孫大慶,李洪飛,宋大巍,楊 健,3,張東杰,3,許曉曦*
乳桿菌屬天然質(zhì)粒研究進(jìn)展
孫大慶1,2,李洪飛1,宋大巍1,楊 健1,3,張東杰1,3,許曉曦2,*
(1.黑龍江八一農(nóng)墾大學(xué) 國(guó)家雜糧工程技術(shù)研究中心,黑龍江 大慶 163319;2.東北農(nóng)業(yè)大學(xué)食品學(xué)院,黑龍江 哈爾濱 150030;3.黑龍江八一農(nóng)墾大學(xué)食品學(xué)院,黑龍江 大慶 163319)
天然質(zhì)粒在乳桿菌屬多個(gè)菌種中已被發(fā)現(xiàn),它們攜帶了許多重要生理功能和脅迫因子抗性基因,對(duì)乳桿菌遺傳、代謝、進(jìn)化等生物學(xué)研究具有重要意義。本文概述乳桿菌屬天然質(zhì)粒的生物學(xué)特征、分布和主要功能,重點(diǎn)對(duì)乳桿菌屬天然質(zhì)粒的復(fù)制類型與調(diào)控機(jī)制的研究進(jìn)展進(jìn)行綜述,最后對(duì)乳桿菌質(zhì)粒的未來研究方向進(jìn)行探討,希望可以為相關(guān)研究人員提供有益的參考與借鑒。
乳桿菌屬;質(zhì)粒;復(fù)制;調(diào)控;反義RNA
乳桿菌是乳酸菌中一個(gè)非常重要的屬,它們廣泛地分布于植物根部和體表、青貯飼料、動(dòng)物口腔、陰道和胃腸道、發(fā)酵食品(乳制品、肉制品、面團(tuán)、酒、飲料、蔬菜)等多 種自然環(huán)境,與人類飲食和健康息息相關(guān)[1-4],是現(xiàn)代食品、醫(yī)藥、農(nóng)業(yè)等行業(yè)中具有重要經(jīng)濟(jì)價(jià)值的益生菌?,F(xiàn)已證明,乳桿菌屬多數(shù)菌種富含天然質(zhì)粒,它們?cè)诖笮?、結(jié)構(gòu)、構(gòu)象、拷貝數(shù)和復(fù)制調(diào)控等方面具有豐富的多樣性[5-7]。這些質(zhì)粒在滿足自身復(fù)制、遺傳和進(jìn)化需求的同時(shí),也賦予了乳桿菌廣泛的生理特性和更強(qiáng)的環(huán)境適應(yīng)能力,從而使乳桿菌和內(nèi)生質(zhì)粒在復(fù)雜多變的生存環(huán)境和選擇壓力下更好地共生、遺傳和進(jìn)化[6]。
乳桿菌質(zhì)粒發(fā)現(xiàn)和研究起步較早[8],但長(zhǎng)期以來,人們對(duì)乳桿菌質(zhì)粒的研究始終關(guān)注不足。與芽孢桿菌屬和葡萄球菌屬以及乳酸菌中腸球菌屬、乳球菌屬和鏈球菌屬質(zhì)粒研究比較,人們對(duì)乳桿菌屬質(zhì)粒復(fù)制、遺傳、進(jìn)化、功能等多方面了解仍相當(dāng)有限,這在乳桿菌質(zhì)粒以往的綜述性文獻(xiàn)中可見一斑[5-7]。然而,這種情況在近些年已經(jīng)發(fā)生了轉(zhuǎn)變。我們統(tǒng)計(jì)發(fā)現(xiàn),目前美國(guó)國(guó)家生物技術(shù)信息中心(National Center for Biotechnology Information,NCBI)的RefSeq數(shù)據(jù)庫中乳桿菌質(zhì)粒基因組數(shù)據(jù)正快速增加,至今已收錄23個(gè)種、165個(gè)乳桿菌質(zhì)粒完整基因組序列,已超過腸球菌屬(109個(gè))、乳球菌屬(87個(gè))和鏈球菌屬(49個(gè)),成為乳酸菌中測(cè)序質(zhì)粒數(shù)量最多的屬;2000年以后有關(guān)乳桿菌質(zhì)粒的研究報(bào)道數(shù)量超過以前所有報(bào)道,占總數(shù)57.9%(317/547)。這些數(shù)據(jù)表明,乳桿菌質(zhì)粒研究在近些年取得了快速的發(fā)展,使我們對(duì)乳桿菌質(zhì)粒生物學(xué)特征有了更多、更深刻的了解。為此,我們?cè)诒疚闹袑?duì)乳桿菌天然質(zhì)?;咎卣鳌⒎植?、復(fù) 制和功能進(jìn)行比較全面的綜述,希望可為乳桿菌質(zhì)粒相關(guān)的研究者提供一些有益的信息。
一般而言,乳桿菌質(zhì)粒大小一般在1~100 kb之間,少數(shù)巨型質(zhì)粒可達(dá)100 kb以上[6]。2007年,Li Yongtao等[9]研究發(fā)現(xiàn),被檢的33株唾液乳桿菌普遍含有巨型質(zhì)粒,其他47種、91株乳桿菌中發(fā)現(xiàn)6種、7株存在巨型質(zhì)粒,這些巨型質(zhì)粒大小在120~490 kb之間。這表明乳桿菌屬中唾液乳桿菌可能普遍含有巨型質(zhì)粒,其他乳桿菌種雖然也有巨型質(zhì)粒,但并不常見。乳桿菌質(zhì)粒DNA分子通常是雙鏈、閉合、環(huán)狀,但偶爾也有雙鏈、線性質(zhì)粒發(fā)現(xiàn)于乳桿菌的報(bào)道,如植物乳桿菌pC30il[10]、羅伊乳桿菌pGT232[11]、德氏乳桿菌pLBB1[12]、干酪乳桿菌pW56[13]和唾液乳桿菌pLS51A、pLS51B、pLS51C、pLS 51D[14]。乳桿菌質(zhì)粒G+C含量相對(duì)穩(wěn)定,通常在30%~45%之間,接近于乳桿菌染色體基因組G+C含量[15]。
自1976年Chassy等[8]在干酪乳桿菌中第一次發(fā)現(xiàn)質(zhì)粒以來,至今從不同環(huán)境分離的乳桿菌中含有天然質(zhì)粒的報(bào)道已有很多。從這些報(bào)道中可以清晰地知道,乳桿菌屬是一個(gè)多樣性豐富的天然質(zhì)粒庫,許多乳桿菌菌種含有一個(gè)或更多天然質(zhì)粒,目前發(fā)現(xiàn),含有質(zhì)粒較多的菌種有短乳桿菌、嗜酸乳桿菌、干酪乳桿菌和瑞士乳桿菌,含有質(zhì)粒最多的菌種是植物乳桿菌,Ruiz-Barba等[16]報(bào)道在植物乳桿菌PLC25中發(fā)現(xiàn)多達(dá)16個(gè)天然質(zhì)粒共存。然而,并不是所有乳桿菌都含有天然質(zhì)粒,德氏乳桿菌似乎只在很少的菌株中存在天然質(zhì)粒[17]。此外,乳桿菌中一些稀有菌種質(zhì)粒分布情況的研究還很少見,顯然對(duì)這些菌種質(zhì)粒的研究更有利于全面的認(rèn)知乳桿菌屬天然質(zhì)粒[18]。需要額外說明的是,在質(zhì)粒研究早期,檢測(cè)質(zhì)粒的方法多采用浮力密度梯度離心法[8],該方法設(shè)備要求高,檢測(cè)效率低。現(xiàn)在普遍使用的瓊脂糖凝膠電泳法,雖然可以一次性檢測(cè)多個(gè)質(zhì)粒,但被檢質(zhì)粒大小限制于60 kb以內(nèi),更大的質(zhì)粒多掩蔽于基因組DNA中[6]。近年,脈沖凝膠電泳法已經(jīng)可以檢測(cè)102~104kb范圍大小的DNA[8]。因此以往研究檢測(cè)到的質(zhì)粒數(shù)量可能遠(yuǎn)被低估。
質(zhì)粒是細(xì)胞中能夠自主復(fù)制的DNA分子,如果不考慮質(zhì)粒大小,每個(gè)質(zhì)粒都可以看作一個(gè)復(fù)制子。復(fù)制子幾乎是所有質(zhì)粒上唯一且必備的遺傳單元,它決定著質(zhì)粒的復(fù)制、分配、拷貝數(shù)、宿主范圍和不相容性等基本遺傳特性,因此復(fù)制子是研究質(zhì)粒遺傳特征的核心區(qū)域。
3.1 質(zhì)粒的復(fù)制類型
乳桿菌天然質(zhì)粒復(fù)制存在2種基本復(fù)制類型:滾環(huán)(rolling-circle,RC)復(fù)制和theta(簡(jiǎn)稱θ)復(fù)制。以往研究發(fā)現(xiàn),乳桿菌大部分天然質(zhì)粒屬于RC型復(fù)制質(zhì)粒,θ型復(fù)制質(zhì)粒數(shù)量較少,且質(zhì)粒尺寸較大[6-7]。目前,乳桿菌RC型復(fù)制質(zhì)粒已開展了較為廣泛的研究,并且由于這些質(zhì)粒的寬宿主性質(zhì)而得到了較為廣泛的應(yīng)用[7],但乳桿菌中θ型天然質(zhì)粒的相關(guān)研究仍很匱乏。以往研究表明,RC型質(zhì)粒復(fù)制過程中一個(gè)鮮明的特征是產(chǎn)生單鏈DNA中間體[19-20],這一性質(zhì)造成RC型質(zhì)粒及其衍生載體在復(fù)制過程中容易發(fā)生重組和損傷,進(jìn)而引起結(jié)構(gòu)和遺傳穩(wěn)定性降低。相反,θ型質(zhì)粒在復(fù)制過程中不會(huì)產(chǎn)生單鏈DNA中間體,因此具有良好的結(jié)構(gòu)穩(wěn)定性和遺傳穩(wěn)定性,并且在大基因片段插入時(shí),仍能保持良好的穩(wěn)定性[21],更適合用于基因工程載體的構(gòu)建。此外,以往研究認(rèn)為,乳桿菌θ型復(fù)制質(zhì)粒多為大型質(zhì)粒,且宿主范圍很窄[22],而近年研究發(fā)現(xiàn),乳桿菌θ型復(fù)制質(zhì)粒也可以較小[23-24],并且可以同時(shí)在不同種、不同屬,甚至不同科的菌種中復(fù)制[25]。這表明,與RC型質(zhì)粒相比,乳桿菌屬θ型質(zhì)粒不但具備更好的結(jié)構(gòu)和遺傳穩(wěn)定性,而且同樣可以構(gòu)建小型寬宿主載體。
3.2質(zhì)粒復(fù)制調(diào)控機(jī)制
以往研究發(fā)現(xiàn),雖然質(zhì)粒的復(fù)制調(diào)控機(jī)制在不同復(fù)制類型、不同拷貝數(shù)、不同宿主菌和不同環(huán)境中表現(xiàn)出一定的多樣性、復(fù)雜性和差異性,但隨著越來越多質(zhì)粒復(fù)制子DNA序列的解析,與質(zhì)粒自身DNA相關(guān)的調(diào)控結(jié)構(gòu)和編碼的調(diào)節(jié)蛋白已被發(fā)現(xiàn),并顯示了一定程度的普遍性和同源性。目前質(zhì)粒中發(fā)現(xiàn)存在兩種主要的復(fù)制調(diào)控機(jī)制和模型,即重復(fù)子(iteron)介導(dǎo)的Iteron/Rep調(diào)控模型和反義RNA(antisense RNA,asRNA)介導(dǎo)的Cop-asRNA-Rep調(diào)控模型[26]。重復(fù)子介導(dǎo)的調(diào)控機(jī)制發(fā)生在質(zhì)粒復(fù)制的起始階段,并且普遍存在于含有rep和ori的質(zhì)粒。asRNA介導(dǎo)的調(diào)控機(jī)制被認(rèn)為在質(zhì)粒復(fù)制起始后扮演著更加精細(xì)的調(diào)節(jié)作用,決定著質(zhì)??截悢?shù)的高低,并維持質(zhì)??截悢?shù)的穩(wěn)定。目前該機(jī)制已發(fā)現(xiàn)4種調(diào)控模型:轉(zhuǎn)錄衰減、翻譯抑制、抑制引物成熟和抑制假結(jié)形成。4種調(diào)控模型的調(diào)控元件組成不同,例如有的質(zhì)粒缺少Cop蛋白,有的質(zhì)粒缺少Rep蛋白;4種調(diào)控模型的asRNA的大小、結(jié)構(gòu)也各不相同。因此asRNA介導(dǎo)的調(diào)控機(jī)制模型很可能具有豐富的多樣性[27-31]。
目前,在NCBI的RefSeq數(shù)據(jù)庫可以檢索到165個(gè)乳桿菌質(zhì)粒完整基因組。統(tǒng)計(jì)發(fā)現(xiàn)大多數(shù)乳桿菌質(zhì)粒含有rep基因,這表明重復(fù)子介導(dǎo)的復(fù)制起始調(diào)控機(jī)制可能在乳桿菌質(zhì)粒中同樣普遍存在,而在少數(shù)不含rep基因的質(zhì)粒中可能存在新的復(fù)制起始調(diào)控機(jī)制。在一些報(bào)道中也存在著這樣的推測(cè)。例如嗜酸乳桿菌質(zhì)粒pRKC30SC1[32]和植物乳桿菌質(zhì)粒pG6303[33]、p256[34]、pLP9000[35]。這些質(zhì)粒上的開放閱讀框架(open reading frame,ORF)編碼的蛋白與已知Rep蛋白沒有相似性,因此這些質(zhì)??赡懿缓蠷ep蛋白,也可能含有一種未知的Rep蛋白。還有一些質(zhì)粒含有1個(gè)以上具有活性的Rep蛋白,如植物乳桿菌質(zhì)粒pMRI5.2[36]。這個(gè)質(zhì)粒含有2個(gè)Rep蛋白,1個(gè)Rep蛋白與希氏乳桿菌質(zhì)粒pLAB1000的Rep蛋白具有98%一致性,另一個(gè)Rep蛋白與乳球菌質(zhì)粒pWVO1的Rep蛋白相似,而pLAB1000和pWVO1分屬于pC194和pMV158兩個(gè)不同的質(zhì)粒家族,因此作者認(rèn)為質(zhì)粒pMRI5.2可能起源于兩個(gè)不同質(zhì)粒。顯然,當(dāng)1個(gè)質(zhì)粒不含有Rep蛋白或含有1個(gè)以上Rep蛋白時(shí),重復(fù)子介導(dǎo)的調(diào)控機(jī)制在這些質(zhì)粒復(fù)制起始過程中很可能發(fā)揮著不一樣的調(diào)控機(jī)制,而新調(diào)控機(jī)制是如何進(jìn)行的仍需要進(jìn)一步的研究。
至今,在已測(cè)序乳桿菌質(zhì)粒中已發(fā)現(xiàn)多個(gè)質(zhì)粒含有推定的asRNA和/或調(diào)節(jié)蛋白基因,其中既有RC型質(zhì)粒[37-39],也有θ型質(zhì)粒[40-41]。然而在這些質(zhì)粒中,只有戊糖乳桿菌質(zhì)粒p353-2編碼的asRNA經(jīng)實(shí)驗(yàn)證實(shí)對(duì)質(zhì)粒repmRNA具有轉(zhuǎn)錄衰減作用,進(jìn)而負(fù)調(diào)控質(zhì)粒的復(fù)制[39],而所有其他質(zhì)粒編碼的asRNA和/或調(diào)節(jié)蛋白是否具有生理功能,以及它們具體的調(diào)控方式目前仍是未知的。因此,至今關(guān)于乳桿菌質(zhì)粒asRNA介導(dǎo)的復(fù)制調(diào)控機(jī)制的研究很少,含有asRNA和/或調(diào)節(jié)蛋白基因的乳桿菌質(zhì)粒普遍缺乏進(jìn)一步的功能驗(yàn)證和調(diào)控模型的研究。
質(zhì)粒功能取決于質(zhì)粒除了編碼復(fù)制和維持系統(tǒng)必需基因外是否編碼了與表型有關(guān)的功能基因。雖然以往發(fā)現(xiàn)的乳桿菌質(zhì)粒多數(shù)是功能未知的隱蔽性質(zhì)粒,但隨著DNA測(cè)序技術(shù)的飛速發(fā)展,已經(jīng)有越來越多的乳桿菌質(zhì)?;蚪M被測(cè)序和注釋,人們發(fā)現(xiàn)乳桿菌質(zhì)粒既可以不編碼任何功能基因(例如小的隱蔽性質(zhì)粒pLB925A01[42]),也可以編碼種類繁多的功能基因(例如巨型質(zhì)粒pMP118[9])。目前,在乳桿菌質(zhì)粒上發(fā)現(xiàn)的眾多功能基因中,人們研究較多的主要有4類:蛋白酶基因[42-43];糖、氨基酸和檸檬酸代謝基因[44-45];細(xì)菌素、胞外多糖和色素合成基因[43-44,46];抗生素、重金屬、噬菌體等脅迫因子抗性基因[47-49]。正是這些功能使乳桿菌在復(fù)雜環(huán)境和選擇壓力下,顯示了更強(qiáng)的生存優(yōu)勢(shì)和更好的抗環(huán)境脅迫能力,因此深入研究質(zhì)粒攜帶的這些功能基因?qū)窈笕闂U菌科學(xué)、理性的應(yīng)用具有十分重要意義。
實(shí)際上,自從脈沖凝膠電泳發(fā)現(xiàn)了巨型質(zhì)粒和小染色體以來,質(zhì)粒和染色體之間的區(qū)別變得模糊不清,它們編碼的功能基因?qū)λ拗鞅硇偷膮^(qū)別也越來越有限。目前在乳桿菌中已有4個(gè)超過100 kb大小的質(zhì)?;蚪M完成了測(cè)序,它們分別是馬乳酒樣乳桿菌pWW1(194 kb)[50]和唾液乳桿菌pMP118(242 kb)[9]、pHN3(242 kb)[51]和pLS51A(143 kb)[14]。研究最清楚的巨型質(zhì)粒pMP118中既有質(zhì)粒獨(dú)有的復(fù)制起始蛋白和質(zhì)粒分配基因,又有染色體中常見的糖代謝、氨基酸代謝、限制性內(nèi)切酶、甲基化酶、拓?fù)洚悩?gòu)酶基因,并且repE和groEL基因系統(tǒng)發(fā)生分析顯示巨型質(zhì)粒與染色體具有相似的進(jìn)化途徑[9]。這表明,乳桿菌巨型質(zhì)粒與染色體相似,可以攜帶多樣性豐富的功能基因,這改變了以往乳桿菌質(zhì)粒多為隱蔽性小質(zhì)粒的結(jié)論[5-7],為乳桿菌質(zhì)粒及質(zhì)粒功能研究提供了更廣闊的空間和可能性。
近年來,隨著高通量DNA測(cè)序技術(shù)的迅猛發(fā)展,基因組測(cè)序變得越來越便捷,這促使微生物學(xué)研究迅速進(jìn)入了后基因組時(shí)代,乳桿菌及其質(zhì)粒研究也迎來了新一輪的研究熱潮。目前乳桿菌屬共發(fā)現(xiàn)202個(gè)種、29個(gè)亞種(數(shù)據(jù)來自http://www.bacterio.net/ lactobacillus.html),其中有71個(gè)種、110個(gè)菌株完成了染色體基因組測(cè)序(數(shù)據(jù)來自NCBI的Genome數(shù)據(jù)庫),同時(shí)有23個(gè)種、165個(gè)質(zhì)?;蚪M也完成了測(cè)序(數(shù)據(jù)來自NCBI的RefSeq數(shù)據(jù)庫)。雖然乳桿菌已成為乳酸菌中測(cè)序質(zhì)粒最多的屬,但測(cè)序質(zhì)粒的乳桿菌種的數(shù)量?jī)H占乳桿菌種總數(shù)量的11.38%(23/202),且測(cè)序質(zhì)粒主要集中于常見的植物乳桿菌、短乳桿菌等6個(gè)種,這表明乳桿菌屬質(zhì)粒資源仍有很大的挖掘空間,因此今后需要更加注重乳桿菌稀有菌種質(zhì)粒分布情況的研究,進(jìn)而可以更加全面、系統(tǒng)地認(rèn)知乳桿菌屬質(zhì)粒生物學(xué)特征。
前文已經(jīng)提到,目前人們對(duì)乳桿菌質(zhì)粒的復(fù)制調(diào)控機(jī)制進(jìn)行的研究非常有限,對(duì)具體的調(diào)控過程知之甚少。實(shí)際上包括復(fù)制調(diào)控機(jī)制,人們對(duì)于乳桿菌質(zhì)粒的分配、宿主范圍、不相容性、進(jìn)化等基本遺傳特征都不甚了解,大部分機(jī)制問題都停留在DNA序列同源性的推測(cè)上,十分缺乏基于實(shí)驗(yàn)的機(jī)理研究。相反,基于乳桿菌質(zhì)粒功能進(jìn)行的應(yīng)用性研究開展較多,并在載體構(gòu)建[7]、載體疫苗[52]等方面取得了可喜的進(jìn)展。因此,今后乳桿菌質(zhì)粒研究需要更加注重質(zhì)粒遺傳機(jī)制的基礎(chǔ)性研究,因?yàn)橹挥匈|(zhì)粒的復(fù)制、遺傳與進(jìn)化機(jī)制清晰了,質(zhì)粒功能及其應(yīng)用才能發(fā)揮更大的效益,更好地為人類飲食和健康造福。
參考文獻(xiàn):
[1]SLATTERY L, O’CALLAGHAN J, FITZGERALD G F, et al. Invited review:Lactobacillus helveticus: a thermophilic dairy starter related to gut bacteria[J]. Journal of Dairy Science, 2010, 93(10): 4435-4454.
[2]BURITI F C, SAAD S M. Bacteria ofLactobacillus caseigroup: characterization, viability as probiotic in food products and their importance for human health[J]. Archivos Latinoamericanos de Nutricion, 2007, 57(4): 373-380.
[3]TURRONI F, VENTURA M, BUTTO L F, et al. Molecular dialogue between the human gut microbiota and the host: aLactobacillusandBifi dobacteriumperspective[J]. Cellular and Molecular Life Sciences, 2014, 71(2): 183-203.
[4]SELLE K, KLAENHAMMER T R. Genomic and phenotypic evidence for probiotic influences ofLactobacillus gasserion human health[J]. FEMS Microbiology Reviews, 2013, 37(6): 915-935.
[5]POUWELS P H, LEER R J. Genetics oflactobacilli: plasmids and gene expression[J]. Antonie van Leeuwenhoek, 1993, 64(2): 85-107.
[6]WANG T T, LEE B H. Plasmids inLactobacillus[J]. Critical Reviews in Biotechnology, 1997, 17(3): 227-272.
[7]SHARECK J, CHOI Y, LEE B, et al. Cloning vectors based on cryptic plasmids isolated from lactic acid bacteria: their characteristics and potential applications in biotechnology[J]. Critical Reviews in Biotechnology, 2004, 24(4): 155-208.
[8]CHASSY B M, GIBSON E, GIUFFRIDA A. Evidence for extrachromosomal elements inLactobacillus[J]. Journal of Bacteriology, 1976, 127(3): 1576-1578.
[9]LI Yongtao, CANCHAYA C A, FANG Fang, et al. Distribution of mega plasmids inLactobacillus salivariusand otherlactobacilli[J]. Journal of Bacteriology, 2007, 189(17): 6128-6139.
[10]SKAUGEN M. The complete nucleotide sequence of a small cryptic plasmid fromLactobacillus plantarum[J]. Plasmid, 1989, 22(2): 175-179.
[11]HENG N C K, BATEUP J M, LOACH D M, et al. Influence of different functional elements of plasmid pGT232 on maintenance of recombinant plasmids inLactobacillus reuteripopulationsin vitroandin vivo[J]. Applied and Environmental Microbiology, 1999, 65(12): 5378-5385.
[12]AZCARATE-PERIL M A, RAYA R R. Sequence analysis of pLBB1, a cryptic plasmid fromLactobacillus delbrueckiisubsp.bulgaricus[J]. Canadian Journal of Microbiology, 2002, 48(2): 105-112.
[13]HOCHWIND K, WEINMAIER T, SCHMID M, et al. Draft genome sequence ofLactobacillus caseiW56[J]. Journal of Bacteriology, 2012, 194(23): 6638-6638.
[14]KERGOURLAY G, MESSAOUDI S, DOUSSET X, et al. Genome sequence ofLactobacillus salivariusSMXD51, a potential probiotic strain isolated from chicken cecum, showing anti-campylobacter activity[J]. Journal of Bacteriology, 2012, 194(11): 3008-3009.
[15]CLAESSON M J, van SINDEREN D, O’TOOLE P W. The genusLactobacillus: a genomic basis for understanding its diversity[J]. FEMS Microbiology Letters, 2007, 269(1): 22-28.
[16]RUIZ-BARBA J L, PIARD J C, JIMENEZ-DIAZ R. Plasmid profiles and curing of plasmids inLactobacillus plantarumstrains isolated from green olive fermentations[J]. Journal of Applied Bacteriology, 1991, 71(5): 417-421.
看到孩子眼中的熱愛,也看到孩子身上的天賦,振宇的爸爸一咬牙,在自己的工作室打造了一個(gè)小小的“實(shí)驗(yàn)室”,配備了各種設(shè)備儀器,方便振宇進(jìn)行各種實(shí)驗(yàn),實(shí)現(xiàn)腦中的“奇思妙想”。在爸爸的大力支持和溫暖陪伴下,小振宇獲得了更多機(jī)會(huì)去接觸和探索科技世界。就這樣,一顆充滿無限可能性的種子漸漸發(fā)芽……
[17]BOURNIQUEL A A, CASEY M G, MOLLET B, et al. DNA sequence and functional analysis ofLactobacillus delbrueckiisubsp.lactisplasmids pN42 and pJBL2[J]. Plasmid, 2002, 47(2): 153-157.
[18]ASTERI I A, PAPADIMITRIOU K, BOUTOU E, et al. Comparative and evolutionary analysis of plasmid pREN isolated fromLactobacillus rennini, a novel member of the theta-replicating pUCL287 family[J]. FEMS Microbiology Letters, 2011, 318(1): 18-26.
[19]POSNO M, LEER R J, van LUIJK N, et al. Incompatibility ofLactobacillusvectors with replicons derived from small crypticLactobacillusplasmids and segregational instability of the introduced vectors[J]. Applied and Environmental Microbiology, 1991, 57(6): 1822-1828.
[20]VUJCIC M, TOPISIROVIC L. Molecular analysis of the rolling-circle replicating plasmid pA1 ofLactobacillus plantarumA112[J]. Applied and Environmental Microbiology, 1993, 59(1): 274-280.
[21]YANG E J, CHANG H C. Construction and evaluation of shuttle vector, pGYC4α, based on pYC2 fromLactobacillus sakei[J]. Biotechnology Letters, 2011, 33(3): 599-605.
[22]PEREZ-ARELLANO I, ZUNIGA M, PEREZ-MARTINEZ G. Construction of compatible wide-host-range shuttle vectors for lactic acid bacteria andEscherichia coli[J]. Plasmid, 2001, 46(2): 106-116.
[23]LEE J H, HALGERSON J S, KIM J H, et al. Comparative sequence analysis of plasmids fromLactobacillus delbrueckiiand construction of a shuttle cloning vector[J]. Applied and Environmental Microbiology, 2007, 73(14): 4417-4424.
[24] 郝彥玲,翟征遠(yuǎn),尹勝,等.鮮牛奶中副干酪乳桿菌隱蔽型質(zhì)粒pMA3的全序列測(cè)定及功能分析[J].農(nóng)業(yè)生物技術(shù)學(xué)報(bào), 2008, 16(6): 1031-1034.
[25]EOM H J, MOON J S, CHO S K, et al. Construction of theta-type shuttle vector forLeuconostocand other lactic acid bacteria using pCB42 isolated from kimchi[J]. Plasmid, 2012, 67(1): 35-43.
[26]FUNNELL B E, PHILLIPS G J. Plasmid biology[M]. Washington: ASM Press, 2004: 16-17.
[27]BRANTL S. Antisense RNAs in plasmids: control of replication and maintenance[J]. Plasmid, 2002, 48(3): 165-173.
[28]NORDSTROM K. Plasmid R1: replication and its control[J]. Plasmid, 2006, 55(1): 1-26.
[29]BRANTL S. Regulatory mechanisms employed bycis-encoded antisense RNAs[J]. Current Opinion in Microbiology, 2007, 10(2): 102-109.
[30]CERVANTES-RIVERA R, ROMERO-LOPEZ C, BERZALHERRANZ A, et al. Analysis of the mechanism of action of the antisense RNA that controls the replication of the repABC plasmid p42d[J]. Journal of Bacteriology, 2010, 192(13): 3268-3278.
[31]BRANTL S. Acting antisense: plasmid-and chromosome-encoded sRNAs from Gram-positive bacteria[J]. Future Microbiology, 2012, 7(7): 853-871.
[32]OH S, ROH H, KO H J, et al. Complete genome sequencing ofLactobacillus acidophilus30SC, isolated from swine intestine[J]. Journal of Bacteriology, 2011, 193(11): 2882-2883.
[33]XI Xuedong, FAN Jing, HOU Ying, et al. Characterization of three cryptic plasmids fromLactobacillus plantarumG63 that was isolated from Chinese pickle[J]. Plasmid, 2013, 70(3): 321-328.
[34]SORVIG E, SKAUGEN M, NATERSTAD K, et al. Plasmid p256 fromLactobacillus plantarumrepresents a new type of replicon in lactic acid bacteria, and contains a toxin: antitoxin-like plasmid maintenance system[J]. Microbiology, 2005, 151(2): 421-431.
[35]DAMING R, YINYU W, ZILAI W, et al. Complete DNA sequence and analysis of two cryptic plasmids isolated fromLactobacillus plantarum[J]. Plasmid, 2003, 50(1): 70-73.
[36]CHO G S, HUCH M, MATHARA J M, et al. Characterization of pMRI 5.2, a rolling-circle-type plasmid fromLactobacillus plantarumBFE 5092 which harbours two different replication initiation genes[J]. Plasmid, 2013, 69(2): 160-171.
[37]CHANG Y C, HUANG J Y, CHIOU M T, et al. Characterization of a small cryptic plasmid pK50-2 isolated fromLactobacillus reuteriK50[J]. Plasmid, 2013, 69(1): 58-66.
[38]PAN Qu, ZHANG Lin, LI Jinchuan, et al. Characterization of pLP18, a novel cryptic plasmid ofLactobacillus plantarumPC518 isolated from Chinese pickle[J]. Plasmid, 2011, 65(3): 204-209.
[39]POUWELS P H, van LUIJK N, LEER R J, et al. Control of replication of theLactobacillus pentosusplasmid p353-2: evidence for a mechanism involving transcriptional attenuation of the gene coding for the replication protein[J]. Molecular and General Genetics, 1994, 242(5): 614-622.
[40]HAGEN K E, TRAMP C A, ALTERMANN E, et al. Sequence analysis of plasmid pIR52-1 fromLactobacillus helveticusR0052 and investigation of its origin of replication[J]. Plasmid, 2010, 63(2): 108-117.
[41]DESMOND C, ROSS R P, FITZGERALD G, et al. Sequence analysis of the plasmid genome of the probiotic strainLactobacillus paracaseiNFBC338 which includes the plasmids pCD01 and pCD02[J]. Plasmid, 2005, 54(2): 160-175.
[42]WADA T, NODA M, KASHIWABARA F, et al. Characterization of four plasmids harboured in aLactobacillus brevisstrainencoding a novel bacteriocin, brevicin 925A, and construction of a shuttle vector for lactic acid bacteria andEscherichia coli[J]. Microbiology, 2009, 155(5): 1726-1737.
[43]FUKAO M, OSHIMA K, MORITA H, et al. Genomic analysis by deep sequencing of the probioticLactobacillus brevisKB290 harboring nine plasmids reveals genomic stability[J]. PLoS ONE, 2013, 8(3): e60521. doi: 10.1371/journal.pone.0060521.
[44]HEINL S, WIBBERG D, EIKMEYER F, et al. Insights into thecompletely annotated genome ofLactobacillus buchneriCD034, a strain isolated from stable grass silage[J]. Journal of Biotechnology, 2012, 161(2): 153-166.
[45]CHEN Chen, AI Lianzhong, ZHOU Fangfang, et al. Complete genome sequenceof theprobiotic bacterium Lactobacillus casei LC2W[J]. Journal of Bacteriology, 2011, 193(13): 3419-3420.
[46]TAKAO T, NIIMURA Y, OKADA S, et al.The pigment production of Lactobacillus plantarum L622[J]. Journal of the Japanese Society for Food Science and Technology, 1992, 39(9): 755-762.
[47]FELD L, BIELAK E, HAMMER K, et al. Characterization of a small erythromycin resistance plasmid pLFE1 from the food-isolateLactobacillus plantarumM345[J]. Plasmid, 2009, 61(3): 159-170.
[48]van KRANENBURG R, GOLIC N, BONGERS R, et al. Functional analysis of three plasmids fromLactobacillus plantarum[J]. Applied and Environmental Microbiology, 2005, 71(3): 1223-1230.
[49]EQUCHI T, DOI K, NISHIYAMA K, et al. Characterization of a phage resistance plasmid, pLKS, of silage-makingLactobacillus plantarumNGRI0101[J]. Bioscience, Biotechnology, and Biochemsitry, 2000, 64(4): 751-756.
[50]WANG Y P, WANG J G, AHMED Z, et al. Complete genome sequence ofLactobacillus kefiranofaciensZW3[J]. Journal of Bacteriology, 2011, 193(16): 4280-4281.
[51]JIMENEZ E, MARTIN R, MALDONADO A, et al. Complete genome sequence ofLactobacillus salivariusCECT 5713, a probiotic strain isolated from human milk and infant feces[J]. Journal of Bacteriology, 2010, 192(19): 5266-5267.
[52]YU Qinghua, ZHU Liqi, KANG Haihong, et al. MucosalLactobacillusvectored vaccines[J]. Human Vaccines & Immunotherapeutics, 2013, 9(4): 805-807.
Progress in Research on Natural Plasmids in Lactobacillus
SUN Daqing1,2, LI Hongfei1, SONG Dawei1, YANG Jian1,3, ZHANG Dongjie1,3, XU Xiaoxi2,*
(1. National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing 163319, China; 2. College of Food Science, Northeast Agricultural University, Harbin 150030, China; 3. College of Food Science, Heilongjiang Bayi Agricultural University, Daqing 163319, China)
Natural plasmids inhabiting some species ofLactobacilluscarry many important genes with biological functions and resistance to stress factors, and are significant for genetic, metabolic and evolutional studies ofLactobacillus. In this review, biological properties, distribution and functions of natural plasmids fromLactobacillusare summarized. The recent progress in research on replication types and regulatory mechanisms of plasmidsfromLactobacillusis discussed, and future research directions are also proposed. We hope that this paper can provide useful information and references for relevant researchers.
Lactobacillus; plasmid; replication; regulation; antisense RNA
Q939.97
1002-6630(2015)11-0251-05
10.7506/spkx1002-6630-201511047
2014-07-11
黑龍江省青年科學(xué)基金項(xiàng)目(QC2014C020);黑龍江八一農(nóng)墾大學(xué)大學(xué)生創(chuàng)新創(chuàng)業(yè)訓(xùn)練計(jì)劃項(xiàng)目(xc2014041)
孫大慶(1979—),男,助理研究員,碩士,研究方向?yàn)槭称肺⑸?。E-mail:sundaqing1979@163.com
*通信作者:許曉曦(1968—),女,教授,博士,研究方向?yàn)樾螽a(chǎn)品加工。E-mail:xiaoxi_xu01@163.com