李 君,黃子強
(電子科技大學(xué) 電子科學(xué)技術(shù)研究院,四川 成都610054)
手性液晶是指以螺旋方式排列的一類液晶,不同螺距的手性液晶分別具有旋光性、布拉格反射特性和光波導(dǎo)效應(yīng)等光學(xué)特性。當(dāng)入射光波長λ<n-p(n-為液晶的平均折射率,p 為螺距)時,光偏振面隨著液晶分子的扭曲而轉(zhuǎn)動,出射光矢量轉(zhuǎn)過的角度與扭曲角相同,稱為光波導(dǎo)作用;當(dāng)λ=n-p 時,手性液晶液晶反射與其旋轉(zhuǎn)方向相同的光,透射與其旋轉(zhuǎn)方向相反的光,這一特性稱為布拉格反射;短螺距手性液晶指λ>n-p 的手性液晶,入射光透過液晶相,其偏振面會轉(zhuǎn)動一個角度,即旋光現(xiàn)象。旋光率的大小與手性液晶的螺距有關(guān),其螺距受溫度影響會發(fā)生規(guī)律性的變化[1],從而手性液晶的各項光學(xué)特性包括旋光率也將發(fā)生改變,通過測量手性液晶的光學(xué)特性變化可得到溫度的改變情況,所以手性液晶可作為一種熱敏材料應(yīng)用于溫度傳感技術(shù)中。
國外已將熱敏液晶測溫技術(shù)大量應(yīng)用于溫度傳感領(lǐng)域中,但國內(nèi)這項技術(shù)還處于起步階段[2]。1987年史永基提出了利用手性液晶來制作熱色液晶溫度傳感器和數(shù)字液晶溫度傳感器[3]。熱色溫度傳感器指利用手性液晶的布拉格反射,當(dāng)螺距隨溫度變化時,反射不同顏色的光波,從而根據(jù)液晶的溫度分布來檢測物體表面的溫度分布。2005年韓振興建立了基于色調(diào)技術(shù)的熱敏液晶定量測溫系統(tǒng),并把其應(yīng)用于平板氣膜冷卻實驗中,將熱敏液晶所呈現(xiàn)色彩的色調(diào)與溫度之間的關(guān)系用六次多項式進行擬合,使測量精度在95%置信區(qū)間內(nèi)可達0.8℃[2]。數(shù)字溫度傳感器是利用測量短螺距手性液晶的旋光率來得到溫度的變化情況,這種方法可以用來測量溫度的微小變化,但其研究未給出旋光率的熱敏規(guī)律。
為了得到旋光率隨溫度的具體變化情況,提供短螺距手性液晶熱敏旋光特性應(yīng)用于溫度傳感中的實驗依據(jù)。本論文針對入射光波長遠(yuǎn)大于手性液晶螺距時,手性液晶旋光效應(yīng)的理論計算,旋光率隨螺距、盒厚、入射角等因素的變化特點及其熱敏旋光特性進行了詳細(xì)的闡述和研究。
手性液晶分子呈螺旋狀排列,光沿螺旋軸通過手性液晶相時,不同螺距會有3種可能:光波導(dǎo)效應(yīng),布拉格反射效應(yīng)和旋光效應(yīng)。旋光效應(yīng)是在入射光波長遠(yuǎn)大于手性液晶的光學(xué)螺距時,由于液晶分子的扭曲排列,使線偏振光的左旋和右旋分偏振光在液晶相中的傳播速度不同而導(dǎo)致透射出來的合振動面發(fā)生了一定程度的轉(zhuǎn)動[4],這樣就可以使入射的線偏振光的偏振方向發(fā)生一定角度的偏轉(zhuǎn),這一偏轉(zhuǎn)角度可通過旋光儀進行測量。
隨著手性液晶的螺距、液晶盒盒厚和入射光角度等因素的變化,旋光的角度也會改變。由于手性液晶的螺距隨溫度變化較敏感,所以手性液晶的旋光率可隨溫度變化而發(fā)生變化。
利用麥克斯韋方程旋轉(zhuǎn)坐標(biāo)系求解計算可以近似得到手性液晶的旋光角公式[5]為:
但這一公式只能得出旋光率的大致變化,與實際測量結(jié)果相差較大。Berremanrr 4×4矩陣方法利用麥克斯韋方程組進行計算,并考慮了多重反射,無論對于反射式還是透射式的液晶器件都可得到精確解[6-8],因此我們使用Berreman 4×4矩陣方法進行旋光率的計算。其原理如下所述。
圖1 光線入射液晶薄層Fig.1 Light incident on the liquid crystal layer
將玻璃基板中間的液晶相分為很多如圖1的薄層,入射光逐層入射。假設(shè)液晶層兩邊為各向同性介質(zhì),設(shè)光線與z 軸成θ0角斜入射,入射光場可表示為:
根據(jù)Berreman 4×4矩陣方法[8],麥克斯韋方程組可以用下式表示:
稱為Berreman矩陣[9]。
ε為液晶的介電張量。將薄層視為均勻分布,每層厚度為Δz,每一層的介電張量隨z 軸變化。介電張量隨液晶指向矢的不同而改變,對于未加電場的手性液晶,以螺旋軸為z軸,介電張量ε()z 可由式(5)[9]計算得到:
任意相鄰的網(wǎng)格間Ψ 有近似解:
第i層的Qi=exp(i k0ΓΔz)值隨z 的改變而不同,最終的透射光場可由式(6)決定:
根據(jù)4×4矩陣方法得到透射光場后,設(shè)透射光場為T=[TxTy]T,為計算旋光角度,可以通過比較光場透過檢偏器后的光強尋找最大消光位置得到。
如圖2所示,設(shè)作為檢偏器的偏振片與x 軸的夾角為φ0。
圖2 偏振片方向坐標(biāo)Fig.2 Coordinate of polarizer’s orientation
根據(jù)馬呂斯定律,可得此層瓊斯矩陣如式(7)[10]:
通過檢偏器后的透射光場電場分量即為:
可得光強為下式:
使光強A 最小的φ0 就是最大消光位置,即可得到旋光角。例如入射光電場分量為[1,0],若當(dāng)φ0=120°時A 最小,可得此時的旋光角為30°,如果是左旋手性液晶,旋光角則為-150°,即左旋150°。
使用MATLAB 利用4×4矩陣方法改變?nèi)肷浣?,螺距、盒厚等條件對手性液晶旋光率進行數(shù)值計算。不同螺距的手性液晶由手性劑CB15以不同比例與YM8型向列型液晶進行配比得到。CB15為右旋手性劑,其HTP值為7.9/μm。
本論文使用上海光學(xué)儀器五廠生產(chǎn)的WXG-4型圓盤旋光儀進行實驗測量。WXG-4 圓盤旋光儀,光源為中心波長589.3nm 的鈉光燈,采用三分視界法來確定光學(xué)零位。
圖3 WXG4型旋光儀光路圖Fig.3 Measurement system of WXG-4polarimeter
旋光角測量光路如圖3所示,恒溫槽為測量時控制溫度的附加器件。物目鏡看到的視場被長方形石英片分為三視界,旋轉(zhuǎn)檢偏器會產(chǎn)生連續(xù)的亮暗變化,通過對比中間視場與兩邊視場的明暗程度來確定最大消光位置。當(dāng)中間視場與兩邊視場一樣暗時,即為最大消光位置,度盤上的讀數(shù)即為此時的旋光角[11]。
使用旋光儀測得不同厚度旋光率隨螺距變化的結(jié)果,與MATLAB 仿真結(jié)果進行比較。圖4為垂直入射條件下,盒厚為6μm 和11μm 時旋光角隨螺距變化的理論結(jié)果和實測結(jié)果比較曲線。圖中實線為理論結(jié)果,實點為測量數(shù)據(jù)。
圖4 盒厚6μm及11μm時旋光角隨螺距的變化曲線Fig.4 Optical rotation angle versus pitch curve of 6μm and 11μm thickness
垂直入射時,250~310nm 螺距段的手性液晶旋光角隨螺距及盒厚的增大而減小,驗證結(jié)果與MATLAB的仿真結(jié)果相吻合。可以得出,隨著螺距增加,這一波長下,的旋光率呈減小趨勢。
斜入射時,如果使用中心波長進行計算,由于單一波長的高相干性對旋光有較大影響,得到的旋光率隨入射角變化曲線會有大幅度的震蕩,但實際使用的光源波長并不單一,曲線相對平滑的多,因此理論結(jié)果與實測結(jié)果出入很大。為避免這一問題,采用如下方法:由于鈉黃光為589.0和589.6nm 的鈉雙線,分別計算589.0nm,589.6 nm 和中心波長589.3nm 時旋光角,使用這3種波長計算結(jié)果的平均值來近似實際情況,得到結(jié)果如圖5中實線所示,圖5為6μm 盒厚下螺距為290nm 時,斜入射條件下驗證結(jié)果與理論曲線比較圖。
結(jié)果顯示,斜入射時,旋光率隨入射角的增大而增大,這是因為當(dāng)入射光角度不為零時,液晶分子對光矢量的旋轉(zhuǎn)強度取決于液晶分子在與入射光法線垂直的平面上的投影,改變?nèi)肷浣窍喈?dāng)于改變了手性液晶的螺距,所以入射角不同旋光率也會發(fā)生變化。隨著入射角的增大,玻璃表面的衍射對旋光效應(yīng)的影響越發(fā)明顯,當(dāng)入射角增大到60°左右時無法再觀察到明顯的旋光現(xiàn)象。
圖5 斜入射時旋光角隨入射角變化曲線Fig.5 Optical rotation angle versus incident angle curve of oblique incidence
控制溫度,進行不同溫度下的旋光角測量。圖6為盒厚6μm 時不同螺距下旋光角隨溫度變化的曲線。
圖6 旋光角隨溫度變化曲線Fig.6 Optical rotation angle versus temperature
螺距250~270nm 的手性液晶,旋光率隨溫度的升高而增大,直到旋光角增大為180°(測量時180°與0°為同一位置,所以實際是變?yōu)?°),由于溫度升高使得螺距減小。由圖4得到的規(guī)律可知,液晶分子入射光的旋光率逐漸變大,直到到達液晶清亮點[12],液晶變?yōu)楦黜椡缘囊后w,這時液晶對光矢量沒有旋光作用,出射光的偏振方向與入射光相同,因此測得的旋光率為零。
螺距為290nm 的液晶旋光率隨溫度升高總趨勢為增大,但在某些溫度下有波動,這是由于這一螺距段的液晶因為液晶盒取向,基板附近的液晶分子在加熱到某一溫度時指向矢發(fā)生180°的跳變,而不是連續(xù)變化導(dǎo)致。
螺距為310nm 的手性液晶,旋光率隨溫度的升高而減小,直至無法觀察到最大消光,這是因為處于這一螺距的液晶在溫度升高的過程中,螺距逐漸增大,當(dāng)螺距足夠大到超出旋光效應(yīng)的螺距范圍時,液晶對此波長的光不具有旋光效應(yīng),出射光不再是線偏振光,所以無法觀察到旋光現(xiàn)象。
圖6中,不同螺距的手性液晶旋光率隨溫度具有明顯不同的變化趨勢,這是因為由式(1)可以得出,手性液晶的旋光能力取決于螺距p,Δn 以及此時的入射波長λ,而對于不同螺距的液晶,溫度變化可能引起螺距增大也可能減?。?]。如圖6中所示螺距為250~290nm 的手性液晶,隨溫度的升高螺距p 減小,由公式(1)或Berreman4×4矩陣法可得此波長時,隨著p 減小旋光率變大(如圖4),這便導(dǎo)致了隨溫度的升高旋光率增大,相反螺距為310nm 的手性液晶隨溫度升高p 增大,所以呈現(xiàn)與其他螺距相異的熱敏曲線。
不同厚度時旋光角隨溫度變化曲線如圖7所示,螺距相同時,不同盒厚的液晶盒旋光率隨溫度變化的規(guī)律是相同的,因為溫度只是是通過改變液晶螺距、雙折射率等因素從而更改旋光率的,當(dāng)入射光波長和液晶參數(shù)不變時,旋光率隨溫度的變化規(guī)律是一定的。
圖7 不同厚度旋光角隨溫度變化曲線Fig.7 Optical rotation angle versus temperature of different thickness(6μm and 11μm)
結(jié)果表明,不同螺距的手性液晶旋光率隨溫度的變化規(guī)律不盡相同,這是因為對于不同螺距的液晶溫度變化可能引起螺距增大也可能減小,且不同螺距段的螺距變化引起的旋光率改變方向不同。盡管不同螺距會呈現(xiàn)出不同熱敏規(guī)律,但每種螺距下旋光角隨溫度的變化顯著且有一定的規(guī)律。
上一節(jié)探究了手性液晶旋光率隨溫度的變化規(guī)律,然而若要將手性液晶的這一規(guī)律用于熱敏材料中,則需要驗證在各個溫度下旋光角是否穩(wěn)定在某個值的誤差范圍內(nèi)。表1 為6μm 盒厚下,螺距為270nm 的手性液晶旋光率隨溫度變化的3次測量結(jié)果記錄。
從表中可以看出,3 次實驗結(jié)果相差較小,3組數(shù)據(jù)的方差僅為0.021°,波動很小,說明手性液晶的旋光率在溫度不變的情況下基本穩(wěn)定。
表1 手性液晶旋光率熱敏穩(wěn)定性Tab.1 Result of the stable study on optical rotatory of CLC (°)
本論文利用Berreman 4×4傳輸矩陣結(jié)合偏振光傳播定律得到可準(zhǔn)確計算手性液晶旋光率及其隨外界因素(入射角,螺距,盒厚等)變化的方法,使用MATLAB 用此方法對手性液晶的旋光率進行建模與仿真,并通過測量CB15和YM8液晶配置得到的手性液晶多種條件下的旋光率對仿真結(jié)果進行了驗證,實驗結(jié)果表明,Berreman 4×4矩陣方法可以準(zhǔn)確計算垂直入射和斜入射條件時的旋光角。結(jié)果表明在入射角大于一定角度時,不再具有明顯的旋光效應(yīng)。
通過對手性液晶熱敏效應(yīng)的實驗研究,得出螺距為250 ~310nm 的手性液晶旋光率隨溫度變化情況雖不同,但旋光強度隨溫度都有明顯且規(guī)律性的變化。論文同時驗證了手性液晶旋光率的溫度穩(wěn)定性,得出對熱敏特性的多次測量方差僅為0.021°,說明手性液晶溫度不變時,旋光率穩(wěn)定于某一數(shù)值,因此將手性液晶的旋光率可隨溫度規(guī)律性變化這一特性用于熱敏材料中是可行的。
[1] 謝毓章.液晶物理學(xué)[M].北京:科學(xué)出版社,1998:568.Xie Y Z.The Physics of Liquid Crystals[M].Peking:Science Press,1998:568.(in Chinese)
[2] 韓振興.熱敏液晶測溫技術(shù)及其在平板氣膜冷卻實驗中的應(yīng)用[D].北京:中國科學(xué)院研究生院,2005.Han Z X.Liquid crystal thermography and its application in flat plate film cooling experiments[D].Peking:University of Chinese Academy of Sciences,2005.(in Chinese).
[3] 史永基.液晶溫度傳感器[J].自動化儀表,1987(6):22-24.Shi Y J.Liquid crystal temperature sensor[J].Process Automation Instrumentation,1987(6):22-24.(in Chinese)
[4] 黃子強.液晶顯示原理[M].北京:國防工業(yè)出版社,2008:98.Huang Z Q.Principle of Liquid Crystal Display [M].Peking:Nation Defense Industry Press,2008:98.(in Chinese)
[5] 劉厚通,李國華,郝殿中.螺狀相液晶旋光特性理論模擬與實驗研究[J].光學(xué)學(xué)報,2007,27(2):329-334.Liu H T,Li G H,Hao D Z.Theoretical simulation and experimental research of cholesteric liquid crystal optical rotatory characteristic[J].Acta Photonica Sinica,2007,27(2):329-334.(in Chinese)
[6] Hiap L O.Reducing the Berreman 4×4propagation matrix method for layered inhomogeneous anisotropic media to the Abeles 2×2matrix method for isotropic media[J].Journal of the Optical Society of America,1991,8(2):303-305.
[7] Wóhler H,Hass G,F(xiàn)ritsch M,et al.Faster 4×4matrix method for uniaxial inhomogeneous media[J].Journal of the Optical Society of America.A,1988,5(9):1554-1557.
[8] Berreman D W.Optics in stratified and anisotropic media:4×4-matrix formulation[J].Journal of the Optical Society of America,1972,62(4):502-510.
[9] WuJ W,Jisoo H,Ha N Y,et al.Nonlinear optical changes in 1-D photonic band gaps of cholesteric liquid crystal[C]//Photonic Band gap Materials and Devices,Proceedings of SPIE,2002,4655:303-308.
[10] 葉玉堂,饒建珍,肖峻,等.光學(xué)教程[M].北京:清華大學(xué)出版社,2005:346-348.Ye Y T,Rao J Z,Xiao J,et al.Optical Tutorial[M].Peking:Tsinghua University Press,2005:346-348.(in Chinese)
[11] 于曉紅,連潔,龍愛群,等.WXG-4型旋光儀三分視場亮暗調(diào)節(jié)[J].物理實驗,2010,30(3):32-24.Yu X H,Lian J,Long A Q,et al.Adjustment of bright vision and dark vision of WXG-4Polarimeter[J].Physics Experimentation,2010,30(3):32-24.(in Chinese)
[12] 楊磊,劉洋,鄭永磊,等.膽甾相液晶盒貝納德效應(yīng)實驗[J].液晶與顯示,2012,27(3):288-291.Yang L,Liu Y,Zheng Y L,et al.Bernard effect experiment of cholesteric liquid crystal cel[J].Chinese Journal of Liquid Crystal and Display,2012,27(3):288-291.(in Chinese)