国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

華北板塊東南緣五河雜巖的麻粒巖相變質(zhì)、部分熔融與交代作用

2015-04-09 23:02劉貽燦等

劉貽燦等

摘 要: 華北板塊東南緣五河雜巖屬于前寒武紀(jì)變質(zhì)基底,出露于蚌埠及相鄰地區(qū),主要由變質(zhì)的鎂鐵質(zhì)和長英質(zhì)火成巖以及表殼巖系組成,并伴生有古元古代片麻狀花崗巖和中生代花崗巖類,構(gòu)成了“蚌埠隆起”。五河雜巖中主要有石榴斜長角閃巖/榴閃巖、石榴麻粒巖、異剝鈣榴巖、石榴斜長角閃片麻巖、花崗片麻巖、云母片巖、大理巖和變質(zhì)砂巖等巖石類型。這些不同類型的變質(zhì)巖具有類似的峰期變質(zhì)礦物,如石榴子石、單斜輝石、斜長石、金紅石和石英等;結(jié)合其鋯石U-Pb年齡,表明它們共同經(jīng)歷了古元古代高壓麻粒巖相變質(zhì)作用。石榴斜長角閃巖的石榴子石包體中存在鉀長石+斜長石+石英+黑云母等礦物交生體,指示早期花崗質(zhì)熔體的存在,證明五河雜巖在古元代變質(zhì)過程中發(fā)生了部分熔融作用。此外,部分變基性巖中存在方解石、綠簾石和綠泥石等蝕變礦物,沿石榴子石的裂隙中分布有鉀長石+斜長石+石英+黑云母+角閃石等礦物,表明它們經(jīng)歷了含碳酸鹽的熔/流體交代作用以及綠簾石化和綠泥石化作用等。遭受過古元古代含碳酸鹽的熔/流體交代作用的變基性巖表現(xiàn)為高放射成因Pb同位素組成,而未遭受含碳酸鹽的熔/流體交代作用的變基性巖則表現(xiàn)為典型華北板塊前寒武紀(jì)麻粒巖地體和下地殼包體巖石的低放射成因Pb同位素組成。

關(guān)鍵詞: 麻粒巖相;多階段變質(zhì)作用;部分熔融;交代作用;前寒武紀(jì);五河雜巖;華北板塊

中圖分類號: P588.3 文獻(xiàn)標(biāo)志碼: A

Abstract: The Wuhe complex is located at the southeastern margin of the North China Block and belongs to the Precambrian metamorphic basement. It is exposed in the Bengbu area and its neighbourhood. The Wuhe complex consists of the metamorphosed igneous mafic and felsic rocks and supracrustal rocks associated with the Paleoproterozoic foliated K-feldspar granites and Mesozoic granitoids, constituting the “Bengbu uplift”. Its main rock types comprise a variety of lithologies, including garnet amphibolite, garnet granulite, rodingite, garnet-plagioclase-amphibolite gneiss, granitoid gneiss, micaschist, marble, quartzite and meta-sandstone. These rocks contain similar peak metamorphic minerals such as garnet, clinopyroxene, plagioclase, rutile and quartz. As a result, combined with their zircon U-Pb ages, it is suggested that they suffer from a common high pressure granulite facies metamorphism in Palaeoproterozoic. The multiphase solid inclusions within garnet porphyroblasts are discovered from the garnet amphibolite. Some multiphase solid inclusions consist of quartz, calcite, hornblende and chlorite, with quartz and calcite showing a secondary rim of hornblende and chlorite. The intergrowths of quartz, K-feldspar, plagioclase and biotite, and related MS inclusions in garnet show that the Wuhe complex experiences the high pressure granulite facies metamorphism, accompanying close-to-coeval partial melting and heterogeneous carbonate metasomatism. In addition, there are late altered minerals such as calcite, epidote and chlorite, and K-feldspar, plagioclase, quartz, biotite and amphibole distribute along fractures of garnets in the meta-basites. It is suggested that the rocks undergo heterogeneously carbonate-bearing hydrous melt/fluid metasomatism, and epidotization and chloritization. The carbonate metasomatism at the Palaeoproterozoic is likely responsible for the exceptionally high Pb-isotopic compositions registered by some of the meta-basic rocks in the metamorphic basement in the area, quite different from those of typical Precambrian granulite terrains or of lower crustal xenoliths in the North China Block.

Key words: granulite facies; multistage metamorphism; partial melting; metasomatism; Precambrian; Wuhe complex; North China Block

0 引 言

深熔作用(Anatexis)或部分熔融作用(Partial Melting)是大陸碰撞造山帶[1-2]和高級變質(zhì)地體[3-5]中常見的一種重要地質(zhì)過程。地殼深熔/部分熔融過程中,熔體的產(chǎn)生、分離和運(yùn)移對大陸地殼內(nèi)部分異[4,6-8]以及花崗巖的成因[9-11]具有重要意義,并且強(qiáng)烈影響著造山帶地殼的熱力學(xué)和流變學(xué)行為[12],可以顯著降低俯沖陸殼巖石的力學(xué)強(qiáng)度,促使俯沖陸殼內(nèi)部的拆離和高壓—超高壓巖石的折返[13-24]。

麻粒巖包體和麻粒巖地體(尤其是高壓麻粒巖)是透視下地殼的重要窗口[25]。大多數(shù)麻粒巖被認(rèn)為是在缺乏流體條件下變質(zhì)形成的[1,26]。其中,高壓麻粒巖又稱石榴麻粒巖,代表了高級的變基性巖,以單斜輝石+斜長石+石榴子石+石英等礦物組合為主要特征[26-28],至于其他次要礦物(如角閃石和藍(lán)晶石等)是否出現(xiàn),取決于水活度和全巖成分[29]。高壓麻粒巖出露相當(dāng)廣泛,從古元古代(如華北恒山雜巖[30])到新生代(如喜馬拉雅山脈[31])的諸多大陸碰撞造山帶中均有報道。OBrien等研究結(jié)果顯示,當(dāng)變質(zhì)溫度超過800 ℃時,變質(zhì)壓力可能超過1.4 GPa[28],意味著加厚地殼(或俯沖地殼)的下部經(jīng)歷了高溫作用。另外,高壓麻粒巖有時也與中溫榴輝巖共生,如華力西造山帶[32]。在特定地帶鑒定出高壓麻粒巖有助于對涉及大陸碰撞及相關(guān)過程中下地殼演化的認(rèn)識,而對高壓麻粒巖相變質(zhì)作用的巖石學(xué)觀察和年代學(xué)測定對理解變質(zhì)作用和下地殼演化之間的關(guān)系至關(guān)重要。但是,獲得精確的高壓麻粒巖相變質(zhì)作用的時代往往比較困難。這種困難主要來自于后期多階段變質(zhì)作用疊加以及相關(guān)過程導(dǎo)致的礦物間同位素體系(尤其是Sm-Nd和Rb-Sr)的重置或不平衡,因此,影響了對巖石的形成過程和構(gòu)造背景的認(rèn)識。

在過去的20年里,眾多研究者對華北板塊前寒武紀(jì)變質(zhì)基底和下地殼包體巖石開展了大量的巖石學(xué)、大地構(gòu)造學(xué)、地球化學(xué)和同位素年代學(xué)研究,并在其形成和演化方面獲得了一些重要進(jìn)展,包括將華北板塊變質(zhì)基底劃分為東部陸塊、西部陸塊及分割東部和西部陸塊的中部造山帶[33-34]。一般認(rèn)為,東部和西部陸塊沿中部造山帶在約1.85 Ga完成華北板塊的拼合[33-40];拼合完成之后,在1.6~1.85 Ga期間,華北板塊內(nèi)部和邊緣地區(qū)經(jīng)歷了一系列的拉張和裂解(Rifting)事件,形成了伴隨有鎂鐵質(zhì)巖漿群侵位的拗拉槽和邊緣裂谷盆地,發(fā)育有斜長巖-輝長巖-紋長二長巖-環(huán)斑花崗巖套和A型花崗巖,以及噴發(fā)超鉀火山巖[41-45]。值得注意的是,目前已報道的古元古代高壓麻粒巖相變質(zhì)作用主要來自于中部造山帶[30,33-36,38,41-42,46],而東部陸塊已在信陽和膠東地區(qū)有陸續(xù)報道[47-50]。

華北板塊的形成與演化雖然受到廣泛關(guān)注并日益引起國內(nèi)外研究者的興趣,但是大部分研究都集中于華北板塊內(nèi)部、北部以及東部和西部陸塊結(jié)合帶或中部造山帶,而華北板塊東南緣前寒武紀(jì)地殼的形成與演化研究尚顯得較薄弱。華北板塊東南緣霍邱、蚌埠及相鄰地區(qū)出露的變質(zhì)基底(五河雜巖和霍邱雜巖)和下地殼包體巖石無疑為這一研究提供極好的天然實(shí)驗(yàn)室。

郭素淑等研究認(rèn)為,五河雜巖中的變基性巖經(jīng)歷了1.80~1.90 Ga的高壓麻粒巖相變質(zhì)作用[51-52]。徐州—宿州一帶中生代閃長斑巖中深源包體的巖石學(xué)、年代學(xué)和巖石地球化學(xué)研究表明[51-57],它們包括前寒武紀(jì)下地殼包體和古生代幔源包體,而下地殼包體大部分形成于2.5~2.6 Ga,部分形成于約2.1 Ga,并經(jīng)過約1.8 Ga高壓麻粒巖相變質(zhì)作用, 少數(shù)晚太古代下地殼包體還經(jīng)歷了約2.5 Ga或約2.1 Ga麻粒巖相變質(zhì)作用。此外,五河雜巖中變基性巖表現(xiàn)為兩類高、低放射成因Pb同位素組成[58],而高放射成因Pb同位素成分的成因解釋仍缺乏可靠證據(jù)。而且,研究區(qū)前寒武紀(jì)變質(zhì)基底及下地殼巖石是否經(jīng)歷了部分熔融作用以及變質(zhì)、交代過程與期次仍是亟待解決的重要科學(xué)問題。

為了揭示華北板塊東南緣前寒武紀(jì)地殼(尤其是變質(zhì)基底)的形成和演化過程,本文根據(jù)近年來對蚌埠地區(qū)出露的五河雜巖和宿州附近夾溝中生代閃長斑巖中下地殼包體巖石的研究成果和進(jìn)展,結(jié)合已發(fā)表的相關(guān)資料,提出了華北板塊東南緣變質(zhì)基底巖石的高壓麻粒巖相變質(zhì)、部分熔融以及多期變質(zhì)和交代作用方面的證據(jù),并闡述了高放射成因Pb同位素的成因。

1 地質(zhì)背景

華北板塊是世界上最古老、最大的克拉通地塊之一,保留有大于3.6 Ga的古老地殼物質(zhì)殘留[59]。地質(zhì)位置上,華北板塊西接早古生代祁連造山帶,北鄰?fù)砉派B紀(jì)的天山—內(nèi)蒙古—大興安嶺造山帶;在南部,秦嶺—大別—蘇魯印支期造山帶把華北板塊和華南(揚(yáng)子)板塊分開(圖1)?;谀甏鷮W(xué)、巖石組合、構(gòu)造演化和P-T-t軌跡的不同,將華北克拉通劃分為東部陸塊、西部陸塊及夾于其中的中部造山帶[30,33,42,60]。研究區(qū)位于華北板塊東南緣,距蘇魯造山帶西端的郯城—廬山斷裂帶以西約 100 km,距大別造山帶北端大約300 km(圖1)。區(qū)內(nèi)變形的新元古代和古生代蓋層以及晚太古代到古元古代的變質(zhì)基底巖石中分布有大量小的中生代閃長斑巖(如夾溝等)和花崗巖(如荊山、涂山等)。研究區(qū)前寒武紀(jì)變質(zhì)基底主要零星出露于霍邱、蚌埠及相鄰地區(qū)(包括五河雜巖或五河群、霍邱雜巖或霍邱群),并且被中生代花崗巖所侵入;而中生代閃長斑巖中含有大量下地殼或幔源包體或捕虜體的徐州—宿州地區(qū)則無變質(zhì)基底出露[52-54,56-57]。王安東等研究表明,變質(zhì)基底出露區(qū)(荊山、懷遠(yuǎn)和鳳陽等地)發(fā)育的部分含石榴子石花崗巖是由華南三疊紀(jì)俯沖陸殼巖石在159 Ma左右發(fā)生部分熔融形成的[61-62]。

五河雜巖主要由變質(zhì)的鎂鐵質(zhì)和長英質(zhì)火成巖以及表殼巖系所組成,并伴生有古元古代片麻狀花崗巖和中生代花崗巖類,構(gòu)成了“蚌埠隆起”。五河雜巖中主要含有石榴斜長角閃巖/榴閃巖、石榴麻粒巖、異剝鈣榴巖、石榴斜長角閃片麻巖、花崗片麻巖、云母片巖、大理巖和變質(zhì)砂巖等不同類型的變質(zhì)巖。

2 峰期高壓麻粒巖相及退變質(zhì)過程

五河雜巖主要出露于“蚌埠隆起”區(qū),如蚌埠、懷遠(yuǎn)、鳳陽及五河一帶(圖1)。巖石類型主要有含石榴斜長角閃巖、榴閃巖、石榴麻粒巖、異剝鈣榴巖和片麻巖(石榴斜長角閃片麻巖、花崗片麻巖)以及云母片巖、大理巖和變質(zhì)砂巖等。野外調(diào)查表明,石榴斜長角閃巖已發(fā)生明顯部分熔融(這已被巖相學(xué)研究所證實(shí)),甚至混合巖化作用,并表現(xiàn)為強(qiáng)烈的面理化和含有淺色體(Leucosome) [圖2(a)],并有時呈構(gòu)造透鏡體或巖塊產(chǎn)于不純的大理巖中[圖2(b)], 它們與大理巖之間為構(gòu)造接觸關(guān)系,反映了其原巖的不同以及可能具有不同的演化歷史,它們的原巖分別為基性巖和灰?guī)r。圖3為變基性巖的代表性顯微照片。石榴斜長角閃巖(如樣品07FY01)主要由石榴子石、斜長石和角閃石,以及少量單斜輝石、石英、榍石和微量金紅石等礦物組成。石英以包裹體形式存在于石榴子石中,單斜輝石常退變?yōu)榻情W石和斜長石的交生體或后成合晶[圖3(a)],金紅石退變?yōu)殁佽F礦[圖3(d)]或榍石。石榴子石在成分上是均一的,為鐵鋁榴石-鎂鋁榴石-鈣鋁榴石固溶體,錳含量較低。斜長石有3種產(chǎn)出形式:以包裹體形式產(chǎn)于石榴子石中;以后成合晶形式與綠色角閃石共生;以基質(zhì)形式產(chǎn)出。富Ti的棕色角閃石通常以包裹體形式產(chǎn)于斜長石或基質(zhì)[圖3(c)、(d)]中,TiO2含量(質(zhì)量分?jǐn)?shù),下同)高達(dá)3.82%,而產(chǎn)于基質(zhì)中或與斜長石共生產(chǎn)于后成合晶或棕色角閃石的退變邊中[圖3(a)、(c)、(d)]的綠角閃石幾乎不含Ti?;|(zhì)中殘留的單斜輝石為透輝石。

石榴麻粒巖的主要礦物組合為石榴子石+單斜輝石+斜長石+角閃石+石英[圖3(b)],這種礦物組合指示其經(jīng)歷了高壓麻粒巖相變質(zhì)作用[27-28,63]。

榴閃巖主要由石榴子石、角閃石、斜長石和石英等組成[圖3(c)],石榴子石在成分上相對均一,類似于樣品石榴斜長角閃巖(樣品07FY01)的石榴子石組成;角閃石有2期,分別為早期的棕色高鈦角閃石和晚期的綠色低鈦角閃石,這些特征暗示榴閃巖也經(jīng)歷了類似的高壓麻粒巖相變質(zhì)作用及后期角閃巖相和綠片巖相退變質(zhì)疊加[52]。

近期的巖石學(xué)研究還表明,不純大理巖中主要礦物有方解石、石英、單斜輝石、角閃石、榍石、磷灰石、不透明礦物(鈦鐵礦/磁鐵礦),以及少量黑云母、斜長石和鉀長石(圖4)。其中,(具有格子狀雙晶)鉀長石和石英的交生體[圖4(a)] 可能代表早期熔體的結(jié)晶產(chǎn)物[64-65],證明大理巖經(jīng)歷了部分熔融作用(這也與其共生的石榴斜長角閃巖中發(fā)現(xiàn)有部分熔融證據(jù)相吻合)。結(jié)合大理巖中1.83~1.85 Ga變質(zhì)鋯石區(qū)的石英+單斜輝石+斜長石+金紅石等礦物組合,大理巖類似于石榴斜長角閃巖[52]和石榴麻粒巖[58],同樣經(jīng)歷了古元古代高壓麻粒巖相變質(zhì)作用。

綜上所述,五河雜巖中不同類型的變質(zhì)巖大多數(shù)都含有石榴子石、單斜輝石、金紅石、斜長石和石英等峰期礦物組合,指示其形成于高壓麻粒巖相條件下[52]。而且,基于上述巖相學(xué)顯微結(jié)構(gòu)觀察和礦物之間的關(guān)系,至少可以區(qū)分出峰期高壓麻粒巖相(石榴子石+斜長石+單斜輝石+石英+金紅石±富鈦角閃石)變質(zhì)礦物組合以及后期角閃巖相(斜長石+綠角閃石+鈦鐵礦+榍石)和綠片巖相(綠泥石+方解石+磁鐵礦)等退變質(zhì)礦物組合(圖3、4)。礦物組合與初步的溫壓計算結(jié)果表明,高壓麻粒巖相變質(zhì)階段溫度、壓力分別為800 ℃~860 ℃和1.0~ 1.2 GPa[52,66],這也與夾溝中生代閃長斑巖中下地殼包體巖石及其變質(zhì)鋯石的溫壓估算[52,57]一致。

3 部分熔融作用

五河雜巖(乃至華北板塊東南緣前寒武紀(jì)變質(zhì)基底巖石)是否經(jīng)歷了部分熔融作用,至今未見報道或缺乏部分熔融的直接證據(jù)。巖石學(xué)研究表明,在五河雜巖的石榴斜長角閃巖石榴子石中發(fā)現(xiàn)多相固體包裹體, 主要由鉀長石、斜長石、石英和黑云母的交生體構(gòu)成(圖5),表現(xiàn)為“納米花崗巖”(Nanogranite)[2,67-69]。 這種位于石榴子石變斑晶核部的“納米花崗巖”常被解釋為石榴子石在峰期變質(zhì)生長期間伴隨有部分熔融作用產(chǎn)生的熔體并結(jié)晶形成的[2,70]。結(jié)合該石榴斜長角閃巖的峰期變質(zhì)時代為

1.83 Ga[52],首次證明了研究區(qū)變質(zhì)基底巖石經(jīng)歷了古元古代部分熔融作用,以及發(fā)生的時代應(yīng)接近于峰期高壓麻粒巖相變質(zhì)階段。但是, 至于研究區(qū)變質(zhì)基底巖石是否經(jīng)歷了更早期(晚太古代末期)和后期(燕山期)的部分熔融作用,尚需要進(jìn)一步巖石學(xué)和年代學(xué)方面的研究。

4 多期變質(zhì)、交代作用

五河雜巖經(jīng)歷了復(fù)雜的多階段變質(zhì)演化與改造。除了高壓麻粒巖相、角閃巖相和綠片巖相變質(zhì)作用以及部分熔融和綠簾石化作用外,五河雜巖還遭受了碳酸鹽交代作用、含水熔/流體交代作用和綠泥石化作用等。鳳陽一帶與大理巖相共生的石榴斜長角閃巖經(jīng)歷了多期交代作用(圖6):①石榴子石中多相礦物包裹體指示了碳酸鹽交代、角閃巖相變質(zhì)和綠泥石化[圖6(a)],即石英和方解石位于中心,而邊部有角閃石和綠泥石等蝕變礦物,也就是說,前者指示早期存在含碳酸鹽的熔體或者近于峰期變質(zhì)之后就發(fā)生含碳酸鹽的熔/流體交代作用,而后者則指示晚期的角閃巖相變質(zhì)和綠泥石蝕變;②石榴子石斑晶的裂隙中分布有鉀長石+石英+斜長石+角閃石+黑云母等礦物[圖6(b)],指示了熔/流體活動和交代作用。此外,研究區(qū)異剝鈣榴巖的成因也與鈣質(zhì)交代作用有關(guān)[71-73]。

石榴斜長角閃巖在高溫條件下經(jīng)歷了含碳酸鹽的熔/流體交代作用,并且可能發(fā)生在古元古代,為其高放射成因Pb同位素成分的成因解釋提供了可靠證據(jù)。因?yàn)椴患兇罄韼r與其共生的石榴斜長角閃巖具有一致的峰期高壓麻粒巖相變質(zhì)時代,共同經(jīng)歷了古元古代高溫變質(zhì)作用,而含碳酸鹽的熔/流體通常具有高的Pb含量和高放射成因Pb同位素組成[74],比較而言,那些未遭受含碳酸鹽的熔/流體交代作用的變基性巖則仍顯示華北板塊前寒武紀(jì)變質(zhì)地體或下地殼巖石的低放射成因Pb成分。

此外,部分熔融以及多期變質(zhì)、交代作用常導(dǎo)致礦物之間的Fe-Mg交換或重置[26,75],這為研究區(qū)前寒武紀(jì)變質(zhì)巖的溫度、壓力計算帶來了巨大困難和挑戰(zhàn)。而且,礦物之間Fe-Mg交換的封閉溫度(Closure Temperature)低于麻粒巖相峰期變質(zhì)溫度[1,26,75-76]。因此,目前已獲得的五河雜巖高壓麻粒巖相階段的最高變質(zhì)溫度(843 °C)[52]可能代表峰期變質(zhì)溫度的最小估計值[77]。

5 結(jié) 語

(1)華北板塊東南緣五河雜巖中不同類型的變質(zhì)巖(包括大理巖等)都具有類似的峰期變質(zhì)礦物組合,共同經(jīng)歷了古元古代高壓麻粒巖相變質(zhì)以及之后的角閃巖相和綠片巖相退變質(zhì)作用。

(2)首次獲得五河雜巖古元古代部分熔融作用的證據(jù),證明研究區(qū)前寒武紀(jì)變質(zhì)巖經(jīng)歷了多期不同程度的變質(zhì)、交代作用,包括含碳酸鹽的熔/流體交代、綠簾石化和綠泥石化作用等。

(3)證明華北板塊東南緣五河雜巖中前寒武紀(jì)變質(zhì)基底巖石中因遭受過古元古代含碳酸鹽的熔/流體交代作用的變基性巖表現(xiàn)為高放射成因Pb同位素組成,從而首次為揭示研究區(qū)變質(zhì)基底及下地殼包體巖石中高放射成因Pb同位素組成的成因提供了直接證據(jù)。

參考文獻(xiàn):

References:

[1] HARLEY S L.The Origins of Granulites:A Metamorphic Perspective[J].Geological Magazine,1989,126(3):215-247.

[2] GROPPO C,ROLFO F,INDARES A.Partial Melting in the Higher Himalayan Crystallines of Eastern Nepal:The Effect of Decompression and Implications for the ‘Channel Flow Model[J].Journal of Petrology,2012,53(5):1057-1088.

[3] SAWYER E W.Criteria for the Recognition of Partial Melting[J].Physics and Chemistry of the Earth,Part A:Solid Earth and Geodesy,1999,24(3):269-279.

[4] SAWYER E W.Melt Segregation in the Continental Crust:Distribution and Movement of Melt in Anatectic Rocks[J].Journal of Metamorphic Geology,2001,19(3):291-309.

[5] VILLASECA C,ROMERA C M,BARBERO L.Melts and Residua Geochemistry in a Low-to-mid Crustal Section(Central Spain)[J].Physics and Chemistry of the Earth,Part A:Solid Earth and Geodesy,2001,26(4/5):273-280.

[6] BROWN M.The Generation,Segregation,Ascent and Emplacement of Granite Magma:The Migmatite-to-crustally-derived Granite Connection in Thickened Orogens[J].Earth-science Reviews,1994,36(1/2):83-130.

[7] BROWN M.The Mechanism of Melt Extraction from Lower Continental Crust of Orogens[J].Transactions of the Royal Society of Edinburgh:Earth Sciences,2004,95(1/2):35-48.

[8] BROWN M.Crustal Melting and Melt Extraction,Ascent and Emplacement in Orogens:Mechanisms and Consequences[J].Journal of the Geological Society,2007,164(4):709-730.

[9] THOMPSON A B.Dehydration Melting of Pelitic Rocks and the Generation of H2O-undersaturated Granitic Liquids[J].American Journal of Science,1982,282(10):1567-1595.

[10] CLEMENS J D,VIELZEUF D.Constraints on Melting and Magma Production in the Crust[J].Earth and Planetary Science Letters,1987,86(2/3/4):287-306.

[11] VIELZEUF D,CLEMENS J D,PIN C,et al.Granites,Granulites,and Crustal Differentiation[M]∥VIELZEUF D,VIDAL P.Granulites and Crustal Evolution.Dordrecht:Kluwer Academic Publishers,1990:59-85.

[12] WHITNEY D L,TEYSSIER C,F(xiàn)AYON A K,et al.Tectonic Controls on Metamorphism,Partial Melting,and Intrusion:Timing and Duration of Regional Metamorphism and Magmatism in the Nigde Massif,Turkey[J].Tectonophysics,2003,376(1/2):37-60.

[13] HERMANN J,GREEN D H.Experimental Constraints on High Pressure Melting in Subducted Crust[J].Earth and Planetary Science Letters,2001,188(1/2):149-168.

[14] VANDERHAEGHE O,TEYSSIER C.Partial Melting and Flow of Orogens[J].Tectonophysics,2001,342(3/4):451-472.

[15] ZHONG Z Q,SUO S T,YOU Z D,et al.Major Constituents of the Dabie Collisional Orogenic Belt and Partial Melting in the Ultrahigh-pressure Unit[J].International Geology Review,2001,43(3):226-236.

[16] WHITNEY D L,TEYSSIER C,REY P F.The Consequences of Crustal Melting in Continental Subduction[J].Lithosphere,2009,1(6):323-327.

[17] BROWN M.Melting of the Continental Crust During Orogenesis:The Thermal,Rheological,and Compositional Consequences of Melt Transport from Lower to Upper Continental Crust[J].Canadian Journal of Earth Sciences,2010,47(5):655-694.

[18] LABROUSSE L, PROUTEAU G,GANZHORN A C. Continental Exhumation Triggered by Partial Melting at Ultrahigh Pressure[J].Geology,2011,39(12):1171-1174.

[19] 劉貽燦,李曙光,徐樹桐,等.北大別片麻巖的超高壓變質(zhì)證據(jù):來自鋯石提供的信息[J].巖石學(xué)報,2006,22(7):1827-1832.

LIU Yi-can,LI Shu-guang,XU Shu-tong,et al.Ultrahigh-pressure Metamorphic Evidence for Gneiss from the Northern Dabie Complex,Central China:Message from Zircon[J].Acta Petrologica Sinica,2006,22(7):1827-1832.

[20] 劉貽燦,李 遠(yuǎn),劉理湘,等.大別造山帶三疊紀(jì)低級變質(zhì)的新元古代火成巖:俯沖陸殼表層拆離折返的巖片[J].科學(xué)通報,2013,58(23):2330-2337.

LIU Yi-can,LI Yuan,LIU Li-xiang,et al.Neoproterozoic Low-grade Metagranites and Metabasites in the Dabie Orogen: Implications for Detachment of Subducted Continental Crust at Shallow Depths[J].Chinese Science Bulletin,2013,58(23):2330-2337.

[21] 古曉鋒,劉貽燦,鄧亮鵬.北大別羅田榴輝巖的同位素年代學(xué)和巖石成因及其在折返過程中的元素和同位素行為[J].科學(xué)通報,2013,58(22):2132-2137.

GU Xiao-feng,LIU Yi-can,DENG Liang-peng. Geochronology and Petrogenesis of Eclogite from the Luotian Dome,North Dabie Complex Zone(Central China), and Their Element and Isotope Behavior During Exhumation[J].Chinese Science Bulletin,2013,58(22):2132-2137.

[22] 劉貽燦,古曉鋒,鄧亮鵬.北大別的高溫超高壓變質(zhì)作用與多階段折返[J].巖石學(xué)報,2011,27(2):589-600.

LIU Yi-can,GU Xiao-feng,DENG Liang-peng.High-T/UHP Metamorphism and Multistage Exhumation History of the North Dabie Complex Zone[J].Acta Petrologica Sinica,2011,27(2):589-600.

[23] 劉貽燦,劉理湘,古曉鋒,等.大別山北淮陽帶西段新元古代淺變質(zhì)花崗巖的發(fā)現(xiàn)及其大地構(gòu)造意義[J].科學(xué)通報,2010,55(24):2391-2399.

LIU Yi-can,LIU Li-xiang,GU Xiao-feng,et al.Occurrence of Neoproterozoic Low-grade Metagranite in the Western Beihuaiyang Zone,the Dabie Orogen[J].Chinese Science Bulletin,2010,55(24):2391-2399.

[24] 劉貽燦,古曉鋒,李曙光.北大別超高壓榴輝巖的快速折返與緩慢冷卻過程[J].巖石學(xué)報,2009,25(9):2149-2156.

LIU Yi-can,GU Xiao-feng,LI Shu-guang.Rapid Exhumation and Slow Cooling of Ultrahigh-pressure Eclogite in the North Dabie Complex Zone,Central China[J].Acta Petrologica Sinica,2009,25(9):2149-2156.

[25] WEBER M B I,TARNEY J,KEMPTON P D,et al.Crustal Make-up of the Northern Andes:Evidence Based on Deep Crustal Xenolith Suites,Mercaderes,SW Colombia[J].Tectonophysics,2002,345(1/2/3/4):49-82.

[26] PATTISON D R M.Petrogenetic Significance of Orthopyroxene-free Garnet+Clinopyroxene+Plagioclase±Quartz-bearing Metabasites with Respect to the Amphibolite and Granulite Facies[J].Journal of Metamorphic Geology,2003,21(1):21-34.

[27] YARDLEY B W D.An Introduction to Metamorphic Petrology[M].Englewood Cliffs:Prentice Hall,1989.

[28] OBRIEN P J,ROTZLER J.High-pressure Granulites: Formation,Recovery of Peak Conditions and Implications for Tectonics[J].Journal of Metamorphic Geology,2003,21(1):3-20.

[29] INDARES A D.Metamorphic Textures and P-T Evolution of High-P Granulites from the Lelukuau Terrane,NE Grenville Province[J].Journal of Metamorphic Geology,2003,21(1):35-48.

[30] ZHAO G C,WILDE S A,CAWOOD P A,et al.Archean Blocks and Their Boundaries in the North China Craton: Lithological,Geochemical,Structural,and P-T Path Constraints and Tectonic Evolution[J].Precambrian Research,2001,107(1/2):45-73.

[31] LIU Y,ZHONG D.Petrology of High-pressure Granulites from the Eastern Himalayan Syntaxis[J].Journal of Metamorphic Geology,1997,15(4):451-466.

[32] CARSWELL D A,OBRIEN P J.Thermobarometry and Geotectonic Significance of High-pressure Granulites:Examples from the Moldanubian Zone of the Bohemian Massif in Lower Austria[J].Journal of Petrology,1993,34(3):427-459.

[33] ZHAO G C,CAWOOD P A,WILDE S A,et al.Metamorphism of Basement Rocks in the Central Zone of the North China Craton:Implications for Paleoproterozoic Tectonic Evolution[J].Precambrian Research, 2000,103(1/2):55-88.

[34] ZHAO G C,SUN M,WILDE S A,et al.Late Archean to Paleoproterozoic Evolution of the North China Craton:Key Issues Revisited[J].Precambrian Research,2005, 136(2):177-202.

[35] GUO J H,OBRIEN P J,ZHAI M.High-pressure Granulites in the Sanggan Area,North China Craton:Metamorphic Evolution,P-T Paths and Geotectonic Significance[J].Journal of Metamorphic Geology,2002, 20(8):741-756.

[36] GUO J H,SUN M,CHEN F K,et al.Sm-Nd and SHRIMP U-Pb Zircon Geochronology of High-pressure Granulites in the Sanggan Area,North China Craton:Timing of Paleoproterozoic Continental Collision[J].Journal of Asian Earth Sciences,2005,24(5):629-642.

[37] WILDE S A,ZHAO G C,SUN M.Development of the North China Craton During the Late Archaean and Its Final Amalgamation at 1.8 Ga:Some Speculations on Its Position Within a Global Palaeoproterozoic Supercontinent[J].Gondwana Research,2002,5(1):85-94.

[38] KRONER A,WILDE S A,LI J H,et al.Age and Evo-lution of a Late Archean to Paleoproterozoic Upper to Lower Crustal Section in the Wutaishan/Hengshan/ Fuping Terrain of Northern China[J].Journal of Asian Earth Sciences,2005,24(5):577-595.

[39] WILDE S A,ZHAO G C.Late Archean to Paleoproterozoic Evolution of the North China Craton[J].Journal of Asian Earth Sciences,2005,24(5):519-522.

[40] HOU G T,LIU Y L,LI J H.Evidence for ~1.8 Ga Extension of the Eastern Block of the North China Craton from SHRIMP U-Pb Dating of Mafic Dyke Swarms in Shandong Province[J].Journal of Asian Earth Sciences,2006,27(4):392-401.

[41] 翟明國,卞愛國.華北克拉通新太古代末超大陸拼合及古元古代末—中元古代裂解[J].中國科學(xué):D輯,地球科學(xué),2000,30(增):129-137.

ZHAI Ming-guo,BIAN Ai-guo.The Amalgamation of the Supercontinent of North China Craton at the End of Neoarchaean and Its Breakup During Late Palaeoproterozoic and Mesoproterozoic[J].Science in China: Series D,Earth Sciences,2000,30(S):129-137.

[42] ZHAI M G,LIU W J. Palaeoproterozoic Tectonic His- tory of the North China Craton:A Review[J].Precambrian Research,2003,122(1/2/3/4):183-199.

[43] PENG P,ZHAI M G,ZHANG H F,et al.Geochronological Constraints on the Paleoproterozic Evolution of the North China Craton:SHRIMP Zircon Ages of Different Types of Mafic Dikes[J].International Geology Review,2005,47(5):492-508.

[44] HOU G T,LI J H,YANG M H,et al.Geochemical Constraints on the Tectonic Environment of the Late Paleoproterozoic Mafic Dyke Swarms in the North China Craton[J].Gondwana Research,2008,13(1):103-116.

[45] LU S N,ZHAO G C,WANG H C,et al.Precambrian Metamorphic Basement and Sedimentary Cover of the North China Craton:A Review[J].Precambrian Research,2008,160(1/2):77-93.

[46] 翟明國,郭敬輝,閻月華,等.中國華北太古宙高壓基性麻粒巖的發(fā)現(xiàn)及初步研究[J].中國科學(xué):B輯,1992,22(12):1325-1330.

ZHAI Ming-guo,GUO Jing-hui,YAN Yue-hua,et al.The Preliminary Study and Discovery of High Pressure Granulites in North China[J]. Science in China:Series B,1992,22(12):1325-1330.

[47] ZHENG J P,SUN M,LU F X,et al.Mesozoic Lower Crustal Xenoliths and Their Significance in Lithospheric Evolution Beneath the Sino-Korean Craton[J].Tectonophysics,2003,361(1/2):37-60.

[48] 劉文軍,翟明國,李永剛.膠東萊西地區(qū)高壓基性麻粒巖的變質(zhì)作用[J].巖石學(xué)報,1998,14(4):449-459.

LIU Wen-jun,ZHAI Ming-guo,LI Yong-gang.Metamorphism of the High-pressure Basic Granulites in Laixi,Eastern Shandong,China[J].Acta Petrologica Sinica,1998,14(4):449-459.

[49] 周喜文,魏春景,耿元生,等.膠北棲霞地區(qū)泥質(zhì)高壓麻粒巖的發(fā)現(xiàn)及其地質(zhì)意義[J].科學(xué)通報,2004,49(14):1424-1430.

ZHOU Xi-wen,WEI Chun-jing,GENG Yuan-sheng,et al.Discovery and Implications of the High-pressure Pelitic Granulite from the Jiaobei Massif[J].Chinese Science Bulletin,2004,

49(14):1424-1430.

[50] LIU P H,LIU F L,LIU C H,et al.Petrogenesis,P-T-t Path,and Tectonic Significance of High-pressure Mafic Granulites from the Jiaobei Terrane,North China Craton[J].Precambrian Research,2013,233:237-258.

[51] 郭素淑,李曙光.華北克拉通東南緣古元古代變質(zhì)和巖漿事件的鋯石SHRIMP U-Pb年齡[J].中國科學(xué):D輯,地球科學(xué),2009,39(6):694-699.

GUO Su-shu,LI Shu-guang.SHRIMP Zircon U-Pb Ages for the Paleoproterozoic Metamorphic-magmatic Events in the Southeast Margin of the North China Craton[J].Science in China:Series D,Earth Sciences,2009,39(6):694-699.

[52] LIU Y C,WANG A D,ROLFO F,et al.Geochronological and Petrological Constraints on Palaeoproterozoic Granulite Facies Metamorphism in Southeastern Margin of the North China Craton[J].Journal of Metamorphic Geology,2009,27(2):125-138.

[53] 許文良,王冬艷,劉曉春,等.徐淮地區(qū)早侏羅世侵入雜巖體中榴輝巖類包體的發(fā)現(xiàn)及其地質(zhì)意義[J].科學(xué)通報,2002,47(8):618-622.

XU Wen-liang,WANG Dong-yan,LIU Xiao-chun,et al. Discovery of Eclogite Inclusions and Its Geological Significance in Early Jurassic Intrusive Complex in Xuzhou-northern Anhui,Eastern China[J].Chinese Science Bulletin,2002,47(8):618-622.

[54] XU W L,GAO S,WANG Q H,et al.Mesozoic Crustal Thickening of the Eastern North China Craton:Evidence from Eclogite Xenoliths and Petrologic Implications[J].Geology,2006,34(9):721-724.

[55] XU W L,GAO S,YANG D B,et al.Geochemistry of Eclogite Xenoliths in Mesozoic Adakitic Rocks from Xuzhou-Suzhou Area in Central China and Their Tectonic Implications[J].Lithos,2009,107(3/4):269-280.

[56] LIU Y C,WANG A D,LI S G,et al.Composition and Geochronology of the Deep-seated Xenoliths from the Southeastern Margin of the North China Craton[J].Gondwana Research,2013,23(3):1021-1039.

[57] WANG A D,LIU Y C,GU X F,et al.Late-Neoarchean Magmatism and Metamorphism at the Southeastern Margin of the North China Craton and Their Tectonic Implications[J].Precambrian Research,2012,220/221:65-79.

[58] WANG A D,LIU Y C,SANTOSH M,et al.Zircon U-Pb Geochronology,Geochemistry and Sr-Nd-Pb Isotopes from the Metamorphic Basement in the Wuhe Complex:Implications for Neoarchean Active Continental Margin Along the Southeastern North China Craton and Constraints on the Petrogenesis of Mesozoic Granitoids[J].Geoscience Frontiers,2013,4(1):57-71.

[59] LIU D Y,NUTMAN A P,COMPSTON W,et al. Remnants of ≥3 800 Ma Crust in the Chinese Part of the Sino-Korean Craton[J].Geology,1992,20(4):339-342.

[60] KUSKY T M,LI J H.Paleoproterozoic Tectonic Evolution of the North China Craton[J].Journal of Asian Earth Sciences,2003,22(4):383-397.

[61] 王安東,劉貽燦,古曉鋒,等.蚌埠老山含石榴子石片麻狀花崗巖的鋯石SHRIMP U-Pb年齡及其對華南俯沖陸殼再循環(huán)的意義[J].礦物巖石,2009,29(2):38-43.

WANG An-dong,LIU Yi-can,GU Xiao-feng,et al.Zircon SHRIMP U-Pb Dating for Garnet-bearing Gneissic Granite at Laoshan,Bengbu:Implications for Recycling of the Subducted Continental Crust of the South China Block[J].Journal of Mineralogy and Petrology,2009,29(2):38-43.

[62] YANG D B,XU W L,WANG Q H,et al.Chronology and Geochemistry of Mesozoic Granitoids in the Bengbu Area,Central China: Constraints on the Tectonic Evolution of the Eastern North China Craton[J].Lithos,2010,114(1/2):200-216.

[63] PATTISON D R M,CHACKO T,F(xiàn)ARQUHAR J,et al. Temperatures of Granulite-facies Metamorphism:Constraints from Experimental Phase Equilibria and Thermobarometry Corrected for Retrograde Exchange[J].Journal of Petrology,2003,44(5):867-900.

[64] VERNON R H,COLLINS W J.Igneous Microstructures in Migmatites[J].Geology,1988,16(12):1126-1129.

[65] HOLNESS M B,SAWYER E W.On the Pseudomorphing of Melt-filled Pores During the Crystallization of Migmatites[J].Journal of Petrology,2008,49(7):1343-1363.

[66] 劉貽燦,王安東.華北克拉通東南緣前寒武紀(jì)下地殼的幕式生長與多期改造:巖石學(xué)、年代學(xué)和Hf同位素證據(jù)[J].地球科學(xué)與環(huán)境學(xué)報,2012,34(4):1-11.

LIU Yi-can,WANG An-dong.Episodic Growth and Multiple Modification of Precambrian Lower Crust in the Southeastern Margin of North China Craton:Petrologic,Geochronological and Hf-isotopic Evidences[J].Journal of Earth Sciences and Environment,2012,34(4):1-11.

[67] CESARE B,F(xiàn)ERRERO S,SALVIOLI-MARIANI E,et al.“Nanogranite” and Glassy Inclusions:The Anatectic Melt in Migmatites and Granulites[J].Geology,2009,37(7):627-630.

[68] SAWYER E W,CESARE B,BROWN M.When the Continental Crust Melts[J].Elements,2011,7(4):229-234.

[69] FERRERO S,BARTOLI O,CESARE B,et al.Microstructures of Melt Inclusions in Anatectic Metasedimentary Rocks[J].Journal of Metamorphic Geology,2012,30(3):303-322.

[70] BARTOLI O,TAJCMANOVA L,CESARE B,et al. Phase Equilibria Constraints on Melting of Stromatic Migmatites from Ronda(S.Spain):Insights on the Formation of Peritectic Garnet[J].Journal of Metamorphic Geology,2013,31(7):775-789.

[71] COLEMAN R G.Minerals and Rocks:Ophiolites[M]. Berlin:Springer-Verlag,1977.

[72] LI X P,RAHN M,BUCHER K.Metamorphic Processes in Rodingites of the Zermatt-Saas Ophiolites[J].International Geology Review,2004,46(1):28-51.

[73] FERRANDO S,F(xiàn)REZZOTTI M L,ORIONE P,et al.Late-Alpine Rodingitization in the Bellecombe Meta-ophiolites (Aosta Valley,Italian Western Alps):Evidence from Mineral Assemblages and Serpentinization- derived H2-bearing Brine[J].International Geology Review,2010,52(10/11/12):1220-1243.

[74] OTHMAN D B,WHITE W M,PATCHETT J.The Geochemistry of Marine Sediments,Island Arc Magma Genesis,and Crust-mantle Recycling[J].Earth and Planetary Science Letters,1989,94(1/2):1-21.

[75] FROST B R,CHACKO T.The Granulite Uncertainty Principle: Limitations on Thermobarometry in Granulites[J].The Journal of Geology,1989,97(4):435-450.

[76] SPEAR F S,F(xiàn)LORENCE F P.Thermobarometry in Granulites:Pitfalls and New Approaches[J].Precambrian Research,1992,55(1/2/3/4):209-241.

[77] DAVIS W J,CANIL D,MACKENZIE J M,et al.Petrology and U-Pb Geochronology of Lower Crustal Xenoliths and the Development of a Craton,Slave Province,Canada[J].Lithos,2003,71(2):541-573.