康磊 校培喜 高曉峰 王超 楊再朝 奚仁剛
KANG Lei,XIAO PeiXi,GAO XiaoFeng,WANG Chao,YANG ZaiChao and XI RenGang
國土資源部巖漿作用成礦與找礦重點實驗室,中國地質(zhì)調(diào)查局西安地質(zhì)調(diào)查中心,西安 710054
Key Laboratory for the Study of Focused Magmatism and Giant Ore Deposits,MLR,Xi’an Center of Geological Survey,CGS,Xi’an 710054,China
2014-01-02 收稿,2015-01-01 改回.
大洋斜長花崗巖通常指發(fā)育于蛇綠混雜巖中的長英質(zhì)巖石(閃長巖、英云閃長巖、奧長花崗巖)(Coleman and Peterman,1975;Thayer,1977;Coleman and Donato,1979;Bébien et al.,1997;Koepke et al.,2007),它以淺色礦物斜長石和石英為主要成分,含有少量鐵鎂質(zhì)礦物,幾乎缺乏鉀長石,并具高的SiO2和中等Al2O3含量,低的K2O 和Rb 含量(Coleman and Donato,1979;Amri et al.,1996),是研究洋殼和蛇綠巖形成、演化(Bébien et al.,1997)的重要對象(Borsi et al.,1996;李武顯和李獻華,2003;樊帥權(quán)等,2010;Grimes et al.,2013)。
目前,對大洋斜長花崗巖的成因仍備受爭議(Grimes et al.,2013)。早期大多學(xué)者認為這些大洋斜長花崗巖是在低壓環(huán)境下玄武巖漿結(jié)晶分異的產(chǎn)物(Arth et al.,1978;Hunter et al.,1978;Aldiss,1981;Flagler and Spray,1991),最為典型的實例為Oman (Lippard et al.,1986;Pallister and Hopson,1981;Pallister and Knight,1981)和Troodos(Coleman and Peterman,1975)蛇綠巖中斜長花崗巖。但是,大洋斜長花崗巖在現(xiàn)代和古老的地質(zhì)時期中形成于多樣的構(gòu)造環(huán)境(Grimes et al.,2013),其成因不只是簡單的洋中脊快速冷凝的結(jié)果(Rollinson,2009)。隨著研究的深入,人們發(fā)現(xiàn)大洋斜長花崗巖可形成于洋殼的形成和演化的不同階段(李武顯和李獻華,2003),蛇綠巖中的輝長巖在所有構(gòu)造層位中與斜長花崗巖均具平衡性(共生性)(Amri et al.,1996),是熱水和巖漿相互強烈作用而加強了含水部分熔融的緣故(France et al.,2010;Gillis and Coogan,2002;Stakes and Taylor,1992),因此許多學(xué)者提出大洋斜長花崗巖是鐵鎂質(zhì)洋殼部分熔融的產(chǎn)物的觀點(Malpas,1979;Amri et al.,1996;Gillis and Coogan,2002)。甚至,最近Rollinson(2009)和Grimes et al.(2013)對典型的Oman 大洋斜長花崗巖的成因提出了挑戰(zhàn),認為是輝長巖和方輝橄欖巖先后部分熔融的產(chǎn)物,而非洋中脊玄武巖漿結(jié)晶分異的結(jié)果。
大洋斜長花崗巖一般作為蛇綠巖的組成部分,其發(fā)育規(guī)模往往較小,近些年學(xué)者發(fā)現(xiàn)大洋斜長花崗巖亦可以規(guī)模較大的巖株出現(xiàn)(陳其龍,2011),由于目前世界上不與蛇綠巖共生或有成因關(guān)系的大洋斜長花崗巖的實例較少(Kaur and Mehta,2005),關(guān)于不發(fā)育蛇綠巖的大規(guī)模大洋斜長花崗巖的報道更是少見。西昆侖造山帶西北緣不發(fā)育蛇綠構(gòu)造混雜巖(河南地質(zhì)調(diào)查院,2005a①河南地質(zhì)調(diào)查院. 2005a. 1∶25 萬艾提開爾丁薩依幅、英吉沙縣幅區(qū)域地質(zhì)調(diào)查報告,b②河南地質(zhì)調(diào)查院. 2005b. 1∶25 萬庫爾干幅區(qū)域地質(zhì)調(diào)查報告;張傳林等,2006;李廣偉等,2009;高曉峰等,2013),但出露著大規(guī)模由英云閃長巖、石英閃長巖和奧長花崗巖組成的斜長花崗巖帶,前人對其成因和構(gòu)造環(huán)境頗受爭議:姜耀輝和周珣若(1999)和Jiang et al.(2008)認為其屬于“上俯沖帶型”洋脊花崗巖,是洋內(nèi)弧俯沖環(huán)境下拉斑質(zhì)玄武巖結(jié)晶分異的產(chǎn)物;而張傳林等(2006)則認為該巖體是天山造山帶大陸裂谷作用在西昆侖地區(qū)的遠程效應(yīng)下“年輕的”玄武質(zhì)地殼部分熔融形成,李廣偉等(2009)與其觀點基本一致,認為其與天山石炭紀(jì)裂谷環(huán)境下地幔柱有關(guān)。本文試圖通過巖石學(xué)、巖石地球化學(xué)、鋯石U-Pb 定年和Hf 同位素研究,證實該花崗巖帶為大規(guī)模大洋斜長花崗巖,并探討其巖石成因和構(gòu)造環(huán)境,無疑具有重要意義。
西昆侖造山帶位于青藏高原西北緣和中央造山帶的最西段,處于古亞洲構(gòu)造域和特提斯構(gòu)造域結(jié)合部位(任紀(jì)舜,1999;姜耀輝和周珣若,1999;姜春發(fā)等,2000)(圖1a),從北到南主要可以劃分為北昆侖地體、南昆侖地體和甜水海地塊,相互以庫地-其曼于特蛇綠構(gòu)造混雜帶和麻扎-康西瓦蛇綠構(gòu)造混雜帶為界(潘裕生,1990;Mattern and Schneider,2000;袁超等,2003;Xiao et al.,2002;方愛民等,2003;許志琴等,2011)(圖1b)。
西昆侖造山帶顯生宙以來總體上經(jīng)歷了原特提斯和古特提斯兩個演化階段(Mattern and Schneider,2000;袁超等,2003),與之伴隨發(fā)育有大量與俯沖消減、拼合碰撞和伸展拉張相關(guān)的火山巖和侵入巖(姜耀輝等,2000;Yuan et al.,2002),為揭示西昆侖造山帶構(gòu)造演化歷史提供了重要的地質(zhì)信息。隨著地質(zhì)調(diào)查和區(qū)域?qū)Ρ鹊纳钊?,近幾年來發(fā)現(xiàn)在西昆侖造山帶北緣地區(qū)普遍發(fā)育有大規(guī)模與古特提斯演化關(guān)系密切的石炭-二疊紀(jì)巖漿巖帶,位于該帶的西部地區(qū)發(fā)育有以大面積玄武巖為主的石炭紀(jì)烏魯阿特組(C1w)(河南地質(zhì)調(diào)查院,2005a)(圖1c),特別是侵入其中的大量英云閃長巖、石英閃長巖、奧長花崗巖等具有大洋斜長花崗巖巖石特征的中酸性巖體,主要包括:奧依塔克巖體、波斯坦鐵列克巖體、薩羅依巖體、維齊得歪巖體、托喀依東巖體和阿克沙熱巖體等,延伸達100 余千米,出露規(guī)模達297km2。
圖1 西昆侖西北緣斜長花崗巖帶地質(zhì)簡圖(據(jù)李榮社等,2008 修編)Fig.1 Sketch geological map of oceanic plagiogranites belt in the northwestern margin of western Kunlun(modified after Li et al.,2008)
本文以該斜長花崗巖帶中奧依塔克巖體(奧長花崗巖)和薩羅依巖體(英云閃長巖)為研究對象,分別位于奧依塔克鎮(zhèn)西側(cè)和波斯坦鐵列克村西側(cè),呈近橢圓狀和長條狀,與區(qū)域構(gòu)造延伸方向一致(圖1c),出露面積分別約42km2和13km2。巖體發(fā)育片理,并與圍巖早石炭紀(jì)烏魯阿特組玄武巖片理產(chǎn)狀一致,表明巖體與其遭受了相同的構(gòu)造作用(姜耀輝和周珣若,1999)。前人認為巖體與圍巖烏魯阿特組為侵入接觸關(guān)系(張傳林等,2006;Jiang et al.,2008;李廣偉等,2009),但本次工作發(fā)現(xiàn)兩者接觸處局部明顯呈漸變過渡接觸,斜長花崗巖中還存在鎂鐵質(zhì)殘留體(圖2a),甚至在玄武巖中還發(fā)育花崗質(zhì)的淺色熔融條帶(圖2b),可見結(jié)構(gòu)及成分的變化均顯示斜長花崗巖具圍巖玄武巖部分熔融的特征。
奧依塔克巖體以灰白色奧長花崗巖和少量淺灰色英云閃長巖為主,兩者為漸變過渡接觸關(guān)系,塊狀構(gòu)造,微片麻狀構(gòu)造。其中奧長花崗巖為中粒不等粒結(jié)構(gòu)(圖2c),主要由斜長石(53% ~60%)、石英(22% ~32%)、黑云母(4% ~8%)組成,礦物自形程度較差,多呈半自形-他形狀,斜長石發(fā)生一定的絹云母化和粘土化。此外,斜長石中發(fā)育蠕蟲狀石英(圖2c),指示石英與斜長石具有共同結(jié)晶的特征,這與典型大洋斜長花崗巖的礦物特征一致(Amri et al.,1996)。副礦物有磷灰石、鋯石和少量磁鐵礦等。
薩羅依巖體以淺灰色英云閃長巖為主,塊狀結(jié)構(gòu),略微片麻狀構(gòu)造,中?;◢徑Y(jié)構(gòu)(圖2d),巖石主要由斜長石(55% ~64%)、石英(17% ~30%)、黑云母(11% ~15%)組成,斜長石呈自形板條狀,環(huán)帶發(fā)育,沿環(huán)帶絹云母和黝簾石化強烈,石英呈他形粒狀、填隙狀。副礦物有磷灰石、鋯石及少量榍石等。
本次工作在奧依塔克巖體中采集奧長花崗巖樣品6 件(10X-01),在薩羅依巖體中采集英云閃長巖樣品5 件(10X-04),具體采樣位置見圖1c。
主量、微量元素和稀土元素的測試在中國地質(zhì)調(diào)查局西安地質(zhì)礦產(chǎn)研究所實驗測試中心完成。主量元素含量用熒光光譜儀(XRF)測試,其中FeO 含量通過濕化學(xué)方法測定,分析精度和準(zhǔn)確度優(yōu)于1%;微量元素和稀土元素含量采用電感耦合等離子質(zhì)譜儀(ICP-MS)完成,分析精度和準(zhǔn)確度一般也優(yōu)于5%。
鋯石陰極發(fā)光圖像、激光剝蝕電感耦合等離子體質(zhì)譜(LA-ICP-MS)原位U-Pb 定年和Lu-Hf 同位素均在西北大學(xué)大陸動力學(xué)國家重點實驗室完成。鋯石的CL 圖象分析在裝有英國Gatan 公司生產(chǎn)的Mono CL3+陰極發(fā)光裝置系統(tǒng)的中子顯微掃描中鏡上完成。鋯石的微量元素分析和U-Pb 原位定年分析所采用的ICP-MS 為美國Agilent 公司生產(chǎn)Agilent7500a,激光剝蝕系統(tǒng)為德國MicroLas 公司生產(chǎn)GeoLas200M。鋯石原位Lu-Hf 同位素測定采用Nu Plasma HR(Wrexham,UK)多接收電感藕合等離子體質(zhì)譜儀完成(MC-ICP-MS)。樣品的同位素比值及元素含量計算采用GLITTER(ver4.0,Macanarie University)程序,年齡計算及諧和圖的繪制用Isoplot(ver2.49)完成。詳細分析步驟和數(shù)據(jù)處理方法詳見Yuan et al.(2004)。
圖2 奧依塔克巖體和薩羅依巖體的巖相學(xué)特征(a)斜長花崗巖與玄武巖漸變過渡接觸關(guān)系;(b)玄武巖中發(fā)育花崗質(zhì)淺色熔融條帶;(c)奧依塔克巖體奧長花崗巖的顯微組構(gòu)及斜長石與石英的蠕蟲結(jié)構(gòu)(正交偏光);(d)薩羅依巖體英云閃長的顯微組構(gòu)(正交偏光). 礦物代號:Q-石英;Pl-斜長石;Bi-黑云母Fig.2 The petrographical features of Oytag pluton and Saluoyi pluton(a)gradual transition contact relation between plagiogranite and basalt;(b)granitic molten veins in basalt;(c)microcosmic characters of trondhjemite and the structure of intergrowth between quartz and plagioclase in Oytag pluton;(d)microcosmic characters of tonalite in Saluoyi pluton.Mineral abbreviations:Q-quartz;Pl-plagioclase;Bi-biotite
奧依塔克巖體奧長花崗巖樣品(10X01)和薩羅依巖體英云閃長巖樣品(10X04)中鋯石均呈較自形的長-短柱狀,晶體長81 ~190μm,寬62 ~174μm,柱狀長寬比為1.2∶1 ~5∶1。陰極發(fā)光圖像中(圖3),除英云閃長巖中部分鋯石發(fā)育弱的生長環(huán)帶,大多鋯石的生長環(huán)帶不明顯,呈面狀內(nèi)部結(jié)構(gòu),具有幔源巖漿成因鋯石的特征(吳元保和鄭永飛,2004)。從各鋯石微區(qū)測得的U-Pb 同位素分析結(jié)果(表1)可見,各樣品中鋯石的Th 和U 變化幅度均較大(Th 含量變化分別為25.02 ×10-6~174.8 ×10-6、18.72 ×10-6~410.7 ×10-6,U含量變化為91.38 × 10-6~315.8 × 10-6、59.88 × 10-6~409.3 ×10-6),且具有較高的Th/U 比值(0.28 ~0.55 和0.30 ~0.76,大多>0.4),這些特征與典型巖漿鋯石特征一致(Claesson et al.,2000;吳元保和鄭永飛,2004)。
奧依塔克巖體樣品(10X01)成功測定19 顆鋯石,所有鋯石的206Pb/238U 年齡集中在318 ~329Ma 之間,均分布在諧和曲線附近,構(gòu)成年齡集中區(qū),樣品的加權(quán)平均206Pb/238U 年齡為322.8 ±2.2Ma,MSWD =0.24(95%置信度)(圖4a)。薩羅依巖體樣品(10X04)成功測定22 顆鋯石,206Pb/238U 年齡均集中在318 ~321Ma 之間,均分布在諧和曲線附近,樣品的加權(quán)平均206Pb/238U 年齡為319.0 ± 1.7Ma,MSWD = 0.06(95%置信度)(圖4b)。綜上所述,奧依塔克巖體和薩羅依巖體形成年齡分別為322.8 ±2.2Ma(MSWD =0.24)、319.0±1.7Ma(MSWD=0.06),很明顯兩者在誤差范圍內(nèi)一致,均屬于晚石炭世早期,應(yīng)為同一巖漿事件的產(chǎn)物。
奧依塔克巖體和薩羅依巖體的主量和微量元素分析結(jié)果見表2。主量元素顯示,奧依塔克巖體和薩羅依巖體具有相似的巖石化學(xué)特征,巖石偏酸性(SiO2= 68.24% ~75.91%,平均值為73.00%),均具低的Al2O3(11.88% ~14.58%,平均值為13.05%)和P2O5含量(0.03% ~0.13%,平均值為0.07%),高的CaO(2.10% ~4.20%,平均值為2.96%)和MgO(0.90% ~1.67%,平均值為1.35%),強烈的富鈉貧鉀(Na2O = 4.38% ~6.02%,K2O = 0.17% ~0.83%,Na2O/K2O=5.68 ~32.89)。奧長花崗巖和英云閃長巖的σ 為0.73 ~1.32,屬于鈣質(zhì)系列,A/CNK 均小于或等于1.00,屬于準(zhǔn)鋁質(zhì)系列。在SiO2-(K2O+Na2O)圖解中(圖5a),奧依塔克巖體均投在花崗巖范圍,薩羅依巖體基本落入花崗閃長巖,在標(biāo)準(zhǔn)礦物An-Ab-Or 分類圖解中(圖5b),前者位于奧長花崗巖區(qū)域,而后者基本落于英云閃長巖范圍,這與巖相學(xué)特征一致。
Th/U 0.36 0.30 0.40 0.39 0.28 0.32 0.29 0.28 0.40 0.40 0.35 0.37 0.41 0.55 0.46 0.47 0.38 -6)U( ×10 127.7 129.7 155.1 126.4 120.9 234.1 157.2 117.9 143.7 128.0 134.3 106.8 185.5 315.8 159.7 173.6 138.7量T h含4 6.57 39.39 61.95 49.19 33.31 74.53 45.65 32.42 57.89 51.51 47.26 39.28 75.35 174.8 73.03 81.06 52.20素位同Pb 34.22 34.93 39.46 34.90 31.80 58.08 40.16 29.57 36.65 33.80 35.64 29.05 47.49 78.86 41.10 43.83 36.10 232Th 1σ 12 9 9 1 1 12 10 10 13 9 10 11 11 8 7 9 8 9年208Pb/369齡395 375 395 371 371 381 362 356 362 385 372 373 352 361 351 359 5 U 5 1σ 5 5 238 5 5 5 5 5 5 5 5 4 4 5 5 5)(Ma年206Pb/齡3 25齡329 321 322 324 321 323 321 321 322 322 323 323 318 323 323 324年素 1σ 235位1 0 U 11 10 12 11 9 9 12 10 11 10 12 9 9 1 0 10 10同207Pb/齡年331 333 342 334 330 310 320 326 328 314 323 323 328 314 320 325 331 206 1σ 53 Pb 57 65 58 53 51 65 55 65 58 68 47 52 58 55 51 51果結(jié)2 07Pb/年齡371 358 487 415 372 222 301 364 382 257 330 321 367 285 294 339 379析分素位T h 1σ U-Pb 同232 208Pb/0.00045 0.00057 比值石0.0184 0.01976 0.00059 0.01872 0.00047 0.01975 0.00058 0.01854 0.00058 0.01851 0.00048 0.01903 0.00051 0.01807 0.00064 0.01777 0.00046 0.01808 0.00052 0.01923 0.00053 0.0186 0.01863 0.00042 0.01757 0.00037 0.01801 0.00045 0.01754 0.00042 0.01792 0.00046 (10X04)LA-ICP-MS 鋯U 1σ 238 0.00075 206Pb/0.00078 0.00076 0.00081 0.00078 0.00074 0.00074 0.0008 0.00075 0.00078 0.00076 0.00081 0.00073 0.00073 0.00076 0.00075 0.00074 比值比0.05169 值0.05237 0.05111 0.05126 0.0515 0.05111 0.0514 0.0510 0.05101 0.05114 0.0512 0.05134 0.05138 0.05063 0.05141 0.05137 0.0516位素體同U 1 σ?guī)r2 35 0.01319 0.01442 0.0144 0.01625 0.01461 0.01235 0.0125 0.0157 0.01391 0.01468 0.01397 0.01598 0.01233 0.01244 0.01384 0.01352 0.01312 依羅薩2 07Pb/值(10X01)和比0.38488 0.38769 0.40088 0.38926 0.38355 0.35644 0.37105 0.37847 0.38172 0.36212 0.37438 0.37387 0.38182 0.36295 0.37004 0.3772 0.38561 207Pb/0.00207 Pb 206 0.00227 1σ 0.00221 0.00227 0.00196 0.00198 0.00243 0.00219 0.00227 0.00219 0.00245 0.00197 0.00199 0.00215 0.00212 0.00207 巖體值克塔比0.0025 0.05401 0.0537 0.05689 0.05508 0.05402 0.05058 0.05236 0.05382 0.05427 0.05136 0.05303 0.05282 0.0539 0.05199 0.0522 0.05325 0.0542依LA-ICP-MS Zircon U-Pb isotopicanalysisofOytagpluton 10X01 and Saluoyipluton 10X04奧號1 點表T able1 測10X0101 10X0102 10X0103 10X0104 10X0105 10X0106 10X0107 10X0108 10X0109 10X0110 10X0111 10X0112 10X0113 10X0114 10X0115 10X0116 10X0117 0.27 91.38 24.27 25.02 14 368 5 325 322 12 302 0.01837 0.00069 71 0.05163 0.00082 0.01633 0.37283 0.00248 0.05237 10X0118 0.41 0.48 0.30 0.40 0.53 0.49 0.38 0.31 0.51 0.50 0.70 0.68 0.52 0.44 0.47 0.38 0.34 0.76 0.65 0.58 0.63 0.47 0.35 163.4 94.41 90.82 68.72 71.11 124.7 92.47 59.88 377.5 129.0 582.8 159.5 119.0 139.8 107.1 91.35 86.49 409.3 106.6 76.12 99.53 113.1 62.52 67.66 45.00 27.68 27.57 37.85 61.73 35.14 18.72 190.9 65.15 410.7 108.3 61.94 61.44 49.82 34.43 29.24 310.8 68.8 44.22 62.46 53.38 21.94 41.62 27.54 24.50 18.03 19.32 32.05 24.33 16.71 95.14 32.23 152.2 40.16 29.88 34.61 27.13 23.39 22.76 102.0 27.64 20.83 25.97 29.53 17.12 10 10 11 12 9 5 8 1 3 4 6 3 5 6 9 6 8 8 4 6 7 6 9 1 0 386 334 333 331 341 317 338 360 346 315 341 342 306 342 320 334 333 337 322 357 327 383 35 1 5 5 5 5 5 4 4 5 3 4 3 4 4 4 4 4 4 4 4 4 4 4 4 323 319 321 319 318 318 318 319 320 319 319 319 318 321 319 318 318 318 321 319 319 319 318 10 12 12 14 12 7 9 1 3 5 9 4 8 9 1 0 8 8 8 7 8 9 9 9 1 0 328 321 315 327 328 325 334 331 324 335 331 333 325 321 324 321 319 321 343 331 338 351 342 54 75 73 84 71 38 49 74 23 45 16 40 49 61 42 46 44 33 40 49 46 47 51 364 339 275 388 401 371 445 411 356 446 412 431 378 328 361 339 322 345 496 418 469 569 511 0.01926 0.00048 0.01664 0.00049 0.00056 0.00058 0.00026 0.00034 0.00049 0.0166 0.0165 0.01702 0.00044 0.0158 0.01685 0.00039 0.01799 0.00064 0.01727 0.0002 0.01572 0.00032 0.01699 0.00014 0.01705 0.00027 0.01523 0.00029 0.01708 0.00045 0.01597 0.0003 0.01665 0.00038 0.01662 0.00039 0.01681 0.00022 0.01604 0.00029 0.0178 0.01631 0.00032 0.01911 0.00044 0.0175 0.00075 0.00076 0.00075 0.00081 0.00075 0.0006 0.00065 0.00076 0.00055 0.00064 0.00053 0.00061 0.00064 0.00069 0.00061 0.00062 0.00061 0.00058 0.00062 0.00064 0.00063 0.00065 0.00066 0.0514 0.05072 0.05098 0.0507 0.05055 0.05062 0.05058 0.05078 0.05085 0.05079 0.05077 0.05072 0.05051 0.05099 0.0507 0.05062 0.05063 0.05054 0.05101 0.05066 0.05068 0.05068 0.05056 0.01359 0.01675 0.01585 0.01917 0.01665 0.00986 0.01263 0.01729 0.00701 0.01191 0.00559 0.01067 0.01209 0.01412 0.01066 0.01115 0.01071 0.00885 0.01122 0.01231 0.01213 0.0131 0.01355 0.38151 0.37241 0.36391 0.38043 0.3815 0.3769 0.38924 0.38488 0.37609 0.391 0.38496 0.38794 0.37723 0.37242 0.37586 0.37168 0.3689 0.37191 0.40166 0.38517 0.39431 0.41253 0.40089 0.00213 0.0026 0.00245 0.00294 0.0026 0.0017 0.00207 0.00268 0.00136 0.00198 0.00123 0.00182 0.00199 0.00224 0.00181 0.00187 0.00181 0.00159 0.0019 0.00203 0.00202 0.00217 0.00222 0.05383 0.05325 0.05177 0.05442 0.05473 0.054 0.05581 0.05497 0.05364 0.05583 0.05499 0.05547 0.05417 0.05297 0.05376 0.05325 0.05285 0.05337 0.05712 0.05514 0.05643 0.05904 0.0575 10X0119 10X0401 10X0402 10X0403 10X0404 10X0405 10X0406 10X0407 10X0408 10X0409 10X0410 10X0411 10X0412 10X0413 10X0414 10X0415 10X0416 10X0417 10X0418 10X0419 10X0420 10X0421 10X0422
圖3 奧依塔克巖體10X01(a)和薩羅依巖體10X04(b)中典型鋯石CL 圖像及其年齡值和εHf(t)值Fig.3 Representative zircon CL images,ages and εHf(t)values of Oytag pluton 10X01 (a)and Saluoyi pluton 10X04 (b)
圖4 奧依塔克巖體10X01(a)和薩羅依巖體10X04(b)中LA-ICP-MS 鋯石U-Pb 年齡諧和圖Fig.4 LA-ICP-MS zircon U-Pb concordia diagram of Oytag pluton 10X01 (a)and Saluoyi pluton 10X04 (b)
圖5 SiO2-(K2O+Na2O)圖解(a)和An-Ab-Or 分類圖解(b)Fig.5 SiO2-(K2O+Na2O)diagram (a)and An-Ab-Or diagram (b)
圖6 奧依塔克巖體和薩羅依巖體的球粒隕石標(biāo)準(zhǔn)化稀土元素模式圖(a)和原始地幔標(biāo)準(zhǔn)化微量元素蛛網(wǎng)圖(b)(標(biāo)準(zhǔn)化值據(jù)Sun and McDonough,1989)Fig.6 Chondrite-normalized REE-pattern (a)and primitive-mantle normalized spider diagram (b)of Oytag pluton and Saluoyi pluton (normalization values after Sun and McDonough,1989)
圖7 奧依塔克巖體和薩羅依巖體的大洋中脊斜長花崗巖標(biāo)準(zhǔn)化蛛網(wǎng)圖(Troodos 洋中脊花崗巖數(shù)據(jù)引自Pearce et al.,1984)Fig. 7 ORG-normalized diagrams for Oytag pluton and Saluoyi pluton (data of ORG Troodos after Pearce et al.,1984)
奧依塔克巖體和薩羅依巖體巖石的稀土元素總量較低(78.67 ×10-6~121.4 ×10-6)。在球粒隕石標(biāo)準(zhǔn)化圖解中,其中前者輕稀土虧損明顯((La/Yb)N=0.54 ~0.66),具強烈的負Eu 異常(Eu/Eu*=0.23 ~0.32),與N-MORB 的特征類似,顯示LREE 虧損的左傾近平坦的稀土模式特征(圖6a),后者輕重稀土近于水平分布((La/Yb)N= 1.00 ~1.60),具中等的負Eu 異常(Eu/Eu*=0.42 ~0.62),顯示了Eu 中度負異常的平坦稀土譜型(圖6a)。在洋脊花崗巖標(biāo)準(zhǔn)化圖解中(圖7),配分曲線與典型洋脊花崗巖Troodos 基本一致(Pearce et al.,1984),只是相對其富集K、Rb,虧損Nb、Ta 元素。在原始地幔標(biāo)準(zhǔn)化蛛網(wǎng)圖中(圖6b),略微富集Ba、Th,明顯虧損Nb、Ta、Sr、Pb、Ti,其他元素相對高出原始地幔數(shù)倍至二十倍,且富集程度近于一致。
本次工作對前面進行鋯石U-Pb 測年的奧依塔克巖體奧長花崗巖樣品(10X01)和薩羅依巖體英云閃長巖樣品(10X04)中各18 顆鋯石進行了Hf 同位素分析(表3)。根據(jù)巖體結(jié)晶年齡計算,所有鋯石均具高的正εHf(t)值,奧依塔克巖體鋯石εHf(t)為13.60 ~15.91(平均值為14.60),薩羅依巖體鋯石εHf(t)為11.06 ~15.25(平均值為13.44)。在鋯石年齡與Hf 同位素相關(guān)圖解中(圖8),εHf(t)基本都位于虧損地幔演化線附近,反映其具有虧損地幔物質(zhì)來源的特征。對于花崗巖,鋯石Hf 同位素地殼模式年齡(tDMc)代表巖漿源巖蝕源區(qū)地殼物質(zhì)從虧損地幔庫脫離的平均年齡。本文采用Taylor and McLennan(1985)推薦的上地殼平均成分(0.008)計算tDMc,奧依塔克巖體和薩羅依巖體的兩階段模式年齡分別為320 ~418Ma(平均值為376.5Ma)、343 ~540Ma(平均值為417.1Ma),整體明顯較其形成年齡(319.0±1.7Ma、322.8 ±2.2Ma)較老,但差異較小,甚至個別鋯石(1-1、1-10)的形成年齡與其兩階段模式年齡(319Ma、320Ma)基本一致。
表2 奧依塔克巖體(10X01)和薩羅依巖體(10X04)的主量元素(wt%)、稀土微量元素(×10 -6)含量Table 2 Major element (wt%)and trace element (×10 -6)composition of Oytag pluton (10X01)and Saluoyi pluton (10X04)
表3 奧依塔克巖體(10X01)和薩羅依巖體(10X04)的鋯石Hf 同位素分析結(jié)果Table 3 Zircon in situ Hf isotope analysis data of Oytag pluton (10X01)and Saluoyi pluton (10X04)
圖8 奧依塔克巖體和薩羅依巖體的鋯石U-Pb 年齡與Hf 同位素相關(guān)圖解Fig.8 U-Pb age vs. Hf isotopes of zircons in Oytag pluton and Saluoyi pluton
奧依塔克巖體和薩羅依巖體具有低的K2O(0.17% ~0.83%)和Rb (2.42 ×10-6~19.4 ×10-6)含量以及非常低的K2O/Na2O(0.03 ~0.18)、Rb/Sr(0.05 ~0.22)和87Sr/86Sr(0.7048 ~0.7068)(Jiang et al.,2008)比值,高的K/Rb 比值(355.4 ~590.5),這與大洋斜長花崗巖的主要巖石地球化學(xué)指標(biāo)一致(Ishizaka and Yanagi,1975)。在SiO2-K2O 圖解中(圖9a),樣品基本落入大洋斜長花崗巖范圍(Coleman and Peterman,1975),同時在SiO2/Al2O3-A/CNK 圖解中(圖9b),也位于典型大洋斜長花崗巖區(qū)域附近(Sarvothaman,1993)。并且,在斜長花崗巖的平均化學(xué)含量與典型大洋斜長花崗巖對比表中(表4)(Engel and Fisher,1975;Saunders et al.,1979;Alabaster et al.,1982;Pearce et al.,1984;Kontinen,1987;Borsi et al.,1996;Shastry et al.,2002),除具相對較高的Rb 和低的Nb 含量外,其主量、微量和稀土元素含量均與世界著名大洋斜長花崗巖非常一致。因此,西昆侖西北緣地區(qū)發(fā)育的斜長花崗巖與典型的大洋斜長花崗巖具親緣性。
表4 奧依塔克巖體和薩羅依巖體平均化學(xué)含量與典型大洋斜長花崗巖對比表(主量元素:wt%;稀土和微量元素:×10 -6)Table 4 Average chemical composition of Oytag pluton and Saluoyi pluton compared with the analyses of classical oceanic plagiogranites (major elements:wt%;trace elements:×10 -6)
關(guān)于大洋斜長花崗巖的巖石成因,目前主要有四種模型:(1)玄武質(zhì)巖漿結(jié)晶分異模型(Arth et al.,1978;Hunter et al.,1978);(2)鐵鎂質(zhì)巖部分熔融模型(Martin,1987,1999;Rapp et al.,1991,2003;Wareham et al.,1997;Turkina,2000;Grimes et al.,2013);(3)巖漿不混溶模型(Natland et al.,2002;Shastry et al.,2002);(4)早期奧長花崗巖/英云閃長巖部分熔融模式(Jahn et al.,1984;Popov et al.,2002)。其中,第二種是目前應(yīng)用最為廣泛的成因模式(陳其龍,2011;Kuibida et al.,2013),最近已得到越來越多的地質(zhì)特征、稀土分餾模擬以及高SiO2巖漿實驗巖石學(xué)的證實(Koepke et al.,2007;Rollinson,2009;France et al.,2010;Brophy and Pu,2012)。
圖9 SiO2-K2O 圖解(a,據(jù)Coleman and Peterman,1975)和SiO2/Al2O3-A/CNK 圖解(b,據(jù)Sarvothaman,1993)LA-低鋁質(zhì)英云閃長巖;HA-高鋁質(zhì)英云閃長巖;OP-大洋斜長花崗巖;CT-陸殼英云閃長巖Fig.9 SiO2-K2O diagrams (a,after Coleman and Peterman,1975)and A/CNK-SiO2/Al2O3 diagram (b,after Sarvothaman,1993)LA-low alumina trondhjemite;HA-high alumina trondhjemite;OP-oceanic plagiogranite;CT-continental trondhjemite
圖10 La-SiO2(a,據(jù)Brophy,2009)和Rb/La-Rb(b,據(jù)Schiano et al.,2010)大洋酸性巖成因判別圖Fig.10 La-SiO2 diagram (a,after Brophy,2009)and Rb/La-Rb diagram (b,after Schiano et al.,2010)proposed for evaluating petrogenesis of silicic rocks in ocean crust
首先,在西昆侖西北緣目前并沒發(fā)現(xiàn)早于石炭世的奧長花崗巖/英云閃長巖和以及與奧依塔克斜長花崗巖同時代的輝長質(zhì)巖石,因此不支持早期奧長花崗巖/英云閃長巖部分熔融模式成因和巖漿不混溶的成因模式。奧依塔克巖體和薩羅依巖體的二階段模式年齡(tDM2)分別為319 ~435Ma(平均值為372.4Ma)、348 ~593Ma(平均值為416.0Ma),明顯大于巖體的形成年齡(322.8 ±2.2Ma、319.0 ± 1.7Ma)。而且,最近Brophy(2009)通過對大洋酸性巖石的地球化學(xué)成因模式的總結(jié),發(fā)現(xiàn)由結(jié)晶分異形成的酸性巖漿SiO2含量均與La 或Yb 含量呈正相關(guān)性,而鎂鐵質(zhì)巖石含水部分熔融時SiO2含量與之無相關(guān)性或呈負相關(guān)性,在La 與SiO2的關(guān)系圖中(圖10a),斜長花崗巖的SiO2與La 之間無相關(guān)性,且在Rb/La-Rb 圖解中樣品點呈左傾斜式分布(圖10b),均與結(jié)晶分異演化趨勢不同,說明這些斜長花崗巖也不可能是玄武巖巖漿直接結(jié)晶分異的產(chǎn)物(第一種成因模式),但均明顯與部分熔融的演化趨勢一致,因此可能與鎂鐵質(zhì)巖石部分熔融成因有關(guān)。同時,巖體的模式年齡明顯大于其形成年齡,恰好支持了鐵鎂質(zhì)巖石部分熔融的成因模式,而且在AFM-CFM源巖成因判定圖解中樣品均位于玄武巖部分熔融區(qū)域(圖11a)。此外,不同成因的大洋斜長花崗巖中TiO2含量與其形成過程中的氧逸度和溫度有密切的聯(lián)系(Koepke,2007),TiO2的含量可以作為鑒別大洋斜長花崗巖不同成因過程的因子(陳其龍,2011),奧依塔克巖體和薩羅依巖體的TiO2含量較低(0.17% ~0.54%),并且在實驗熔體SiO2-TiO2關(guān)系圖中樣品均落入含水條件下輝長巖部分熔融范圍,TiO2含量明顯低于玄武質(zhì)巖漿結(jié)晶分異和巖漿不混熔的底線(圖11b),這種特征通常被認為是鎂鐵質(zhì)洋殼部分熔融的指示(Koepke et al.,2007;France et al.,2010;Grimes et al.,2013)。
圖11 AFM-CFM 源巖成因判定圖解(a,據(jù)Altherr et al.,2000)和拉斑玄武巖系統(tǒng)中富SiO2 實驗熔體SiO2-TiO2 關(guān)系圖(b,據(jù)Koepke et al.,2007)Fig.11 AFM-CFM diagram (a,after Altherr et al.,2000)and TiO2-SiO2 diagram on the basis of the experiments involving hydrous melting of mafic ocean crust and fractional crystallization of mid-ocean ridge basalt (MORB)(b,after Koepke et al.,2007)
圖12 N-MORB 不同程度部分熔融形成的熔體稀土元素配分模式和西昆侖西北緣斜長花崗巖稀土元素的對比圖(據(jù)張傳林等,2006)烏魯阿特組玄武巖稀土元素數(shù)據(jù)引自計文化等未發(fā)表數(shù)據(jù)Fig. 12 The contrast diagram between REE-pattern of plagiogranite in the northwestern margin of western Kunlun and REE-pattern of N-MORB 's different partial melting(after Zhang et al.,2006)REE data of basalt in the Wuluate Formation quoted Ji et al.(unpublished)
奧依塔克巖體和薩羅依巖體表現(xiàn)出低的Al2O3、高MgO和LREE 稍虧損或平坦型配分型式,以及高的正εHf(t)值(11.06 ~16.93,平均值為14.4),說明其源巖明顯具虧損地幔源的特征,這與其緊密共生的烏魯阿特組玄武巖(NMROB)特征一致,而且該地區(qū)基性巖漿巖和斜長花崗巖的具有相似的初始Sr 同位素比值(分別為0.704153 ~0.705119、0.704818 ~0.706772)和εNd(t)值(4.2 ~6.9、6.2~7.6)(Jiang et al.,2008),均說明烏魯阿特組玄武巖可能就是該地區(qū)斜長花崗巖的鎂鐵質(zhì)源巖,且斜長花崗巖受到陸殼物質(zhì)混染較少。兩巖體的二階段模式年齡(tDM2)主要集中在早石炭世—泥盆紀(jì)(348 ~403Ma、348 ~434Ma),也與早石炭紀(jì)烏魯阿特組玄武巖形成時代相似。并且,烏魯阿特組玄武巖以拉斑玄武系列為主,其稀土元素的球類隕石配分曲線與拉斑玄武巖源巖一致,張傳林等(2006)曾模擬拉斑玄武巖部分熔融所形成的斜長花崗巖與該地區(qū)的斜長花崗巖的配分曲線模式十分吻合(圖12)。因此綜上所述,西昆侖西北緣斜長花崗巖帶應(yīng)是與之緊密共生的烏魯阿特組拉斑質(zhì)玄武巖部分熔融所形成的產(chǎn)物。
奧依塔克巖體和薩羅依巖體低Sr(34 ×10-6~102 ×10-6)、高Y 含量(44.1 ×10-6~83.6 ×10-6),指示這些斜長花崗巖形成過程中玄武巖部分熔融的壓力可能較低(Wareham et al.,1997;張旗等,2006)。巖體中Al2O3的含量往往在一定程度上與成巖過程中施加在巖漿中的壓力值成正相關(guān)(Barker and Arth,1976)。根據(jù)熔融實驗,當(dāng)壓力≤1.6GPa 時,熔體的Al2O3含量低于15%;當(dāng)壓力>1.6GPa時,熔體的Al2O3大于15%(Rapp et al.,1991),奧依塔克巖體和薩羅依巖體的Al2O3含量明顯較低(11.88% ~14.58%,平均值為13.05%),也說明巖漿形成時壓力較低。此外,在An-Ab-Qtz 三元共結(jié)壓力曲線圖中(Winter,2001),樣品也落入M 型花崗巖和大洋斜長花崗巖附近的低壓熔融范圍,并指示其壓力應(yīng)小于0.1GPa(圖13)。
Watson and Harrison(1983a,b)從高溫實驗(700 ~1300℃)得出的鋯石溶解度的模擬公式:TZr(℃)= {12900[lnDZr(496000/熔體)+0.85M +2195]}-273.15,式中DZr為Zr 分配系數(shù),所選樣品M 值范圍為1.42 ~1.68,在推薦范圍范圍之內(nèi)(0.9 ~1.7,Watson and Harrison,1983a)。據(jù)此計算,奧依塔克巖體和薩羅依巖體的鋯石溫度為736.6 ~780.9℃(表2),且?guī)r漿中發(fā)育繼承鋯石(圖3),說明母巖漿中鋯石已達飽和,因此736.6 ~780.9℃可代表原始巖漿的初始巖漿溫度(Miller et al.,2003;趙振華,2010)。
圖13 An-Ab-Qtz 三元共結(jié)壓力曲線圖(據(jù)Winter,2001)Fig.13 The Ab-Or-Qtz system with the ternary cotectic curves (after Winter,2001)
含水拉斑玄武巖的實驗表明,在<0.8GPa(650 ~800℃)的條件下,玄武巖熔融的殘留相為斜長石+角閃石±斜方輝石±鈦鐵礦(無石榴石)(肖慶輝等,2002;葛小月等,2002),熔體與斜長石和角閃石處于平衡,具有低Sr 高Yb 的特點;0.8 ~1.3GPa(700 ~800℃)條件下,殘留物為石榴石+角閃石+單斜輝石±斜長石±鈦鐵礦,巖漿具有低Sr 低Yb 的特點;1.2 ~2GPa(750 ~950℃),具高Sr 低Yb 型花崗巖(埃達克巖)特征,壓力>1.2GPa 時,為石榴石+角閃石穩(wěn)定區(qū)(斜長石消失),壓力>1.5GPa,為石榴石+角閃石+金紅石穩(wěn)定區(qū)(金紅石出現(xiàn)),壓力>1.8 或>2.2GPa,為石榴石+金紅石穩(wěn)定區(qū)(角閃石消失)(Xiong et al.,2005;張旗等,2006)。如前文所述,西昆侖西北緣斜長花崗巖帶是拉斑玄武巖在低壓(<0.1GPa)低溫(737 ~781℃)條件下部分熔融,并且具低Sr 高Yb 的地球化學(xué)特征,與第一種熔融條件完全一致,因此部分熔融的殘留相應(yīng)為斜長石+角閃石±斜方輝石±鈦鐵礦(無石榴石)。
奧依塔克巖體和薩羅依巖體具低的K2O、Al2O3、Sr 含量和高的Y 含量以及低的Sr/Y 比值,同時LREE 略為虧損,這與典型的大洋中脊斜長花崗巖特征相似,而明顯區(qū)別于洋殼俯沖消減的高壓環(huán)境下低鉀玄武巖部分熔融形成的英云閃長巖、奧長花崗巖和花崗閃長巖組成的TTG 巖石組合(具高的Al2O3、Sr 含量、低的Y 含量、高Sr/Y 比值以及LREE 富集)(Jiang et al.,2008)。而且,不同的不相容元素在洋殼/大洋沉積物俯沖有關(guān)的流體和在洋盆沉積物部分熔融過程中的元素遷移特性是不同的(Pearce and Peate,1995;Hawkesworth et al.,1997;Macdonald et al.,2000;Elburg et al.,2002),如在俯沖流體中Ba 元素活動性較高,Th 元素活動性較弱,同時會導(dǎo)致高的Ba/Th 比值,而在洋盆沉積物部分熔融過程Th 和Ba 元素的活動性則相反(Hawkesworth et al.,1997),據(jù)此可判斷俯沖消減作用對巖漿形成的影響程度(Dilek et al.,2008),在Th-Ba/Th 圖解中(圖14a),西昆侖西北緣斜長花崗巖演化位于洋盆沉積物部分熔融的演化趨勢線上,明顯與俯沖流體作用趨勢不同。因此,該地區(qū)斜長花崗巖帶的形成應(yīng)與洋殼的俯沖消減作用無關(guān)。
圖14 判斷俯沖消減作用對巖漿形成的Th-Ba/Th 圖解(a,Dilek et al.,2008)和Sr-Nd 同位素相關(guān)圖(b)奧依塔克奧長花崗巖和基性巖漿巖Sr-Nd 同位素數(shù)據(jù)引自Jiang et al. (2008),日本海玄武巖集及太平洋沉積物據(jù)Cousens et al. (1994)和Nohda et al. (1991)Fig.14 Th-Ba/Th diagram indicates the subduction effect upon magma (a,after Dilek et al.,2008)and Sr-Nd isotopic correlation diagram (b)Sr-Nd isotopic data of Oytag plagiogranite and basic rock are from Jiang et al. (2008),data for basalts from Japan sea are from Cousens et al. (1994)and Nohda et al. (1991)
圖15 Rb-(Y+Nb)(a)和Nb-Y (b)構(gòu)造判別圖解Fig.15 Rb-(Y+Nb)(a)and Nb-Y (b)tectonic discrimination diagrams
如前文所述,該斜長花崗巖帶與大洋中脊斜長花崗巖的地球化學(xué)特征相似,在Rb-(Y +Nb)和Nb-Y 構(gòu)造判別圖解中(圖15),該斜長花崗巖樣品也基本位于大洋中脊環(huán)境范圍,但是相對洋中脊花崗巖具Nb-Ta 負異常,以及低的Zr 含量(105 ×10-6~180 ×10-6,洋中脊斜長花崗巖一般大于500×10-6(Bébien et al.,1997)),顯示弧后盆地巖漿巖的地球化學(xué)特征(Hergt and Farley,1994;Hawkins,1995;Bébien et al.,1997),而且在Sr-Nd 同位素相關(guān)圖上(圖14b),奧長花崗巖位于日本弧后盆地環(huán)境附近,并明顯受到大洋沉積物的影響,這與該地區(qū)斜長花崗巖的巖漿形成過程中存在洋盆沉積物部分熔融的環(huán)境吻合(圖14a),也與其源巖—烏魯阿特組玄武巖中發(fā)育灰?guī)r和砂巖(河南地質(zhì)調(diào)查院,2005a;陳守建等,2008)的地質(zhì)事實一致,同時解釋了該斜長花崗帶巖相對洋中脊花崗巖具高的K、Rb 含量的原因。
區(qū)域上,有人認為西昆侖西北緣斜長花崗巖屬于庫地-蘇巴什蛇綠巖帶的重要組成之一(丁道桂等,1996;姜耀輝和周珣若,1999;Jiang et al.,2008),有人則認為其并不屬于蛇綠巖帶的組成(張傳林等,2006;李廣偉等,2009),最新的地質(zhì)調(diào)查在該地區(qū)也未發(fā)現(xiàn)典型的蛇綠巖組合(河南地質(zhì)調(diào)查院,2005a,b;高曉峰等,2013),筆者認為這可能與西昆侖西段(西構(gòu)造結(jié))顯生宙強烈擠壓導(dǎo)致蛇綠巖缺失有關(guān)。在地層方面,陳守建等(2008)經(jīng)過巖相特征及構(gòu)造古地理研究,認為昆侖造山帶北緣石炭紀(jì)總體處于伸展裂陷的大地構(gòu)造背景,并發(fā)現(xiàn)西昆侖西北緣發(fā)育著大量的石炭紀(jì)海相地層,而且烏魯阿特組具有火山巖-沉積巖(枕狀玄武巖、安山巖、灰?guī)r、硅質(zhì)巖和砂礫巖)的弧后盆地相巖石組合。此外,最近計文化等(未發(fā)表成果)對包括烏魯阿特組玄武巖在內(nèi)的石炭紀(jì)基性巖的地球化學(xué)和Sr-Nd 同位素研究,也認為其具有弧后盆地環(huán)境形成的特征。西昆侖造山帶北緣受到昆侖地體與塔里木板塊加里東期碰撞造山作用早在晚志留世進入陸內(nèi)演化(潘裕生,1990;Mattern and Schneider,2000;Yuan et al.,2002;姜耀輝和周珣若,1999;姜耀輝等,2000;韓芳林等,2001;于曉飛等,2011),而西昆侖北緣石炭紀(jì)伸展裂解的構(gòu)造體制以及西北緣石炭紀(jì)弧后盆地的形成,是與以塔里木地塊北緣的天山造山帶石炭紀(jì)大陸裂谷環(huán)境為代表(Xia et al.,2003,2004;徐學(xué)義等,2006)的整個塔里木板塊周緣石炭紀(jì)處于伸展裂解的構(gòu)造體制有關(guān),還是與南部古特提斯洋持續(xù)往北俯沖導(dǎo)致西昆侖北緣發(fā)生弧后擴展(李榮社等,2008)有關(guān),仍需進一步研究。
綜上所述,綜合區(qū)域資料,初步認為西昆侖西北緣斜長花崗巖帶是在弧后盆地的伸展裂解環(huán)境下新生鎂鐵質(zhì)洋殼(烏魯阿特組玄武巖)夾雜著盆地沉積物發(fā)生部分熔融的產(chǎn)物,至于如此大規(guī)模斜長花崗巖的具體形成機制和構(gòu)造體制亟待深入研究。
(1)西昆侖西北緣出露以英云閃長巖、石英閃長巖、奧長花崗巖為主的斜長花崗巖帶,它們低Al2O3、高CaO 和MgO含量,強烈的富鈉貧鉀,屬于鈣質(zhì)準(zhǔn)鋁質(zhì)系列,稀土元素總量較低,具LREE 稍虧損或平坦型配分型式,與典型洋脊花崗巖基本一致,但它們相對富集K、Rb,具負Eu 和Nb、Ta 異常,經(jīng)過與世界典型大洋斜長花崗巖的對比,該斜長花崗巖帶應(yīng)為典型的大洋斜長花崗巖帶。
(2)野外地質(zhì)、巖石地球化學(xué)、鋯石U-Pb 定年和Lu-Hf同位素特征及區(qū)域地質(zhì)分析表明,西昆侖西北緣斜長花崗巖帶是晚石炭世弧后盆地的伸展裂解環(huán)境下在低壓(<0.1GPa)低溫(737℃~781℃)條件下以烏魯阿特組(玄武巖夾沉積巖)為代表的早石炭世新生鎂鐵質(zhì)洋殼部分熔融所形成的產(chǎn)物,殘留相為斜長石+角閃石±斜方輝石±鈦鐵礦(無石榴石),不是傳統(tǒng)認為的地幔玄武質(zhì)巖漿結(jié)晶分異成因的大洋中脊花崗巖,為研究不與蛇綠巖共生或有成因關(guān)系的大規(guī)模斜長花崗巖成因提供了有益的探索。
致謝 徐學(xué)義研究員、張成立教授和計文化研究員審閱了全文,并提出了重要的建設(shè)性意見;編輯部俞良軍老師對論文提出了寶貴修改意見;在英文摘要撰寫和同位素分析方面,分別得到了中國地質(zhì)大學(xué)(北京)韓鑫博士和西北大學(xué)康磊博士的熱情幫助;在此一并表示誠摯的感謝!
Alabaster T,Pearce JA and Malpas J. 1982. The volcanic stratigraphy and petrogenesis of the Oman ophiolite complex. Contributions to Mineralogy and Petrology,81(3):168 -183
Aldiss DT. 1981. Plagiogranites from the ocean crust and ophiolites.Nature,289 (5798):577 -578
Altherr R,Holl A,Heger E,Langer C and Kreuzer H. 2000. Highpotassium, calc-alkaline I-type plutonism in the European Variscides:Northern Vosges (France)and northern Schwarzwald(Germany). Lithos,50(1):51 -73
Amri I,Benoit M and Ceuleneer G. 1996. Tectonic setting for the genesis of oceanic plagiogranites:Evidence from a paleo-spreading structure in the Oman ophiolite. Earth and Planetary Science Letters,139(1-2):177 -194
Arth JG,Barker F,Peterman ZE and Friedman I. 1978. Geochemistry of the gabbro-diorite-tonalite-trondhjemite suite of Southwest Finland and its implications for the origin of tonalitic and trondhjemitic magmas. J. Petrol.,19(2):289 -316
Barker F and Arth JG. 1976. Generation of trondhjemite-basaltic liquids and Archaean bimodal trondhjemite-basalt suites. Geology,4,596-600
Bébien J,Dautaj N,Shallo M,Turku I and Barbarin B. 1997. Diversity of ophiolitic plagiogranites:The Albanian example. Comptes Rendus de l’Academie des Sciences-Series-IIA Earth and Planetary Science,324(11):875 -882
Borsi L,Scharer U,Gaggero L and Crispini L. 1996. Age,origin and geodynamic significance of plagiogranites in lherzolites and gabbros of the Piedmont-Ligurian ocean basin. Earth and Planetary Science Letters,140(1 -4):227 -241
Brophy JG and Pu XF. 2012. Rare earth element-SiO2systematics of mid-ocean ridge plagiogranites and host gabbros from the Fournier oceanic fragment,New Brunswick,Canada:A field evaluation of some model predictions. Contributions to Mineralogy and Petrology,164(2):191 -204
Brophy JG. 2009. La-SiO2and Yb-SiO2systematics in mid-ocean ridge magmas:Implications for the origin of oceanic plagiogranite.Contributions to Mineralogy and Petrology,158(1):99 -111
Chen QL. 2011. The study about petrogenesis of ocean plagiogranite.Journal of Capital Normal University (Natural Science Edition),32(5):73 -77 (in Chinese with English abstract)
Chen SJ,Li RS,Ji WH,Wang C,Zhao ZM,Wang BZ,Dai CG and Wang GC. 2008. Carboniferous period lithofacies character and tectono-paleogeography in Kunlun Orogenic Belt. Journal of Earth Sciences and Environment,30(3):221 - 233 (in Chinese with English abstract)
Claesson S,Vetrin V,Bayanova T and Downes H. 2000. U-Pb zircon ages from a Devonian carbonatite dyke,Kola peninsula,Russia:A record of geological evolution from the Archaean to the Palaeozoic.Lithos,51(1 -2):95 -108
Coleman RG and Donato MM. 1979. Oceanic plagiogranite revisited. In:Baker F (ed.). Trondhjemites,Dacites,and Related Rocks,Developments in Petrology,Volume 6. Amsterdam:Elsevier,149 -168
Coleman RG and Peterman ZE. 1975. Oceanic plagiogranite. J.Geophys. Res.,80(8):1099 -1108
Cousens BL,Allan JF and Gorton MP. 1994. Subduction-modified pelagic sediments as the enriched component in back-arc basalts from the Japan Sea:Ocean drilling program sites 797 and 794.Contributions to Mineralogy and Petrology,117(4):421 -434
Dilek Y,F(xiàn)urnes H and Shallo M. 2008. Geochemistry of the Jurassic Mirdita ophiolite (Albania)and the MORB to SSZ evolution of a marginal basin oceanic crust. Lithos,100(1 -4):174 -209
Ding GT,Wang DX and Liu WX. 1996. Western Kunlun Orogenic Belt and Basin. Beijing:Geological Publishing House,36 - 107 (in Chinese)
Elburg MA,van Bergen M,Hoogewerfe J,F(xiàn)oden J,Vroon P,Zulkarnain I and Nasution A. 2002. Geochemical trends across an arc-continent collision zone:Magma sources and slab-wedge transfer processes below the Pantar Strait volcanoes, Indonesia. Geochimica et Cosmochimica Acta,66(15):2771 -2789
Engel CG and Fisher RL. 1975. Granitic to ultramafic rock complexes of the Indian ocean ridge system,western Indian ocean. Bulletin Geological Society of America,86(11):1553 -1578
Fan SQ,Shi RD,Ding L,Liu DL,Huang QS and Wang HQ. 2010.Geochemical characteristics and zircon U-Pb age of the plagiogranite in Gaize ophiolite of central Tibet and their tectonic significance.Acta Petrologica et Mineralogica,29(5):467 -478 (in Chinese with English abstract)
Fang AM,Li JL,Liu XH,Hou QL,Lee IJ,Xiao WJ,Yu LJ and Zhou H. 2003. Tectonic settings of the basic igneous rocks in the Kudi ophiolite zone of West Kunlun Mountains,Xingjiang Province. Acta Petrologica Sinica,19(3):409 - 417 (in Chinese with English abstract)
Flagler PA and Spray JG. 1991. Generation of plagiogranite by amphibolites anatexis in oceanic shear zones. Geology,19:70 -73
France L,Koepke J,Ildefonse B,Cichy SB and Deschamps F. 2010.Hydrous partial melting in the sheeted dike complex at fast spreading ridges:Experimental and natural observations. Contributions to Mineralogy and Petrology,160(5):683 -704
Gao XF,Xiao PX,Kang L,Xi RG,Guo L,Xie CR and Yang ZC.2013. Origin of Datongxi pluton in the West Kunlun orogeny:Constraints from mineralogy,elemental geochemistry and zircon U-Pb age. Acta Petrologica Sinica,29(9):3065 -3079 (in Chinese with English abstract)
Ge XY,Li XH,Chen ZG and Li WP. 2002. Geochemistry and petrogenesis of Jurassic high Sr/low Y granitoids in eastern China:Constrains on crustal thickness. Chinese Science Bulletin,47(11):962 -968
Gillis KM and Coogan LA. 2002. Anatectic migmatites from the roof of an ocean ridge magma chamber. Journal of Petrology,43(11):2075 -2095
Grimes CB,Ushikubo T,Kozdon R and Valley JW. 2013. Perspectives on the origin of plagiogranite in ophiolites from oxygen isotopes in zircon. Lithos,179:48 -66
Han FL,Cui JT,Ji WH,Li HP,Hao JW. 2001. Discussion of orogenics of the western Kunlun Mountains during the Caledonian orogeny.Geology of Shaanxi,19(2):8 - 18 (in Chinese with English abstract)
Hawkesworth CJ,Turner SP,McDermott F,Peate DW and Calsteren P.1997. U-Th isotopes in arc magmas:Implications for element transfer from the subducted crust. Science,276(5312):551 -555
Hawkins JW. 1995. Evolution of the Lau Basin-Insights from ODP Leg 135. In:Taylor B and Natland J (eds.). Active Margins and Marginal Basins of the Western Pacific. Geophysical Monograph 88,Am. Geophys. Union,125 -173
Hergt JM and Farley KN. 1994. Major element,trace element,and isotope (Pb,Sr and Nd)variations in site 834 basalts:Implications for the initiation of backare opening. In:Proceedings of the Ocean Drilling Program,Scientific Results,135:471 -485
Hunter DR,Barker F and Millard HTJ. 1978. The geochemical nature of the Archean ancient gneiss complex and granodiorite suite,Swaziland:A preliminary study. Precambrian Research,7(2):105-127
Ishizaka K and Yanagi T. 1975. Occurrence of oceanic plagiogranites in the older tectonic zone,Southwest Japan. Earth and Planetary Science Letters,27(3):371 -377
Jahn BM,Vidal P and Kr?ner A. 1984. Multi-chronometric ages and origin of Archaean tonalitic gneisses in Finnish Lapland:A case for long crustal residence time. Contrib. Mineral. Petrol.,86(4):398-408
Jiang CF,Wang ZQ and Li JZ. 2000. Opening-closing Tectonics of Central Orogen. Beijing:Geological Publishing House,7 -13 (in Chinese)
Jiang YH and Zhou XR. 1999. The petrology and tectonicmagmatic dynamics of the Western Kunlun. Geoscience,13(4):378 (in Chinese)
Jiang YH,Rui XJ,Guo KY and He JR. 2000. Tectonic environments of granitoids in the West Kunlun Orogenic Belt. Acta Geoscientia Sinica,21(1):23 -25 (in Chinese with English abstract)
Jiang YH,Liao SY,Yang WZ and Shen WZ. 2008. An island arc origin of plagiogranites at Oytag,western Kunlun orogen,northwest China:SHRIMP zircon U-Pb chronology,elemental and Sr-Nd-Hf isotopic geochemistry and Paleozoic tectonic implications. Lithos,106(3 -4):323 -335
Kaur G and Mehta PK. 2005. The Gothara plagiogranite:Evidence for oceanic magmatism in a non-ophiolitic association,North Khetri Copper Belt,Rajasthan,India?Journal of Asian Earth Sciences,25(5):805 -819
Koepke J,Berndt J,F(xiàn)eig ST and Holtz F. 2007. The formation of SiO2-rich melts within the deep oceanic crust by hydrous partial melting of gabbros. Contributions to Mineralogy and Petrology,153(1):67-84
Kontinen A. 1987. An early proterozoic ophiolite:The Jormua maficultramafic complex,northeastern Finland. Precambrian Research,35:313 -341
Kuibida ML,Kruk NN,Murzin OV,Shokal’skii S,Gusev NI,Kirnozova TI and Travin AV. 2013. Geologic position,age,and petrogenesis of plagiogranites in northern Rudny Altai. Russian Geology and Geophysics,54(10):1305 -1318
Li GW,F(xiàn)ang AM,Wu FY,Liu XH,Pan YS and Wang SG. 2009.Studies on the U-Pb ages and Hf isotopes of zircons in the Aoyitake plagioclase granite,West Tarim. Acta Petrologica Sinica,25(1):166 -172 (in Chinese with English abstract)
Li RS,Ji WH,Yang YC,Yu PS and Zhao ZM. 2008. Geology of Kunlun Mountain and Adjacent Regions. Beijing: Geological Publishing House (in Chinese)
Li WX and Li XH. 2003. Rock types and tectonic significance of the granitoids rocks within ophiolites. Advance in Earth Science,18(3):392 -397(in Chinese with English abstract)
Lippard SJ,Shelton AW and Gass IG. 1986. The ophiolite of northern Oman. In:Geological Society of London Memoir,Vol. 11. Oxford:Blackwell Scientific,1 -230
Macdonald R,Hawkesworth CJ and Heath E. 2000. The Lesser Antilles volcanic chain:A study in arc magmatism. Earth-Science Reviews,49(1 -4):1 -76
Malpas J. 1979. Two contrasting trondhjemite associations from transported ophiolites in western Newfoundland:Initial report. In:Barker F (ed.). Trondhjemites,Dacites,and Related Rocks.Amsterdam:Elsevier,465 -487
Martin H. 1987. Petrogenesis of Archaean trondhjemites,tonalites,and granodiorites from eastern Finland: Major and trace element geochemistry. J. Petrol.,28(5):921 -953
Martin H. 1999. Adakitic magmas:Modern analogues of Archaean granitoids. Lithos,46(3):411 -429
Mattern F and Schneider W. 2000. Suturing of the Proto-and Paleo-Tethys oceans in the western Kunlun (Xinjiang,China). Journal of Asian Earth Sciences,18(6):637 -650
Miller CF,McDowell SM and Mapes RW. 2003. Hot and cold granites?Implications of zircon saturation temperatures and preservation of inheritance. Geology,31(6):529 -532
Natland JH,Dick HJB,Miller DJ and Von Herzen RP. 2002.Proceedings of the Ocean Drilling Program. College Station,Science Research,1 -69
Nohda S,Chen H and Tatsumi Y. 1991. Geochemical stratification in the upper mantle beneath NE China. Geophysical Research Letters,18(1):97 -100
Pallister JS and Hopson CA. 1981. Samail ophiolite plutonic suite:Field relations,phase variation,cryptic variation and layering,and a model of a spreading ridge magma chamber. Journal of Geophysical Research,86(B4):2593 -2644
Pallister JS and Knight RJ. 1981. Rare-earth element geochemistry of the Samail ophiolite near Ibra,Oman. Journal of Geophysical Research,86(B4):2673 -2697
Pan YS. 1990. Tectonic features and evolution of the western Kunlun mountain region. Scientia Geologica Sinica,25(3):224 -232(in Chinese with English abstract)
Pearce JA, Harris NBW and Tindle AC. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology,25(4):956 -983
Pearce JA and Peate DW. 1995. Tectonic implications of the composition of volcanic arc magmas. Annual Review in Earth and Planetary Sciences,23(1):251 -285
Popov VS,Bogatov VI and Zhuravlev DZ. 2002. Sources of granite magmas and Middle and Southern Urals earth crust formation:Sm-Nd and Rb-Sr isotopic data. Petrologia,10:389 -410(in Russian)
Rapp RP,Watson EB and Miller CF. 1991. Partial melting of amphibolite/eclogite and the origin of Archean trondhjemites and tonalites. Precambrian Research,51(1 -4):1 -25
Rapp RP,Schimizu N and Norman MD. 2003. Growth of early continental crust by partial melting of eclogite. Nature,425(6958):605 -609
Ren JS. 1999. Geotectonic Map of China and Adjacent Regions. Beijing:Geological Publishing House,1 -15 (in Chinese)
Rollinson H. 2009. New models for the genesis of plagiogranites in the Oman ophiolite. Lithos,112(2 -3):603 -614
Sarvothaman H. 1993. The molar Al2O3/(CaO+Na2O+K2O)ratios as discriminant constraint for oceanic plagiogranites and continental trondhjemites. Journal of the Geological Society of India,42(5):513 -522
Saunders AD,Tarney J,Stern CR and Dalziel IWD. 1979. Geochemistry of Mesozoic marginal basin floor igneous rocks from southern Chile.Bulletin of the Geological Society of America,90(3):237 -258
Schiano P,Monzier M,Eissen JP,Martin H and Koga KT. 2010. Simple mixing as the major control of the evolution of volcanic suites in the Ecuadorian Andes. Contributions to Mineralogy and Petrology,160(2):297 -312
Shastry A, Srivastava RK, Chandra R and Jenner GA. 2002.Geochemical characteristics and genesis of oceanic plagiogranites associated with south Andaman ophiolite suite,India:A late stage silicate liquid immiscible product. Journal of the Geological Society of India,59(3):233 -241
Stakes DS and Taylor HPJ. 1992. The northern Samail ophiolite:An oxygen isotope,microprobe,and field study. Journal of Geophysical Research,97(B5):7043 -7080
Sun SS and McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts:Implications for mantle composition and processes.In:Saunders AD and Norry MJ (eds.). Magmatism in the Ocean Basins. Geological Society,London,Special Publications,42(1):313 -345
Taylor SR and McLennan SM. 1985. The Continental Crust,Its Composition and Evolution. Oxford:Blackwell,1 -312
Thayer TP. 1977. Some implications of sheeted dike swarms in ophiolitic complexes. Geotectonics,11(6):419 -426
Turkina OM. 2000. Modeling geochemical types of tonalite-trondhjemite melts and their natural equivalents. Geochemistry International,38(7):704 -717 (in Russian)
Wareham CD,Millar IL and Vaughan APM. 1997. The generation of sodic granite magmas,western Palmer Land,Antarctic Peninsula.Contrib. Mineral. Petrol.,128(1):81 -96
Watson EB and Harrison TM. 1983a. Zircon saturation revisited:Temperature and composition effects in a variety of crustal magma types. Earth and Planetary Science Letters,64(2):295 -304
Watson EB and Harrison TM. 1983b. Zircon thermometer reveals minimum melting conditions on earliest earth. Science,308(5723):841 -844
Winter JD. 2001. An introduction to igneous and metamorphic petrology.New Jersey:Prentice Hall,1 -348
Wu YB and Zheng YF. 2004. Genetic mineralogy of zircon and its constraint on the interpretation of U-Pb zircon ages. Chinese Science Bulletin,49(16):1589 -1604 (in Chinese)
Xia LQ,Xu XY,Xia ZC,Li XM,Ma ZP and Wang LS. 2003.Carboniferous post-collisional rift volcanism of the Tianshan Mountains,Northwestern China. Acta Geologica Sinica,77(3):338 -360
Xia LQ,Xu XY and Xia ZC. 2004. Petrogenesis of carboniferous riftrelated volcanic rocks in the Tianshan, northwestern China.Geological Society of America Bulletin,116(3):419 -443
Xiao QH,Deng JF,Ma DS,Hong DW and Mo XX. 2002. The Ways of Investigation on Granitoids. Beijing:Geological Publishing House,172 -191 (in Chinese with English abstract)
Xiao WJ,Windley BF,Hao J and Li JL. 2002. Arc-ophiolite obduction in the western Kunlun Range (China):Implications for the Palaeozoic evolution of central Asia. Journal of the Geological Society,159:517 -528
Xiong XL,Adam J and Green TH. 2005. Rutile stability and ruble/melt HFSE partitioning during partial melting of hydrous basalt:Implications for TTG genesis. Chemical Geology,218(3 -4):339-359
Xu XY,Xia LQ,Ma ZP,Wang YB,Xia ZC,Li XM and Wang LS.2006. SHRIMP zircon U-Pb geochronology of the plagiogranites from Bayingou ophiolite in North Tianshan Mountains and the petrogenesis of the ophiolite. Acta Petrologica Sinica,22(1):83 - 94 (in Chinese with English abstract)
Xu ZQ,Li ST,Zhang JX,Yang JS,He BZ,Li HB,Lin CS and Cai ZH. 2011. Paleo-Asian and Tethyan tectonic systems with docking the Tarim block. Acta Petrologica Sinica,27(1):1 - 22 (in Chinese with English abstract)
Yu XF,Sun FY,Li BL,Ding QF,Chen GJ,Ding ZJ,Chen J and Huo L. 2011. Caledonian diagenetic and metallogenic events in Datong district in the western Kunlun:Evidences from LA-ICP-MS zircon UPb dating and molybdenite Re-Os dating. Acta Petrologica Sinica,27(6):1770 -1778(in Chinese with English abstract)
Yuan C,Sun M,Zhou MF,Zhou H,Xiao WJ and Li JL. 2002. Tectonic evolution of the West Kunlun:Geochronologic and geochemical constraints from Kudi granitoids. International Geology Review,44(7):653 -669
Yuan C,Sun M,Zhou H,Xiao WJ,Hou QL and Li JL. 2003. Arkarz shan intrusive complex,western Kunlun:Age,source and Tectonic implications. Xinjiang Geology,21(1):37 -45 (in Chinese with English abstract)
Yuan HL,Gao S,Lin XM,Li HM,Günther D and Wu FY. 2004.Accurate U-Pb age and trace element determinations of zircon by laser ablation-inductively coupled plasma-mass spectrometry.Geostandards and Geoanalytical Research,28(3):353 -370
Zhang CL,Yu HF,Ye HM,Zhao Y and Zhang DS. 2006. Aoyitake plagiogranite in western Tarim Block, NW China: Age,geochemistry,petrogenesis and its tectonic implications. Science in China (Series D),49(11):1121 -1134
Zhang Q,Wang Y,Li CD,Wang YL,Jin WJ and Jia XQ. 2006.Granite classification on the basis of Sr and Yb contents and its implications. Acta Petrologica Sinica,22(9):2249 - 2269 (in Chinese with English abstract)
Zhao ZH. 2010. Trace element geochemistry of accessory minerals and its applications in petrogenesis and metallogenesis. Earth Science Frontiers,17(1):267 -286 (in Chinese with English abstract)
附中文參考文獻
陳其龍. 2011. 大洋斜長花崗巖成因研究現(xiàn)狀評述. 首都師范大學(xué)學(xué)報(自然科學(xué)版),32(5):73 -77
陳守建,李榮社,計文化,王超,趙振明,王秉章,戴傳固,王國燦.2008. 昆侖造山帶石炭紀(jì)巖相特征及構(gòu)造古地理. 地球科學(xué)與環(huán)境學(xué)報,30(3):221 -233
丁道桂,王道軒,劉偉新. 1996. 西昆侖造山帶與盆地. 北京:地質(zhì)出版社,36 -107
樊帥權(quán),史仁燈,丁林,劉德亮,黃啟帥,王厚起. 2010. 西藏改則蛇綠巖中斜長花崗巖地球化學(xué)特征、鋯石U-Pb 年齡及構(gòu)造意義. 巖石礦物學(xué)雜志,29(5):467 -478
方愛民,李繼亮,劉小漢,侯泉林,Lee Ik Jong,肖文交,俞良軍,周輝. 2003. 新疆西昆侖庫地混雜帶中基性火山巖構(gòu)造環(huán)境分析.巖石學(xué)報,19(3):409 -417
高曉峰,校培喜,康磊,奚仁剛,過磊,謝從瑞,楊再朝. 2013. 西昆侖大同西巖體成因:礦物學(xué)、地球化學(xué)和鋯石U-Pb 年代學(xué)制約. 巖石學(xué)報,29(9):3065 -3079
葛小月,李獻華,陳志剛,李伍平. 2002. 中國東部燕山期高Sr 低Y型中酸性火成巖的地球化學(xué)特征及成因:對中國東部地殼厚度的制約. 科學(xué)通報,47(6):474 -480
韓芳林,崔建堂,計文化,李海平,郝俊武. 2001. 西昆侖加里東期造山作用初探. 陜西地質(zhì),19(2):8 -18
姜春發(fā),王宗起,李錦鐵. 2000. 中央造山帶開合構(gòu)造. 北京:地質(zhì)出版社,7 -13
姜耀輝,周珣若. 1999. 西昆侖造山帶花崗巖巖石學(xué)及構(gòu)造巖漿動力學(xué). 現(xiàn)代地質(zhì),13(4):378
姜耀輝,丙行健,郭坤一,賀菊瑞. 2000. 西昆侖造山帶花崗巖形成的構(gòu)造環(huán)境. 地球?qū)W報,21(1):23 -25
李廣偉,方愛民,吳福元,劉小漢,潘裕生,王世剛. 2009. 塔里木西部奧依塔克斜長花崗巖鋯石U-Pb 年齡和Hf 同位素研究. 巖石學(xué)報,25(1):166 -172
李榮社,計文化,楊永成,于浦生,趙振明. 2008. 昆侖山及鄰區(qū)地質(zhì). 北京:地質(zhì)出版社
李武顯,李獻華. 2003. 蛇綠巖中的花崗質(zhì)巖石成因類型與構(gòu)造意義. 地球科學(xué)進展,18(3):392 -397
潘裕生. 1990. 西昆侖山構(gòu)造特征與演化. 地質(zhì)科學(xué),25(3):224 -232
任紀(jì)舜. 1999. 中國及鄰區(qū)大地構(gòu)造圖. 北京:地質(zhì)出版社,1 -15
吳元保,鄭永飛. 2004. 鋯石成因礦物學(xué)研究及其對U-Pb 年齡解釋的制約. 科學(xué)通報,49(16):1589 -1604
肖慶輝,鄧晉福,馬大栓,洪大衛(wèi),莫宣學(xué). 2002. 花崗巖研究思維與方法. 北京:地質(zhì)出版社,172 -191
徐學(xué)義,夏林圻,馬中平,王彥斌,夏祖春,李向民,王立社. 2006.北天山巴音溝蛇綠巖斜長花崗巖SHRIMP 鋯石U-Pb 年齡及蛇綠巖成因研究. 巖石學(xué)報,22(1):83 -94
許志琴,李思田,張建新,楊經(jīng)綏,何碧竹,李海兵,林暢松,蔡志慧. 2011. 塔里木地塊與古亞洲/特提斯構(gòu)造體系的對接. 巖石學(xué)報,27(1):1 -22
于曉飛,孫豐月,李碧樂,丁清峰,陳廣俊,丁正江,陳靜,霍亮.2011. 西昆侖大同地區(qū)加里東期成巖、成礦事件:來自LA-ICPMS 鋯石U-Pb 定年和輝鉬礦Re-Os 定年的證據(jù). 巖石學(xué)報,27(6):1770 -1778
袁超,孫敏,周輝,肖文交,侯泉林,李繼亮. 2003. 西昆侖阿卡阿孜山巖體的年代、源區(qū)和構(gòu)造意義. 新疆地質(zhì),21(1):37 -45
張傳林,于海鋒,葉海敏,趙宇,張東生. 2006. 塔里木西部奧依塔克斜長花崗巖:年齡、地球化學(xué)特征、成巖作用及其構(gòu)造意義.中國科學(xué)(D 輯),36(10):881 -893
張旗,王焰,李承東,王元龍,金惟俊,賈秀勤. 2006. 花崗巖的Sr-Yb 分類及其地質(zhì)意義. 巖石學(xué)報,22(9):2249 -2269
趙振華. 2010. 副礦物微量元素地球化學(xué)特征在成巖成礦作用研究中的應(yīng)用. 地學(xué)前緣,17(1):267 -286