居石顆粒溶蝕邊界或裂隙的觀察一致(圖7)。因此,文中年齡意義探討均未考慮這兩個(gè)年齡。另外,較大的表觀年齡跨度可能與獨(dú)居石CHIME 化學(xué)定年本身精度有關(guān),如表3中部分年齡誤差可高達(dá)90Ma,但獨(dú)居石CHIME 年齡仍可提供有用的變質(zhì)事件信息。在本文獨(dú)居石的年齡分布頻譜圖中(圖8a),主峰值年齡為455Ma,還呈現(xiàn)出一個(gè)弱的564Ma年齡峰值。
表3 獨(dú)居石的Th-U-Pb 化學(xué)成分結(jié)果和表觀年齡Table 3 The Th-U-Pb contents and apparent ages of monazites
本文獨(dú)居石多呈拉長透鏡體狀,其長軸方向平行于賦存巖石的條紋條帶(S1面理)及礦物線理方向,指示了獨(dú)居石為同構(gòu)造變質(zhì)成因(Sindern et al.,2012;Williams and Jercinovic,2002),ThO2含量變化(0.78% ~4.61%)和REE分配特征,也暗示了獨(dú)居石為變質(zhì)成因。這與其賦存巖石的成因認(rèn)識(shí)一致,后者透輝石透閃石巖被認(rèn)為是在區(qū)域變質(zhì)和動(dòng)力變質(zhì)作用過程中由不純的白云巖或含泥質(zhì)的白云巖發(fā)生高達(dá)低角閃巖相變質(zhì)形成的,并疊加了后期的熱液蝕變或退變質(zhì)作用(許德如等,2009;Xu et al.,2014a)。
一般來說,由于低的擴(kuò)散系數(shù)(Gardés et al.,2006),獨(dú)居石晶格內(nèi)固態(tài)體積擴(kuò)散(solid state volume diffusion)引起的化學(xué)變化在地殼P-T 條件下可以忽略,但受高級(jí)變質(zhì)作用或巖漿長時(shí)間的影響除外(Seydoux-Guillaume et al.,2004),因此獨(dú)居石常由具不同年齡的成分區(qū)組成(William et al.,2007)。獨(dú)居石體系的封閉溫度與冷卻速率和晶粒大小有關(guān)(Copeland et al.,1988),而與成分無關(guān)(Zhu et al.,1997a,b)。對(duì)于粒徑10 ~100μm、冷卻速率20℃/Myr 的獨(dú)居石顆粒來說,其封閉溫度可高達(dá)750℃(Copeland et al.,1988)。實(shí)驗(yàn)表明在800℃或更高溫度時(shí),獨(dú)居石中U、Th、Pb 和REE等元素的擴(kuò)散遷移速率仍較低(Gardés et al.,2006),但如果有流體參與,溶解/重沉淀或重結(jié)晶過程可使該體系在低于封閉溫度條件下被完全或部分重置(Gardés et al.,2006;Williams et al.,2007;Zhu and O’Nions,1999b)。而在復(fù)雜的P-T-t 歷史中,不同的世代或成分區(qū)域往往對(duì)應(yīng)著獨(dú)居石的不同生長階段(William et al.,2007),這種不同成分區(qū)復(fù)雜的分布及其明顯的界線暗示了溶解-再沉淀(dissolutionreprecipitation)是獨(dú)居石蝕變的常見過程(Sindern et al.,2012)。文中構(gòu)成~455Ma 峰值的獨(dú)居石具有變化較大的ThO2(0.92% ~4.61%)、PbO(0.01% ~0.08%)和CaO(0.28% ~1.58%)含量范圍以及Th/U 值(24.83 ~52.86),暗示了其可能受到了變質(zhì)流體的影響,而較一致的年齡范圍暗示了U-Th-Pb 體系的重置。相關(guān)實(shí)驗(yàn)表明堿性流體可以造成獨(dú)居石蝕變區(qū)中的Pb 發(fā)生完全丟失,從而使U-Pb 體系重置(Harlov et al.,2011;Sindern et al.,2012)。另外,構(gòu)成~564Ma 峰值的獨(dú)居石具有變化較小的ThO2(0.78% ~1.65%)、PbO(0.02% ~0.04%)和CaO(0.50% ~0.97%)含量范圍以及高的Th/U 值(23.06 ~53.11)特征,暗示了其是在剪切變形早階段形成的。結(jié)合獨(dú)居石沿面理方向定向分布的產(chǎn)出特征,暗示了伴隨剪切變形過程獨(dú)居石在低角閃巖相條件下發(fā)生了溶解-再沉淀,并在堿性的變質(zhì)流體誘導(dǎo)下,引起了U-Pb 體系的局部重置,從而形成補(bǔ)丁狀成分區(qū)(patchy zonation)。具有~564Ma 和455Ma 峰值年齡的不同成分區(qū)分別對(duì)應(yīng)于剪切變形的早、晚兩個(gè)階段。
圖8 年齡分布譜圖(a)海南石碌礦區(qū)透輝石透閃石巖中的獨(dú)居石年齡分布譜圖,本文數(shù)據(jù);(b)華南加里東期巖漿作用年齡頻譜圖,數(shù)據(jù)主要來自Hu et al.(2008),Li (1994),Li et al. (2010),Liu et al. (2010),Roger et al. (2000),Wan et al. (2010),Wang et al. (2007,2011,2013),Xu et al. (2005,2011,2014b),Yan et al. (2006),Zhang et al. (2012)及其文中參考文獻(xiàn);(c)華南加里東期變質(zhì)和變形作用年齡頻譜圖,數(shù)據(jù)來自Charvet et al. (2010),F(xiàn)aure et al. (2009),Li et al. (2010),Liu et al. (2010),Wan et al. (2007,2010),Wang et al. (2007,2011,2012,2013),Xu et al. (2011),Yu et al. (2005),舒良樹等(2008)及其文中參考文獻(xiàn);(d)華南晚新元古代-古生代地層和沉積物中碎屑鋯石的年齡頻譜圖(<700Ma),數(shù)據(jù)來自Duan et al. (2011),Wang et al. (2010),Wu et al. (2010),Xu et al. (2005,2012),Yao et al.(2011),Yu et al. (2008),向磊和舒良樹(2010)及其文中參考文獻(xiàn). n=碎屑鋯石測(cè)點(diǎn)數(shù),S =樣品數(shù),所有鋯石年齡只考慮了不一致性≤10%的數(shù)據(jù)Fig.8 Accumulative probability plots(a)accumulative probability plots of monazites from diopside-tremolite rock in Shilu mining,Hainan Island,data from this text;(b)accumulative probability plots for Caledonian magmatism in South China,data from Hu et al. (2008),Li (1994),Li et al. (2010),Liu et al. (2010),Roger et al. (2000),Wan et al. (2010),Wang et al. (2007,2011,2013),Xu et al. (2005,2011,2014b),Yan et al. (2006),Zhang et al.(2012)and references therein;(c)probability plots for Caledonian metamorphism and deformation in South China,data from Charvet et al.(2010),F(xiàn)aure et al. (2009),Li et al. (2010),Liu et al. (2010),Wan et al. (2007,2010),Wang et al. (2007,2011,2012,2013),Xu et al. (2011),Yu et al. (2005),Shu et al. (2008)and references therein;(d)probability plots for detrital zircons from Late Neoproterozoic-Paleozoic stata and sediments (<700Ma)in South China,data from Duan et al. (2011),Wang et al. (2010),Wu et al. (2010),Xu et al.(2005,2012),Yao et al. (2011),Yu et al. (2008),Xiang and Shu (2010)and and references therein. n=the numbers of analytical points for detrital zircons,S=the numbers of samples,only data with ≤10% discordance was considered
關(guān)于獨(dú)居石在變質(zhì)作用過程中的穩(wěn)定性和分解反應(yīng),隨著電子探針技術(shù)的發(fā)展,國內(nèi)外相關(guān)報(bào)道逐漸增多。球冠結(jié)構(gòu)(磷灰石+褐簾石+綠簾石)多被認(rèn)為是獨(dú)居石在變質(zhì)條件下分解的典型特征,該現(xiàn)象在Alps、Carpathians、東Bohemian 地塊以及Taratash 雜巖體中經(jīng)歷了高達(dá)角閃巖相變質(zhì)作用的S 型和高鉀I 型變質(zhì)花崗閃長巖和花崗片麻巖以及變沉積巖中普遍出現(xiàn)(Finger et al.,1998;Rasmussen and Muhling,2009;Sindern et al.,2012)。此外,在角閃巖相變質(zhì)作用及流體的條件下,十字石片巖中的獨(dú)居石-綠簾石發(fā)生反應(yīng)往往形成一系列富集LREE 的礦物,相關(guān)反應(yīng)式為1.8 獨(dú)居石+1.5 綠簾石+11.1H2O +6Feaq=0.6 磷灰石+1.5 綠泥石+ 1.8REEaq+ 11.1H + 釷石(Grapes et al.,2005)。我國東海超高壓榴輝巖中同樣存在著綠簾石、褐簾石、磷灰石和釷石礦物集合體組合,其中褐簾石、磷灰石和釷石被認(rèn)為是綠簾石與可能已消耗完全的獨(dú)居石在超高壓變質(zhì)條件下的產(chǎn)物(王汝成等,2006)。因此,獨(dú)居石的分解反應(yīng)在綠片巖相-麻粒巖相變質(zhì)作用過程均可發(fā)生,其往往分解形成(釷石±綠泥石)-磷灰石-褐簾石-斜黝簾石/綠簾石的礦物組合(Finger et al.,1998;Grapes et al.,2005;Lanzirotti and Hanson,1996)。這種分解反應(yīng)可能與溫度-壓力條件的變化、全巖成分、礦物-流體相互作用有關(guān)(Grapes et al.,2005)。
本文球冠結(jié)構(gòu)中磷灰石緊靠近獨(dú)居石,且呈港灣狀與獨(dú)居石接觸,說明磷灰石是直接交代獨(dú)居石的產(chǎn)物。褐簾石環(huán)繞磷灰石分布且具有朝綠簾石的突刺結(jié)構(gòu)暗示了褐簾石稍晚于磷灰石形成。綠簾石的半自形-它形結(jié)晶形態(tài)和多分布在球冠的最邊部可能指示了綠簾石形成最晚。另外,褐簾石和磷灰石分布區(qū)的大小往往成正比,這種同心生長環(huán)帶暗示了反應(yīng)過程中化學(xué)計(jì)量起著重要作用,該過程不是純的交代反應(yīng),可能由獨(dú)居石到球冠礦物間的元素?cái)U(kuò)散動(dòng)力學(xué)機(jī)制控制(Finger et al.,1998)。詳細(xì)的巖相學(xué)觀察還發(fā)現(xiàn),該分解反應(yīng)往往發(fā)生在位于礦物邊界和解理面附近的獨(dú)居石周圍,暗示了變質(zhì)流體相及其成分對(duì)獨(dú)居石的分解反應(yīng)起著重要作用(Sindern et al.,2012)。相關(guān)實(shí)驗(yàn)表明富Ca 的流體有利于獨(dú)居石的分解以及氟磷灰石和褐簾石或含REE 綠簾石的形成;低Ca 高Na 的流體會(huì)降低獨(dú)居石的溶解度,但有助于褐簾石的形成;低Ca 高K 的流體有利于具有鈰磷灰石組分的氟磷灰石形成,幾乎不形成褐簾石和含REE 綠簾石;而含NaCl 和KCl 鹵水對(duì)獨(dú)居石的影響甚小,不會(huì)或僅發(fā)生弱的反應(yīng);Na2Si2O5+H2O 流體相會(huì)使獨(dú)居石發(fā)生較強(qiáng)的分解從而形成氟磷灰石-鈰磷灰石和突厥斯坦石(Budzyń et al.,2011;Harlov et al.,2011;Sindern et al.,2012)。另外,這些球冠物尚未發(fā)生變形,證實(shí)其形成晚于巖石的剪切變形。因此,本文環(huán)狀球冠物磷灰石-褐簾石-綠簾石的形成被認(rèn)為發(fā)生在構(gòu)造變形后,由獨(dú)居石在富鈣的變質(zhì)流體參與條件下經(jīng)綠片巖相退變質(zhì)作用形成的,其中磷灰石形成的反應(yīng)式為3(REE)PO4+5Ca2+aq+H2O→Ca5(PO4)3(OH)+3REE3+aq+H+,Ca 來自于富鈣的流體相,可能與巖石中方解石或白云石的分解反應(yīng)有關(guān),P 來自于獨(dú)居石,該反應(yīng)導(dǎo)致REE 被釋放出來,參與了褐簾石和綠簾石的形成,從而最終形成獨(dú)居石-磷灰石-褐簾石-綠簾石這一特殊礦物組合。這些退變質(zhì)礦物的形成暗示了REE、Y、Th 等元素在流體中是活動(dòng)的,鑒于球冠物環(huán)帶較小,暗示了該過程沒有重置U-Pb 體系,但可能導(dǎo)致邊部獨(dú)居石的部分Pb 丟失(Sindern et al.,2012)。綜上所述,石碌地區(qū)多階段變質(zhì)和/或熱液歷史在上述獨(dú)居石的形成、蝕變和分解的演化過程中得到了充分體現(xiàn)。
同構(gòu)造變質(zhì)成因的獨(dú)居石化學(xué)定年可指示相應(yīng)變形構(gòu)造事件的年齡(Williams and Jercinovic,2002)。以往研究將石碌礦區(qū)的構(gòu)造變形劃分為兩期(D1和D2)(Xu et al.,2013),其中早期(D1期)構(gòu)造變形使石碌群和上覆的震旦系石灰頂組發(fā)生褶皺,形成了礦區(qū)內(nèi)主要控礦構(gòu)造—軸向NWW-SEE 的北一復(fù)式向斜以及礦物定向排列構(gòu)成的S1面理,但關(guān)于該構(gòu)造運(yùn)動(dòng)的時(shí)間尚缺乏合適的年代學(xué)限制。根據(jù)變質(zhì)峰期年齡,本文同構(gòu)造成因獨(dú)居石的化學(xué)定年結(jié)果將該構(gòu)造變形的時(shí)間很好地約束在約564 ~455Ma。其中,~455Ma 的變質(zhì)峰期年齡對(duì)應(yīng)著華南加里東運(yùn)動(dòng)事件。華南加里東運(yùn)動(dòng)代表了揚(yáng)子和華夏板塊的板內(nèi)碰撞作用,具有陸內(nèi)造山構(gòu)造屬性(Wang et al.,2013),在華南主要表現(xiàn)為:震旦系-下古生界地層的強(qiáng)烈褶皺與韌性剪切變形及區(qū)域性綠片巖相變質(zhì)、廣泛的巖漿活動(dòng)和區(qū)域角度不整合(舒良樹,2006;袁正新等,1997)。大量的年代學(xué)數(shù)據(jù)(包括巖體、構(gòu)造變形和變質(zhì)作用)均表明華南加里東構(gòu)造熱事件主要發(fā)生在約400 ~460Ma(圖8b,c)。構(gòu)造形跡上,近EW 向的構(gòu)造是華南加里東運(yùn)動(dòng)的一個(gè)重要產(chǎn)物,在廣西大明山-大瑤山地區(qū)一帶以及江西中-南部、黔中遵義一帶(即黔中隆起)都有展布(鄧新等,2010;杜遠(yuǎn)生和徐亞軍,2012;吳浩若,2000;張芳榮,2011),也出現(xiàn)在海南島西部邦溪地區(qū)早古生代奧陶系地層中(許德如等,2009)。石碌地區(qū)與上述一致的構(gòu)造形跡以及年代學(xué)信息均暗示了石碌群褶皺變形是華南加里東運(yùn)動(dòng)的產(chǎn)物。另一個(gè)弱的564Ma 的年齡譜峰對(duì)應(yīng)著岡瓦納泛非事件的年齡。目前華南尚缺乏與岡瓦納聚合事件相關(guān)的直接地質(zhì)證據(jù),華南是否參與了岡瓦納聚合以及其在新元古代-早古生代的古地理位置還存在不同看法(Charvet,2013;Li et al.,2008a;Wang et al.,2010,2013;Wu et al.,2010;Yu et al.,2008)。沉積物中碎屑鋯石的年齡譜峰常用來限制物源源區(qū),以判斷古板塊在超大陸聚合中的板塊親緣性。Wu et al.(2010)通過對(duì)華南晚新元古代-奧陶紀(jì)砂巖中碎屑鋯石的研究,認(rèn)為華南缺乏泛非事件的年代學(xué)和地質(zhì)學(xué)證據(jù),具有親勞倫古陸的屬性。然而,本文通過對(duì)華南碎屑鋯石年齡數(shù)據(jù)的整理,發(fā)現(xiàn)存在著680 ~530Ma的峰值(圖8d),該年齡與東岡瓦納大陸的Kuunga 造山帶和北印度的Bhimphedian 造山帶年齡一致,暗示了華南在晚新元古代-早古生代與岡瓦納具有親緣性,部分沉積物物源可能來自于岡瓦納大陸(Duan et al.,2011;Wang et al.,2010;Yao et al.,2011;Yu et al.,2008;向磊和舒良樹,2010)。
華南加里東運(yùn)動(dòng)在海南島的可能響應(yīng)包括:早古生界及更老地層的強(qiáng)烈變形改造以及區(qū)域性綠片巖相變質(zhì)作用(袁正新等,1997;張業(yè)明等,1998),島內(nèi)泥盆系地層的缺失和可能的加里東期花崗質(zhì)巖漿活動(dòng)等(Xu et al.,2007;付建明和趙子杰,1997;張業(yè)明等,1998)。本次獨(dú)居石CHIME年齡結(jié)果為進(jìn)一步確認(rèn)加里東運(yùn)動(dòng)是海南島地質(zhì)演化歷史中重要的構(gòu)造事件提供了年代學(xué)證據(jù)。結(jié)合武夷-云開一帶及海南島約470 ~530Ma 的構(gòu)造-巖漿事件年齡(Wang et al.,2007;Yu et al.,2005;丁式江等,2002;丁興等,2005;許德如等,2007;張愛梅等,2011;張業(yè)明等,1999),推測(cè)華南加里東運(yùn)動(dòng)可能與岡瓦納大陸北部的聚合碰撞事件有關(guān)。華南在晚新元古代-早古生代可能位于東岡瓦納大陸北緣的西澳大利亞和北印度之間,加里東運(yùn)動(dòng)可能是東岡瓦納大陸向北快速移動(dòng)所引起的華南與澳大利亞-印度板塊相互作用的結(jié)果(Charvet,2013;Wang et al.,2010,2013)。綜上所述,石碌地區(qū)的~564Ma 記錄了泛非事件在華南(至少是在海南島)的響應(yīng),~455Ma 則記錄了由泛非事件導(dǎo)致的岡瓦納大陸聚合所引起的華夏和揚(yáng)子的陸內(nèi)造山事件,即華南加里東運(yùn)動(dòng)。
海南石碌鐵礦以富赤鐵礦而聞名,然而關(guān)于該礦床的成礦過程和富集機(jī)制一直存在著不同的認(rèn)識(shí)(Xu et al.,2013,2014a;侯威等,2007;許德如等,2008;袁奎榮等,1977;Fang et al.,1994)。近年來的研究多表明該礦床為多因復(fù)成礦床,鐵、鈷銅礦體的形成和富化是沉積作用、變質(zhì)作用、構(gòu)造變形及熱液疊加等多地質(zhì)作用過程結(jié)果(Xu et al.,2013,2014a),并將成礦作用過程劃分為四個(gè)階段,即礦源層的沉積階段(約960 ~830Ma)、褶皺變形和受變質(zhì)礦床形成階段(約830 ~360Ma)、印支-燕山早期構(gòu)造疊加和改造富化階段(約250 ~210Ma)和燕山晚期熱液疊加成礦階段(約130 ~90Ma)(Xu et al.,2013)。其中,褶皺變形及伴隨的韌性剪切與高溫塑性流動(dòng)對(duì)礦體有著明顯的改造富化作用,表現(xiàn)為:鐵、鈷銅礦體主要呈層狀、似層狀或透鏡狀產(chǎn)出在向斜的核部或兩翼向核部過渡部位;富鐵礦體、特別是鈷銅礦體剪切變形構(gòu)造如層內(nèi)剪切褶皺、S-C 組構(gòu)、無根鉤狀褶皺等發(fā)育,糜棱巖化顯著;礦石礦物和脈石礦物定向性好,其形成的S1 面理走向多為NW-SE 向。本文同構(gòu)造成因獨(dú)居石的CHIME 年齡結(jié)果將這一成礦作用過程限定在約560 ~450Ma,該時(shí)期加里東運(yùn)動(dòng)使石碌群發(fā)生褶皺變形并伴隨著區(qū)域性綠片巖相和局部的低角閃巖相變質(zhì)作用,同時(shí)產(chǎn)生的變質(zhì)流體受構(gòu)造應(yīng)力驅(qū)動(dòng)促使鐵、鈷銅成礦元素進(jìn)一步活化、遷移和富集,在有利部位如向斜核部、構(gòu)造面理等處富集,最終使石碌鐵礦演化成為沉積-變質(zhì)改造型礦床。
綜上所述,本次獨(dú)居石CHIME 化學(xué)年齡提供了透輝石透閃石巖的變形變質(zhì)信息,約束了石碌鐵礦控礦構(gòu)造的形成時(shí)代,為進(jìn)一步認(rèn)識(shí)石碌富鐵礦的富集機(jī)制和完善礦床的成礦模式提供了年代學(xué)依據(jù)。該年齡還為深入研究海南島的構(gòu)造屬性、華南加里東構(gòu)造特征與運(yùn)動(dòng)時(shí)限提供了新資料,對(duì)重塑華南板塊在岡瓦納大陸增生和裂解中的位置有著重要的啟示意義。
(1)透輝石透閃石巖中的獨(dú)居石化學(xué)成分為Ce-La-Nd磷酸鹽,具有富釷獨(dú)居石端元組分。其沿巖石面理方向定向分布,為同構(gòu)造變質(zhì)成因。電子探針CHIME 法年齡結(jié)果為614 ~397Ma,并獲得了兩個(gè)峰值年齡:主峰值年齡455Ma 和次峰值年齡564Ma。
(2)對(duì)應(yīng)著~564Ma 和~455Ma 峰值年齡的獨(dú)居石不同成分區(qū)分別形成于剪切變形的早、晚兩個(gè)階段,其中晚階段的成分區(qū)受到了堿性變質(zhì)流體的影響,發(fā)生了溶解-再沉淀作用,該過程引起了U-Pb 體系的局部完全重置。在剪切變形構(gòu)造后,獨(dú)居石在富鈣的流體參與條件下經(jīng)綠片巖相退變質(zhì)作用形成了磷灰石-褐簾石-綠簾石球冠物,該過程可能有部分Pb 丟失。
(3)峰值年齡~455Ma 和~564Ma 分別記錄了與華南加里東造山作用相關(guān)的區(qū)域變質(zhì)和動(dòng)力變質(zhì)作用事件以及與岡瓦納大陸聚合有關(guān)的泛非事件,這兩次造山事件可能對(duì)海南島地質(zhì)演化歷史具有重要的影響。此外,約560 ~450Ma是石碌鐵、鈷銅礦改造富集的一個(gè)重要階段。
致謝 野外工作得到了海南資源環(huán)境調(diào)查院肖勇院長和海南礦業(yè)聯(lián)合有限公司陳福雄部長的幫助;審稿人對(duì)本文提出了建設(shè)性修改意見;在此一并感謝!
Budzyń B,Harlov DE,Williams ML and Jercinovic MJ. 2011.Experimental determination of stability relations between monazite,fluorapatite,allanite,and REE-epidote as a function of pressure,temperature,and fluid composition. American Mineralogist,96(10):1547 -1567
Charvet J,Shu LS,F(xiàn)aure M,Choulet F,Wang B,Lu HF and Breton NL. 2010. Structural development of the Lower Paleozoic belt of South China:Genesis of an intracontinental orogen. Journal of Asian Earth Sciences,39(4):309 -330
Charvet J. 2013. The Neoproterozoic-Early Paleozoic tectonic evolution of the South China Block:An overview. Journal of Asian Earth Sciences,74:198 -209
Chen CH,Hsieh PS,Lee CY and Zhou HW. 2011. Two episodes of the Indosinian thermal event on the South China Block:Constraints from LA-ICPMS U-Pb zircon and electron microprobe monazite ages of the Darongshan S-type granitic suite. Gondwana Research,19 (4):1008 -1023
Chen GD,Guan YW,Deng J,Hu HY and Liu TM. 1977. Preliminary discussion on ore-forming geotectonic conditions for the Shilu-type iron ore deposit in Hainan Island. Journal of Central South University,7(3):1 -12 (in Chinese)
Chen Q,Chen NS,Wang QY,Sun M,Wang XY,Li XY and Shu GM.2006. Electron microprobe chemical ages of monazite from Qinling Group in the Qinling Orogen:Evidence for Late Pan-African metamorphism?Chinese Science Bulletin,51(21):2645 -2650
Copeland P,Parrish RR and Harrison TM. 1988. Identification of inherited radiogenic Pb in monazite and its implications for U-Pb systematics. Nature,333(6175):760 -763
Deng X,Yang KG,Liu YL and She ZB. 2010. Characteristics and tectonic evolution of Qianzhong Uplift. Earth Science Frontiers,17(3):79 -89 (in Chinese with English abstract)
Ding SJ,Xu CH,Long WG,Zhou ZY and Liao ZT. 2002. Tectonic attribute and geochronology of meta-volcanic rocks,Tunchang,Hainan Island. Acta Petrologica Sinica,18 (1):83 - 90 (in Chinese with English abstract)
Ding X,Zhou XM and Sun T. 2005. The episodic growth of the continental crustal basement in South China:Single zircon LAICPMS U-Pb dating of Guzhai granodiorite in Guangdong. Geological Review,51(4):382 -392 (in Chinese with English abstract)
Du YS and Xu YJ. 2012. A preliminary study on Caledonian event in South China. Geological Science and Technology Information,31(5):43 -49 (in Chinese with English abstract)
Duan L,Meng QR,Zhang CL and Liu XM. 2011. Tracing the position of the South China block in Gondwana:U-Pb ages and Hf isotopes of Devonian detrital zircons. Gondwana Research,19(1):141 -149
Fang Z,Xu SJ,Chen KR,Xia BD,Zhao JX and Mcculloch MT. 1994.Minerogenesis of Shilu iron ores with special reference to Sm-Nd isotope geochemical characteristics of Shilu Group bimodal volcanic rocks in Hainan Island. Chinese Journal of Geochemistry,13(3):223 -235
Faure M,Shu LS,Wang B,Charvet J,Choulet F and Monie P. 2009.Intracontinental subduction:A possible mechanism for the Early Palaeozoic Orogen of SE China. Terra Nova,21(5):360 -368
Finger F,Broska I,Roberts MP and Schermaier A. 1998. Replacement of primary monazite by apatite-allanite-epidote coronas in an amphibolite facies granite gneiss from the eastern Alps. American Mineralogist,83(3):248 -258
Fu JM and Zhao ZJ. 1997. The characteristics and tectonic settings of Caledonian granite in Hainan Island. Journal of Mineralogy and Petrology,17(1):29 -34 (in Chinese with English abstract)
Gardés E,Jaoul O,Montel JM,Seydoux-Guillaume AM and Wirth R.2006. Pb diffusion in monazite:An experimental study of Pb2++Th4++2Nd3+interdiffusion. Geochimica et Cosmochimica Acta,70(9):2325 -2336
Ge XY. 2003. Mesozoic magmatism in Hainan Island (SEs China)and its tectonic significance:Geochronology,geochemistry and Sr-Nd isotope evidences. Ph. D. Dissertation. Guangzhou:Guangzhou Institute of Geochemistry,Chinese Academy of Sciences,1 -87 (in Chinese with English summary)
Grapes R,Bucher K and Hoskin PW. 2005. Monazite-epidote reaction in amphibolite grade blackwall rocks. European Journal of Mineralogy,17(4):553 -566
Harlov DE,Wirth R and Hetherington CJ. 2011. Fluid-mediated partial alteration in monazite:The role of coupled dissolution-reprecipitation in element redistribution and mass transfer. Contributions to Mineralogy and Petrology,162(2):329 -348
Hou W,Chen HF and Peng GL. 1996. Geotectonics of Hainan Island and Gold Metallogeny. Beijing:Science Press,1 - 229 (in Chinese)
Hou W,Xiao Y and Chen FS. 2007. Main features of the Shilu ductile shear zone in Hainan Island and metallogeny of the“Beiyi-type”iron ore deposit. Chinese Journal of Geology,42(3):483 - 495 (in Chinese with English abstract)
Hu YH,Zhou JB,Song B,Li W and Sun WD. 2008. SHRIMP zircon UPb dating from K-bentonite in the top of Ordovician of Wangjiawan section,Yichang,Hubei,China. Science in China (Series D),51(4):493 -498
Janots E,Berger A,Gnos E,Whitehouse M,Lewin E and Pettke T.2012. Constraints on fluid evolution during metamorphism from UTh-Pb systematics in Alpine hydrothermal monazite. Chemical Geology,326 -327:61 -71
Lanzirotti A and Hanson GN. 1996. Geochronology and geochemistry of multiple generations of monazite from the Wepawaug Schist,Connecticut, USA: Implications for monazite stability in metamorphic rocks. Contributions to Mineralogy and Petrology,125(4):332 -340
Li XH. 1994. A comprehensive U-Pb,Sm-Nd,Rb-Sr and40Ar-39Ar geochronological study on Guidong granodiorite,Southeast China:Records of multiple tectonothermal events in a single pluton.Chemical Geology,115(3 -4):283 -295
Li XH,Zhou HW,Chung SL,Ding SJ,Liu Y,Lee CY,Ge WC,Zhang YM and Zhang RJ. 2002a. Geochemical and Sm-Nd isotopic characteristics of metabasites from central Hainan Island,South China and their tectonic significance. Island Arc,11(3):193 -205
Li XH,Li ZX,Li WX and Wang YJ. 2006. Initiation of the Indosinian Orogeny in South China:Evidence for a Permian Magmatic Arc on Hainan Island. The Journal of Geology,114(3):341 -353
Li ZX,Li XH,Zhou HW and Kinny PD. 2002b. Grenvillian continental collision in south China:New SHRIMP U-Pb zircon results and implications for the configuration of Rodinia. Geology,30(2):163-166
Li ZX, Bogdanova SV, Collins AS et al. 2008a. Assembly,configuration,and break-up history of Rodinia:A synthesis.Precambrian Research,160(1 -2):179 -210
Li ZX,Li XH,Li WX and Ding SJ. 2008b. Was Cathaysia part of Proterozoic Laurentia?New data from Hainan Island,South China.Terra Nova,20(2):154 -164
Li ZX,Li XH,Wartho JA,Clark C,Li WX,Zhang CL and Bao CM.2010. Magmatic and metamorphic events during the Early Paleozoic Wuyi-Yunkai orogeny, southeastern South China: New age constraints and pressure-temperature conditions. Geological Society of America Bulletin,122(5 -6):772 -793
Liu R,Zhou HW,Zhang L,Zhong ZQ,Zeng W,Xiang H,Jin S,Lu XQ and Li CZ. 2010. Zircon U-Pb ages and Hf isotope compositions of the Mayuan migmatite complex,NW Fujian Province,Southeast China:Constraints on the timing and nature of a regional tectonothermal event associated with the Caledonian orogeny. Lithos,119(3 -4):163 -180
Liu SW,Shu GM,Pan YM and Dang QN. 2004. Electron-microprobe dating of monazite and metamorphic age of Wutai Group,Wutai Mountains. Geological Journal of China Universities,10(3):356 -363 (in Chinese with English abstract)
Metcalfe I. 1996. Gondwanaland dispersion, Asian accretion and evolution of eastern Tethys. Australian Journal of Earth Sciences,43(6):605 -623
Montel JM,F(xiàn)oret S,Veschambre M,Nicollet C and Provost A. 1996.Electron microprobe dating of monazite. Chemical Geology,131:37-53
Petrík I and Kone cˇny P. 2009. Metasomatic replacement of inherited metamorphic monazite in a biotite-garnet granite from the Nízke Tatry Mountains,Western Carpathians,Slovakia:Chemical dating and evidence for disequilibrium melting. American Mineralogist,94(7):957 -974
Rasmussen B and Muhling JR. 2009. Reactions destroying detrital monazite in greenschist-facies sandstones from the Witwatersrand basin,South Africa. Chemical Geology,264(1 -4):311 -327
Roger F,Leloup PH,Jolivet M,Lacassin R,Trinh PT,Brunel M and Seward D. 2000. Long and complex thermal history of the Song Chay metamorphic dome (northern Vietnam ) by multi-system geochronology. Tectonophysics,321(4):449 -466
Schandl ES and Gorton MP. 2004. A textural and geochemical guide to the identification of hydrothermal monazite:Criteria for selection of samples for dating epigenetic hydrothermal ore deposits. Economic Geology,99(5):1027 -1035
Seydoux-Guillaume AM,Wirth R,Deutsch A and Sch?rer U. 2004.Microstructure of 24 ~1928Ma concordant monazites:Implications for geochronology and nuclear waste deposits. Geochimica et Cosmochimica Acta,68(11):2517 -2527
South China Iron-rich Scientific Team,Chinese Academy of Sciences(SCISTCAS). 1986. Geology of Hainan Island and Geochemistry of Iron Ore Deposits in Shilu. Beijing:Science Press,1 - 313 (in Chinese)
Shu LS. 2006. Predevonian tectonic evolution of South China:From Cathaysian block to Caledonian Period folded orogenic Belt.Geological Journal of China Universities,12(4):418 - 431 (in Chinese with English abstract)
Shu LS,Yu JH,Jia D,Wang B,Shen WZ and Zhang YQ. 2008. Early Paleozoic orogenic belt in the eastern segment of South China.Geological Bulletin of China,27(10):1581 -1593 (in Chinese with English abstract)
Sindern S,Gerdes A,Ronkin YL,Dziggel A,Hetzel R and Schulte BA.2012. Monazite stability,composition and geochronology as tracers of Paleoproterozoic events at the eastern margin of the East European Craton (Taratash complex,Middle Urals). Lithos,132:82 -97
Sun SS and McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts:Implications for mantle composition and processes.In:Saunders AD and Norry MJ (eds.). Magmatism in the Ocean Basins. London:Geological Society Special Publications,42(1):313 -345
Suzuki K,Adachi M and Tanaka T. 1991. Middle Precambrian provenance of Jurassic sandstone in the Mino Terrane,central Japan:Th-U-total Pb evidence from an electron microprobe monazite study.Sedimentary Geology,75:141 -147
Suzuki K and Adachi M. 1998. Denudation history of the high T/P Ryoke metamorphic belt, Southwest Japan: Constraints from CHIME monazite ages of gneisses and granitoids. Journal of Metamorphic Geology,16(1):23 -37
Wan YS,Liu DY,Xu MH,Zhuang JM,Song B,Shi YR and Du LL.2007. SHRIMP U-Pb zircon geochronology and geochemistry of metavolcanic and metasedimentary rocks in northwestern Fujian,Cathaysia block,China:Tectonic implications and the need to redefine lithostratigraphic units. Gondwana Research,12(1):166-183
Wan YS,Liu DY,Wilde SA,Cao JJ,Chen B,Dong CY,Song B and Du L. 2010. Evolution of the Yunkai Terrane,South China:Evidence from SHRIMP zircon U-Pb dating,geochemistry and Nd isotope. Journal of Asian Earth Sciences,37(2):140 -153
Wang RC,Wang S,Qiu JS and Ni P. 2006. Electron-microprobe compositions and chemical dating of composite grains of epidote,allanite,apatite and Th-silicate from the Sulu UHP eclogites (CCSD main hole,Donghai,eastern China). Acta Petrologica Sinica,22(7):1855 -1866 (in Chinese with English abstract)
Wang XF,Ma DQ and Jiang DH. 1991a. Geology of Hainan Island:The 2nd,Magmatic Rock. Beijing:Geological Publishing House,1 -273 (in Chinese)
Wang XF,Ma DQ and Jiang DH. 1991b. Geology of Hainan Island:The 3rd,Structural Geology. Beijing:Geological Publishing House,1 -139 (in Chinese)
Wang XF,Ma DQ and Jiang DH. 1991c. Geology of Hainan Island:The 1st,Stratum and Paleontology. Beijing:Geological Publishing House,1 -281 (in Chinese)
Wang YJ,F(xiàn)an WM,Zhao GC,Ji SC and Peng TP. 2007. Zircon U-Pb geochronology of gneissic rocks in the Yunkai massif and its implications on the Caledonian event in the South China Block.Gondwana Research,12(4):404 -416
Wang YJ,Zhang FF,F(xiàn)an WM,Zhang GW,Chen SY,Cawood PA and Zhang AM. 2010. Tectonic setting of the South China Block in the Early Paleozoic:Resolving intracontinental and ocean closure models from detrital zircon U-Pb geochronology. Tectonics,29 (6):TC6020,doi:10.1029/2010TC002750
Wang YJ,Zhang AM,F(xiàn)an WM,Zhao GC,Zhang GW,Zhang YZ,Zhang FF and Li S. 2011. Kwangsian crustal anatexis within the eastern South China Block: Geochemical, zircon U-Pb geochronological and Hf isotopic fingerprints from the gneissoid granites of Wugong and Wuyi-Yunkai Domains. Lithos,127(1 -2):239 -260
Wang YJ,Wu CM,Zhang AM,F(xiàn)an WM,Zhang YH,Zhang YZ,Peng TP and Yin CQ. 2012. Kwangsian and Indosinian reworking of the eastern South China Block:Constraints on zircon U-Pb geochronology and metamorphism of amphibolites and granulites. Lithos,150:227-242
Wang YJ,F(xiàn)an WM,Zhang GW and Zhang YH. 2013. Phanerozoic tectonics of the South China Block: Key observations and controversies. Gondwana Research,23(4):1273 -1305
Wang ZL,Xu DR,Zhang YQ,Chen FX,Wang L and Wu J. 2011.Zircon LA-ICP-MS U-Pb dating of the granodiorite porphyry from Shilu iron ore deposit, Hainan Province and its geological implication. Geotectonica et Metallogenia,35(2):292 -299 (in Chinese with English abstract)
Williams ML and Jercinovic MJ. 2002. Microprobe monazite geochronology:Putting absolute time into microstructural analysis.Journal of Structural Geology,24(6 -7):1013 -1028
Williams ML,Jercinovic MJ and Hetherington CJ. 2007. Microprobe monazite geochronology: Understanding geologic processes by integrating composition and chronology. Annual Review of Earth and Planetary Sciences,35(1):137 -175
Wu HR. 2000. A discussion on the tectonic Palaeogeography related to the Caledonian Movement in Guangxi. Journal of Palaeogeography,2(1):70 -76 (in Chinese with English abstract)
Wu L,Jia D,Li HB,Deng F and Li YQ. 2010. Provenance of detrital zircons from the Late Neoproterozoic to Ordovician sandstones of South China:Implications for its continental affinity. Geological Magazine,147(6):974 -980
Xiang L and Shu LS. 2010. Pre-Devonian tectonic evolution of the eastern South China Block:Geochronological evidence from detrital zircons. Science China:Earth Sciences,53(10):1427 -1444
Xu DR,Chen GH,Xia B and Chen T. 2003. Comment on several important basic geological problems in Hainan Island,China.Geological Science and Technology Information,22(4):37 -44 (in Chinese with English abstract)
Xu DR,Xia B,Li PC,Chen GH,Ma C and Zhang YQ. 2007. Protolith natures and U-Pb sensitive high mass-resolution ion microprobe(SHRIMP)zircon ages of the metabasites in Hainan Island,South China:Implications for geodynamic evolution since the Late Precambrian. Island Arc,16(4):575 -597
Xu DR,Ma C,Li PC,Xia B and Zhang YQ. 2007. U-Pb SHRIMPdating of zircon domains from metaclastic sedimentary rocks in Hainan Island,South China,and its geological significance. Acta Geologica Sinica,81(3):381 - 393 (in Chinese with English abstract)
Xu DR,Wang L,Xiao Y,Liu CL,F(xiàn)u QJ,Cai ZR and Huang JR.2008. A preliminary discussion on metallogenic model for Shilu-type iron oxide-copper-gold-cobalt ore deposit. Mineral Deposits,27(6):681 -694 (in Chinese with English abstract)
Xu DR,Xiao Y,Xia B,Cai RJ,Hou W,Wang L,Liu CL and Zhao B.2009. Metallogenic Model and Ore Predicating of the Shilu Iron Ore Deposit in Hainan Province. Beijing:Geological Publishing House,1 -331 (in Chinese)
Xu DR,Wang ZL,Cai JX,Wu CJ,Bakun-Czubarow N,Wang L,Chen HY,Baker MJ and Kusiak MA. 2013. Geological characteristics and metallogenesis of the Shilu Fe-ore deposit in Hainan Province,South China. Ore Geology Reviews,53:318 -342
Xu DR,Wang ZL,Chen HY,Hollings P,Jansen NH,Zhang ZC and Wu CJ. 2014a. Petrography and geochemistry of the Shilu Fe-Co-Cu ore district, South China: Implications for the origin of a Neoproterozoic BIF system. Ore Geology Reviews,57:322 -350
Xu XB,Zhang YQ,Shu LS and Jia D. 2011. LA-ICP-MS U-Pb and40Ar/39Ar geochronology of the sheared metamorphic rocks in the Wuyishan:Constraints on the timing of Early Paleozoic and Early Mesozoic tectono-thermal events in SE China. Tectonophysics,501(1 -4):71 -86
Xu XS,O’Reilly SY,Griffin WL,Deng P and Pearson NJ. 2005. Relict Proterozoic basement in the Nanling Mountains (SE China)and its tectonothermal overprinting. Tectonics,24(2):TC2003,doi:10.1029/2004TC001652
Xu YH,Sun QQ,Cai GQ,Yin XJ and Chen J. 2014b. The U-Pb ages and Hf isotopes of detrital zircons from Hainan Island,South China:Implications for sediment provenance and the crustal evolution.Environmental Earth Sciences,71(4):1619 -1628
Xu YJ,Du YS,Cawood PA,Zhu YH,Li WC and Yu WC. 2012.Detrital zircon provenance of Upper Ordovician and Silurian strata in the northeastern Yangtze Block:Response to orogenesis in South China. Sedimentary Geology,267 -268:63 -72
Yan DP,Zhou MF,Wang CY and Xia B. 2006. Structural and geochronological constraints on the tectonic evolution of the Dulong-Song Chay tectonic dome in Yunnan Province,SW China. Journal of Asian Earth Sciences,28(4):332 -353
Yao JL, Shu LS and Santosh M. 2011. Detrital zircon U-Pb geochronology,Hf-isotopes and geochemistry:New clues for the Precambrian crustal evolution of Cathaysia Block,South China.Gondwana Research,20(2):553 -567
Yu JH,Zhou XM,O’Reilly YS,Zhao L,Griffin WL,Wang RC,Wang LJ and Chen XM. 2005. Formation history and protolith characteristics of granulite facies metamorphic rock in Central Cathaysia deduced from U-Pb and Lu-Hf isotopic studies of single zircon grains. Chinese Science Bulletin,50(18):2080 -2089
Yu JH,O’Reilly SY,Wang LJ,Griffin WL,Zhang M,Wang RC,Jiang SY and Shu L. 2008. Where was South China in the Rodinia supercontinent?Evidence from U-Pb geochronology and Hf isotopes of detrital zircons. Precambrian Research,164(1 -2):1 -15
Yuan KR,Hou GH,Li GS and Liang JC. 1977. The genesis on Shilu iron ore deposit in Hainan Province and the relations between ironrich ores and structure. Journal of Central South University,(3):26 -43 (in Chinese)
Yuan ZX,Zhong GF,Xie YB and Yu JN. 1997. A new recognition on spacio-temporal characteristics of the Caledonian orogeny happened in South China. Geology and Mineral Resources of South China,(4):19 -25 (in Chinese with English abstract)
Zhang AM,Wang YJ,F(xiàn)an WM,Zhang FF and Zhang YZ. 2011. LAICPMS zircon U-Pb geochronology and Hf isotopic composition of the Taoxi migmatite (Wuping):Constrains on the formation age of the Taoxi Complex and the Yu ’nanian event. Geotectonica et Metallogenia,35(1):64 -72 (in Chinese with English abstract)
Zhang FF,Wang YJ,Zhang AM,F(xiàn)an WM,Zhang YZ and Zi JW.2012. Geochronological and geochemical constraints on the petrogenesis of Middle Paleozoic (Kwangsian)massive granites in the eastern South China Block. Lithos,150:188 -208
Zhang FR. 2011. The geological and geochemical characteristics and its petrogenesis for Caledonian granites in the central-southern Jiangxi Province. Ph. D. Dissertation. Nanjing:Nanjing University,1 -115 (in Chinese with English summary)
Zhang RJ,F(xiàn)eng SN,Xu GH,Yang DL,Yan DP,Li ZH,Jiang DH and Wu W. 1990. Discovery of Chuaria-Tawuia assemblage in Shilu Group,Hainan Island and its significance. Science in China (Series B),33(2):211 -220
Zhang RJ,Ma GG,F(xiàn)eng SN and Yan DP. 1992. Sm-Nd age of the Shilu iron ore deposits on Hainan Island and its significance. Scientia Geologica Sinica,(1):38 -43 (in Chinese with English abstract)
Zhang RJ,Wang CY,Hu N and Feng SN. 2001. Biostratigraphy of Famennian in Hainan Island,South China. Science in China(Series D),44(12):1057 -1064
Zhang YM,Xu AW,F(xiàn)u JM,Zhao ZJ,Wu GJ and Zeng BF. 1998.Some important fundamental geological problems in Hainan Island.Geological Review,44(6):568 - 575 (in Chinese with English abstract)
Zhang YM,Zhang RJ,Hu N,Zhang SH and Duan QF. 1999. High grade metamorphic complexes in middle Hainan Island:Ages of the Pb-Pb single zircons and their geological significance. Acta Geoscientia Sinica,20(3):284 - 288 (in Chinese with English abstract)
Zhu XK,O’Nions RK,Belshaw NS and Gibb AJ. 1997a. Significance of in situ SIMS chronometry of zoned monazite from the Lewisian granulites,Northwest Scotland. Chemical Geology,135(1 -2):35-53
Zhu XK,O’Nions RK,Belshaw NS and Gibb AJ. 1997b. Lewisian crustal history from in situ SIMS mineral chronometry and related metamorphic textures. Chemical Geology,136(3):205 -218
Zhu XK and O’Nions RK. 1999a. Monazite chemical composition:Some implications for monazite geochronology. Contributions to Mineralogy and Petrology,137(4):351 -363
Zhu XK and O’Nions RK. 1999b. Zonation of monazite in metamorphic rocks and its implications for high temperature thermochronology:A case study from the Lewisian terrain. Earth and Planetary Science Letters,171(2):209 -220
附中文參考文獻(xiàn)
陳國達(dá),關(guān)尹文,鄧景,胡火炎,柳天樹. 1977. 海南島石碌式鐵礦的大地構(gòu)造成礦條件初探. 中南礦冶學(xué)院學(xué)報(bào),7(3):1 -12
鄧新,楊坤光,劉彥良,佘振兵. 2010. 黔中隆起性質(zhì)及其構(gòu)造演化. 地學(xué)前緣,17(3):79 -89
丁式江,許長海,龍文國,周祖翼,廖宗廷. 2002. 海南屯昌變火山巖構(gòu)造屬性及其年代學(xué)研究. 巖石學(xué)報(bào),18(1):83 -90
丁興,周新民,孫濤. 2005. 華南陸殼基底的幕式生長——來自廣東古寨花崗閃長巖中鋯石LA-ICPMS 定年的信息. 地質(zhì)論評(píng),51(4):382 -392
杜遠(yuǎn)生,徐亞軍. 2012. 華南加里東運(yùn)動(dòng)初探. 地質(zhì)科技情報(bào),31(5):43 -49
付建明,趙子杰. 1997. 海南島加里東期花崗巖的特征及構(gòu)造環(huán)境分析. 礦物巖石,17(1):29 -34
葛小月. 2003. 海南島中生代巖漿作用及其構(gòu)造意義——年代學(xué)、地球化學(xué)及Sr-Nd 同位素證據(jù). 博士學(xué)位論文. 廣州:中國科學(xué)院廣州地球化學(xué)研究所,1 -87
侯威,陳惠芳,彭格林. 1996. 海南島大地構(gòu)造與金成礦學(xué). 北京:科學(xué)出版社,1 -229
侯威,肖勇,陳翻身. 2007. 海南島石碌韌性剪切帶的主要特征與“北一”式鐵礦的成因. 地質(zhì)科學(xué),42(3):483 -495
劉樹文,舒桂明,潘元明,黨青寧. 2004. 電子探針獨(dú)居石定年法及五臺(tái)群的變質(zhì)時(shí)代. 高校地質(zhì)學(xué)報(bào),10(3):356 -363
舒良樹. 2006. 華南前泥盆紀(jì)構(gòu)造演化:從華夏地塊到加里東期造山帶. 高校地質(zhì)學(xué)報(bào),12(4):418 -431
舒良樹,于津海,賈東,王博,沈渭洲,張?jiān)罉? 2008. 華南東段早古生代造山帶研究. 地質(zhì)通報(bào),27(10):1581 -1593
王汝成,王碩,邱檢生,倪培. 2006. 東海超高壓榴輝巖中綠簾石、褐簾石、磷灰石和釷石集合體的電子探針成分和化學(xué)定年研究.巖石學(xué)報(bào),22(7):1855 -1866
汪嘯風(fēng),馬大銓,蔣大海. 1991a. 海南島地質(zhì)(二)巖漿巖. 北京:地質(zhì)出版社,1 -273
汪嘯風(fēng),馬大銓,蔣大海. 1991b. 海南島地質(zhì)(三)構(gòu)造地質(zhì). 北京:地質(zhì)出版社,1 -139
汪嘯風(fēng),馬大銓,蔣大海. 1991c. 海南島地質(zhì)(一)地層古生物. 北京:地質(zhì)出版社,1 -281
王智琳,許德如,張玉泉,陳福雄,王力,吳俊. 2011. 海南石碌鐵礦床花崗閃長斑巖的鋯石LA-ICP-MS U-Pb 定年及地質(zhì)意義. 大地構(gòu)造與成礦學(xué),35(2):292 -299
吳浩若. 2000. 廣西加里東運(yùn)動(dòng)構(gòu)造古地理問題. 古地理學(xué)報(bào),2(1):70 -76
向磊,舒良樹. 2010. 華南東段前泥盆紀(jì)構(gòu)造演化:來自碎屑鋯石的證據(jù). 中國科學(xué)(D 輯),40(10):1377 -1388
許德如,陳廣浩,夏斌,陳濤. 2003. 海南島幾個(gè)重大基礎(chǔ)地質(zhì)問題評(píng)述. 地質(zhì)科技情報(bào),22(4):37 -44
許德如,馬馳,李鵬春,夏斌,張玉泉. 2007. 海南島變碎屑沉積巖鋯石SHRIMP U-Pb 年齡及地質(zhì)意義. 地質(zhì)學(xué)報(bào),81(3):381-393
許德如,王力,肖勇,劉朝露,符啟基,蔡周榮,黃居銳. 2008.“石碌式”鐵氧化物-銅(金)-鈷礦床成礦模式初探. 礦床地質(zhì),27(6):681 -694
許德如,肖勇,夏斌,蔡仁杰,侯威,王力,劉朝露,趙斌. 2009. 海南石碌鐵礦床成礦模式與找礦預(yù)測(cè). 北京:地質(zhì)出版社,1-331
袁奎榮,候光漢,李公時(shí),梁金城. 1977. 海南石碌鐵礦的成因和富鐵礦與構(gòu)造的關(guān)系. 中南礦冶學(xué)院學(xué)報(bào),(3):26 -43
袁正新,鐘國芳,謝巖豹,余紀(jì)能. 1997. 華南地區(qū)加里東期造山運(yùn)動(dòng)時(shí)空分布的新認(rèn)識(shí). 華南地質(zhì)與礦產(chǎn),(4):19 -25
張愛梅,王岳軍,范蔚茗,張菲菲,張玉芝. 2011. 福建武平地區(qū)桃溪群混合巖U-Pb 定年及其Hf 同位素組成:對(duì)桃溪群時(shí)代及郁南運(yùn)動(dòng)的約束. 大地構(gòu)造與成礦學(xué),35(1):64 -72
張芳榮. 2011. 江西中-南部加里東期花崗巖地質(zhì)地球化學(xué)特征及其成因. 博士學(xué)位論文. 南京:南京大學(xué),1 -115
張仁杰,馬國干,馮少南,鄢道平. 1992. 海南石碌鐵礦的Sm-Nd 法年齡及其意義. 地質(zhì)科學(xué),(1):38 -43
張業(yè)明,徐安武,付建明,趙子杰,吳桂捷,曾波夫. 1998. 海南島幾個(gè)重大基礎(chǔ)地質(zhì)問題的探討. 地質(zhì)論評(píng),44(6):568 -575
張業(yè)明,張仁杰,胡寧,張樹淮,段其發(fā). 1999. 瓊中高級(jí)變質(zhì)雜巖中單顆粒鋯石Pb-Pb 年齡及其地質(zhì)意義. 地球?qū)W報(bào),20(3):284 -288
中國科學(xué)院華南富鐵科學(xué)研究隊(duì). 1986. 海南島地質(zhì)與石碌鐵礦地球化學(xué). 北京:科學(xué)出版社,1 -313