国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

基于分子生物學(xué)方法的外來入侵物種入侵歷史重構(gòu)

2015-04-10 10:44:32萬宣伍劉映紅羅林明封傳紅
生態(tài)學(xué)報(bào) 2015年4期
關(guān)鍵詞:生物入侵來源種群

萬宣伍,劉映紅,羅林明,封傳紅,王 勝,馬 利

1 西南大學(xué)植物保護(hù)學(xué)院,昆蟲學(xué)及害蟲控制工程重慶市重點(diǎn)實(shí)驗(yàn)室,重慶 400716 2 四川省植物保護(hù)站,成都 610041

基于分子生物學(xué)方法的外來入侵物種入侵歷史重構(gòu)

萬宣伍1,2,劉映紅1,*,羅林明2,封傳紅2,王 勝2,馬 利2

1 西南大學(xué)植物保護(hù)學(xué)院,昆蟲學(xué)及害蟲控制工程重慶市重點(diǎn)實(shí)驗(yàn)室,重慶 400716 2 四川省植物保護(hù)站,成都 610041

生物入侵是一個(gè)世界性的問題。全球每年因生物入侵造成的損失超過1萬億美元。探究入侵物種在入侵地的入侵歷史對(duì)了解生物入侵的生物生態(tài)學(xué)機(jī)制、制定阻截及防除措施有重要意義。分子標(biāo)記方法的興起和大規(guī)模應(yīng)用打開了入侵生物入侵歷史研究的新天地。采用分子標(biāo)記的方法可鑒定入侵物種的種類、追溯其來源地、回溯其擴(kuò)散路徑、分析擴(kuò)散模式及探究物種入侵過程中對(duì)入侵種群本身的變化及其對(duì)生態(tài)系統(tǒng)所造成的各種影響。分子標(biāo)記的應(yīng)用使得多個(gè)入侵物種的入侵歷史得以重現(xiàn)。由于分子標(biāo)記方法重構(gòu)的入侵歷史受采樣范圍、采用的分子標(biāo)記的種類及數(shù)量等因素的影響,該方法呈現(xiàn)入侵歷史是否是真實(shí)發(fā)生的入侵過程還存在爭(zhēng)議。

生物入侵;外來物種;入侵歷史;分子標(biāo)記

生物入侵是指原本不屬于某一生態(tài)區(qū)域或地理區(qū)域的物種,通過不同的途徑被傳播到一新的區(qū)域,并在新的棲息地定殖、建群、擴(kuò)展和蔓延,同時(shí)對(duì)傳入地的經(jīng)濟(jì)和生態(tài)帶來一些負(fù)面影響的過程[1- 2]。引起該現(xiàn)象的物種稱為外來入侵物種[1]。在過去的幾百年中,多種植物、動(dòng)物或其他物種被傳入到世界各地[3]。隨著經(jīng)濟(jì)全球化的深入發(fā)展,頻繁的國(guó)際貿(mào)易、旅游加速了物種向新的地域擴(kuò)散的速度[3]。根據(jù)我國(guó)近100年來從境外傳入的外來有害生物的不完全統(tǒng)計(jì),目前入侵我國(guó)的外來入侵生物有520余種;而在世界自然保護(hù)聯(lián)盟公布的全球100中最具威脅的外來生物中,我國(guó)就有50種[4]。

生物入侵的過程分為引入、定殖、潛伏、擴(kuò)散及暴發(fā)等幾個(gè)階段[5]。據(jù)統(tǒng)計(jì)外來入侵物種能夠成功從上一階段進(jìn)入下一階段個(gè)體的比例為10%左右[6]。但是,人為有目引入的外來種其成功的比例要高得多[6]。外來物種在入侵的最初階段可能由于個(gè)體數(shù)量較少且分布較分散而不易被察覺[7- 8]。經(jīng)過一段潛伏期后,入侵種的種群數(shù)量可能已具有相當(dāng)大的規(guī)模,當(dāng)外來入侵物種的種群數(shù)量及分布范圍達(dá)到一定的閾值后,就可能發(fā)生爆發(fā)性的擴(kuò)展[9]。一種是通過種群數(shù)量增長(zhǎng)向周邊地域的短距離擴(kuò)展[10],另一種是通過人或動(dòng)物的活動(dòng)而實(shí)現(xiàn)的長(zhǎng)距離擴(kuò)展[11- 12]。短距離擴(kuò)展是連續(xù)的,而長(zhǎng)距離擴(kuò)展則往往呈現(xiàn)跳躍式。

復(fù)現(xiàn)外來入侵物種的入侵過程,亦即重構(gòu)其入侵歷史對(duì)解析入侵物種成功入侵的生物、生態(tài)學(xué)機(jī)制及制定有針對(duì)性的防控措施具有重要作用。本文就近年來外來入侵物種入侵歷史的研究進(jìn)行了總結(jié),以期為我國(guó)相關(guān)領(lǐng)域的研究提供參考。

1 重構(gòu)外來入侵物種入侵歷史的意義

1.1 理論意義

生物入侵改變物種的分布及入侵地的群落結(jié)構(gòu)[13- 14]、威脅生物多樣性、影響生態(tài)系統(tǒng)功能過程[15- 18],是生態(tài)系統(tǒng)及進(jìn)化過程產(chǎn)生快速變化的推手[19- 21]。生態(tài)學(xué)家及進(jìn)化生物學(xué)家提出了諸多關(guān)于外來入侵物種入侵機(jī)制的假說,如“物種多樣性阻抗假說”[22]、“生態(tài)系統(tǒng)干擾假說”[14]、“入侵進(jìn)化假說”[23]、“新武器假說”[24],“天敵逃避假說”[25]、“繁殖體壓力假說”[26]及“環(huán)境發(fā)生化學(xué)變化假說”[27]等。這些假說的論證有利于入侵物種入侵歷史的完善,同時(shí)完善入侵歷史又推動(dòng)了新假說的產(chǎn)生[28]。

外來入侵物種在新生境中通常由于選擇壓力的作用而產(chǎn)生以表型變化為標(biāo)志的適應(yīng)性進(jìn)化。這種適應(yīng)性進(jìn)化表現(xiàn)為由表型可塑性所決定的“前適應(yīng)性”或遺傳分化所形成的“后適應(yīng)性”。直接比較來源地種群與入侵種群間表型上的差異是分析選擇壓力在適應(yīng)性進(jìn)化上所起作用的重要方法,因此準(zhǔn)確鑒定入侵種群的來源地至為關(guān)鍵。大陸果蠅Drosophilasubobscura原產(chǎn)地為歐洲,在傳入美國(guó)不到20年的時(shí)間就產(chǎn)生了形態(tài)上的變化以適應(yīng)入侵地的氣候條件[29];生活在高鹽環(huán)境的橈足類動(dòng)物Eurytemoraaffinis擴(kuò)散到低鹽環(huán)境中后,很快就產(chǎn)生了適應(yīng)性變化[30]。選擇壓力是上述兩入侵物種適應(yīng)性進(jìn)化 (表型變化) 的主要推動(dòng)力。隨著越來越多的入侵物種入侵歷史的重構(gòu),發(fā)現(xiàn)新生境中的選擇壓力推動(dòng)的適應(yīng)性進(jìn)化不是導(dǎo)致表型變化的唯一因素。入侵物種在引入、建立種群及暴發(fā)擴(kuò)散過程中所表現(xiàn)出的表型上的變化有可能是中性的。在引入過程中入侵物種種群數(shù)量的突然減少及種群建立過程中入侵地低密度的種群數(shù)量都有可能造成來源地種群與入侵地種群間與選擇壓力無關(guān)的表型變化[31]。

1.2 實(shí)踐意義

1.2.1 預(yù)測(cè)生態(tài)影響

預(yù)測(cè)外來入侵物種可能產(chǎn)生的生態(tài)影響是生物入侵研究中最薄弱的環(huán)節(jié),有效預(yù)測(cè)方法相當(dāng)缺乏[32- 34]。分析入侵物種在已入侵地區(qū)的生態(tài)影響是預(yù)測(cè)入侵物種在可能入侵地區(qū)生態(tài)影響的重要手段[34]。數(shù)種入侵物種的入侵歷史表明,這些入侵種在大多數(shù)入侵地區(qū)的生態(tài)影響都大致相似[35- 41]。在既有入侵地域生態(tài)影響的信息已成功用于預(yù)測(cè)一些廣泛分布的入侵種擴(kuò)散到新的地域后的生態(tài)影響?;谌肭謿v史采用meta-analysis,以生物量及入侵時(shí)間為預(yù)測(cè)變量的預(yù)測(cè)模型可預(yù)測(cè)錦鯉Cyprinuscarpio在新生境中達(dá)91%的生態(tài)影響[34]。

以入侵歷史作為預(yù)測(cè)外來入侵物種生態(tài)影響的手段還面臨許多挑戰(zhàn)。首先,由生物入侵導(dǎo)致的生態(tài)影響的信息還相當(dāng)缺乏,且不能確定有多少信息與特定入侵物種造成的生態(tài)影響相關(guān),這些信息是否可用于定量分析[42- 43]。其次,入侵物種引起的生態(tài)影響是多種多樣的,這些影響的大小甚至方向會(huì)隨著時(shí)空的改變而變化[44- 46]??紤]到由入侵物種所引起的生態(tài)影響的不確定性及不同入侵物種間生態(tài)影響信息量的差異,入侵歷史還不可能廣泛用于預(yù)測(cè)入侵物種在潛在入侵區(qū)域的生態(tài)影響的方式、方向及強(qiáng)度[34]。

1.2.2 防控

外來入侵物種入侵歷史的重構(gòu)有助于制定合理的檢疫措施、阻截及防控方案。外來入侵物種在其起源地是完整的生物鏈中的一環(huán),明確其起源地是引入捕食性或寄生性天敵控制入侵種群的基礎(chǔ)。確定入侵種的來源地可有針對(duì)性的實(shí)施產(chǎn)地檢疫,從源頭上切斷入侵種的傳播。復(fù)現(xiàn)擴(kuò)散路徑可對(duì)入侵種的擴(kuò)散采取分段阻截的措施,防止入侵種向新的區(qū)域蔓延。入侵種群遺傳信息的獲得可為制定合理的防控方案提供遺傳學(xué)上的指導(dǎo)[47- 50]。

根據(jù)入侵歷史美國(guó)地中海實(shí)蠅Ceratitiscapitata的防控是入侵歷史應(yīng)用于防控策略制定的典型范例之一。地中海實(shí)蠅于20世紀(jì)下半葉侵入美國(guó)加利福尼亞州、田納西州及佛羅里達(dá)州。采用分子標(biāo)記技術(shù)對(duì)美國(guó)地中海實(shí)蠅的來源及遷移路徑進(jìn)行分析后制定了包括對(duì)來源地果蔬實(shí)施嚴(yán)格檢驗(yàn)、設(shè)置阻截帶防止分散的分布區(qū)間個(gè)體的遷移及釋放不育昆蟲等防控措施[51]。原產(chǎn)于新熱帶植物區(qū) (Neotropics) 的貓爪藤M(fèi)acfadyenaunguis-cati及紅葉麻風(fēng)樹Jatrophagossypiifolia近年來侵入澳大利亞。但這兩種入侵植物呈現(xiàn)出截然不同的入侵歷史,貓爪藤入侵種群可能形成于單次入侵事件或最初入侵的種群數(shù)量很小,而紅葉麻風(fēng)樹入侵種群是由不同來源地的多重入侵或由遺傳多樣性豐富的來源地種群反復(fù)入侵形成的。根據(jù)兩種植物的入侵歷史,制定了有針對(duì)性的防控策略:對(duì)于遺傳多樣性低的貓爪藤入侵種群,單一的采用天敵控制就可能取得較好防控效果,而對(duì)于遺傳多樣性高的紅葉麻風(fēng)樹入侵種群則應(yīng)采取多種措施相結(jié)合的防控策略[52]。在我國(guó),立足于對(duì)入侵歷史的研究,開展了對(duì)紫莖澤蘭Ageratinaadenophora[53- 57]、紅火蟻Solenopsisinvicta[58- 59]、松材線蟲Bursaphelenchusxylophilus[60]及蘋果蠹蛾Cydiapomonella[61]等外來入侵物種的阻擊和滅除行動(dòng)。

2 重構(gòu)入侵歷史的方法

外來入侵物種入侵歷史的重構(gòu)根據(jù)手段不同可分為基于歷史發(fā)生記錄的直接方法[62]和基于遺傳信息的間接方法[63- 71]。

2.1 直接方法

重構(gòu)入侵歷史的直接方法以入侵物種的有無及發(fā)現(xiàn)的先后時(shí)間等記錄為基礎(chǔ)[72]。機(jī)場(chǎng)及港口對(duì)入侵物種的截獲記錄反映了入侵物種的直接來源地。結(jié)合生態(tài)學(xué)及生物氣候?qū)W信息,這些記錄還可用于回溯入侵物種的擴(kuò)散路徑。例如,白紋伊蚊Aedesalbopictus擴(kuò)散路徑及擴(kuò)散范圍的回溯就結(jié)合了國(guó)際航運(yùn)、空運(yùn)數(shù)據(jù)庫及氣候條件[73]。機(jī)場(chǎng)和港口的截獲記錄雖然反映了入侵種的直接來源地,但不能從這些記錄獲得入侵后續(xù)過程的信息。加之入侵物種擴(kuò)散記錄的缺乏,采用直接方法重構(gòu)入侵生物的入侵歷史特別是回溯擴(kuò)散路徑不能獲得較為精確的結(jié)果[74]。

2.2 間接方法

入侵物種的鑒定是重構(gòu)入侵歷史的前提。采用傳統(tǒng)的形態(tài)學(xué)的方法輔以分子生物學(xué)手段可有效地確定入侵物種的分類單元。對(duì)于一些在形態(tài)上難以和其近緣種相區(qū)分的入侵物種,分子生物學(xué)鑒定更是重要手段。入侵物種種群間遺傳信息的差異有助于推斷入侵種群的來源地。通過構(gòu)建入侵種群與來源地種群間的系統(tǒng)發(fā)育樹計(jì)算各種群間的遺傳距離,外來入侵物種擴(kuò)散過程中的各種情形得以呈現(xiàn)[75]。如果多個(gè)入侵種群來自同一來源地,這幾個(gè)入侵種群可能由于入侵初期的瓶頸效應(yīng)導(dǎo)致彼此間較大的遺傳距離,種群系統(tǒng)發(fā)育樹將會(huì)呈現(xiàn)出來源地種群位于樹的根部而各入侵種群相對(duì)獨(dú)立的位于系統(tǒng)發(fā)育樹末端的狀態(tài)。種群系統(tǒng)發(fā)育樹的枝長(zhǎng)反映了入侵種群進(jìn)化歷史的長(zhǎng)短,根據(jù)入侵種群的枝長(zhǎng)可描述外來入侵物種的擴(kuò)散方向[76]。玉米根螢葉甲Diabroticavirgifera北美1個(gè)種群及歐洲5個(gè)種群的鄰接系統(tǒng)發(fā)育樹 顯示,該蟲從北美分別擴(kuò)散到歐洲各地,巴黎可能是玉米根螢葉甲在歐洲的最初登陸地[63]。近年來,以Structure[77]及Geneland[78]為代表的聚類方法也越來越多的應(yīng)用到外來入侵物種入侵歷史的重構(gòu)中。與入侵種群清晰地聚類在一起的種群有可能是其來源種群。如果入侵種群與多個(gè)來源地種群共祖,說明入侵種群可能是由不同來源地的多重入侵形成[64,78- 81]。進(jìn)一步分析每個(gè)個(gè)體的祖先來源,若個(gè)體的祖先亦為多個(gè)種群,則來自不同來源地的入侵個(gè)體進(jìn)入到新的地域后可能發(fā)生了種內(nèi)雜交[64,81]。

3 外來入侵物種的進(jìn)化遺傳學(xué)

3.1 選擇壓力

由于入侵種廣泛的生態(tài)適應(yīng)性及表型可塑性,在新生境中遭遇的選擇壓力可使其潛在的生態(tài)適應(yīng)性得以顯現(xiàn),從而推動(dòng)成功入侵[82- 86]。橈足類動(dòng)物E.affinis復(fù)合種的生態(tài)適應(yīng)性很廣,從高鹽的沼澤地到低鹽的淡水湖泊均有該類生物的存在。盡管該復(fù)合種中的類群產(chǎn)生了適應(yīng)性上的分化,但當(dāng)選擇壓力存在的時(shí)候,高鹽環(huán)境中生存的橈足類動(dòng)物很快就可以適應(yīng)低鹽的環(huán)境[30]。

3.2 遺傳變異

足夠的加性遺傳變異可推動(dòng)入侵種對(duì)新生境的進(jìn)化適應(yīng)[87]。越來越多的研究表明,來源地種群高水平的加性遺傳變異是推動(dòng)入侵種成功入侵的重要因素之一[88- 91]。成功入侵前的潛伏階段正是為了積累足夠的加性遺傳,而不是個(gè)體數(shù)量[92]。阿根廷螞蟻Linepithemahumile在北美的入侵屬于例外,由于瓶頸效應(yīng)的作用使得入侵種群同質(zhì)性的增加,減少了入侵種群不同巢穴間的爭(zhēng)斗,從而形成了有利于其入侵的行為特性[93]。

研究表明,上位遺傳變異在入侵物種的適應(yīng)性進(jìn)化過程中也有重要作用。在沒有突變發(fā)生的前提下,上位遺傳變異可在入侵種群內(nèi)及種群間產(chǎn)生新的遺傳特征。這些遺傳特征可通過遺傳漂變或自然選擇固定下來[94]。對(duì)擴(kuò)散到不同寄主植物上的無患子蟲種群的研究發(fā)現(xiàn),與適應(yīng)性進(jìn)化相關(guān)的遺傳變異中大約40%—80%為上位遺傳變異[88]。

3.3 特殊基因

一些基因可能決定的外來入侵物種的擴(kuò)散能力[23]。通過克隆從南美侵入美國(guó)的紅火蟻S.invicta工蟻的基因發(fā)現(xiàn),Gp- 9這個(gè)編碼信息素合成的基因影響工蟻?zhàn)R別同巢蟻后的能力[95]。缺乏自我識(shí)別的能力使分屬不同巢穴的紅火蟻形成一個(gè)高密度的超級(jí)入侵種群,促進(jìn)其向新的區(qū)域入侵[92,96]。通過數(shù)量性狀基因座位作圖發(fā)現(xiàn),一些基因與假高粱Sorghumhalepense的生長(zhǎng)、擴(kuò)散及蔓延密切相關(guān)[97]。

3.4 對(duì)環(huán)境梯度的適應(yīng)性進(jìn)化

外來入侵物種在擴(kuò)散過程中通過表型可塑性的“前適應(yīng)性”及入侵后產(chǎn)生遺傳變異的“后適應(yīng)性”對(duì)分布地域內(nèi)的環(huán)境梯度產(chǎn)生響應(yīng),從而在地理尺度上表型出地理尺度上的漸變?nèi)篬98- 100]。從歐洲傳入北美的大陸果實(shí)蠅D.subobscura,隨著海拔高度的增加,翅的長(zhǎng)度也增加,形成了隨海拔梯度變化的漸變?nèi)篬27]。入侵植物對(duì)環(huán)境梯度的適應(yīng)性進(jìn)化表現(xiàn)得尤為明顯。入侵我國(guó)的紫莖澤蘭A.adenophora的種子的大小、重量、發(fā)芽速率及發(fā)芽率分枝數(shù)及葉片的高溫耐受力呈現(xiàn)出明顯的海拔漸變?nèi)焊窬?,高海拔種群的紫莖澤蘭種子大、發(fā)芽速率快且發(fā)芽率高[101]。分枝數(shù)與海拔高度呈正相關(guān),而葉片的高溫耐受力與海拔高度呈負(fù)相關(guān)[102]。入侵植物對(duì)緯度梯度的適應(yīng)性進(jìn)化也常常觀察到。千屈菜Lythrumsalicaria[103]、具腺鳳仙花Impatiensglandulifera[104]、巨大一枝黃花Solidagogigantean[105]、北美一枝黃花S.altissima[105]及窄葉黃菀Senecioinaequidens[106]等入侵植物在不同的緯度上呈現(xiàn)出明顯不同的生物生態(tài)學(xué)特征,形成緯度梯度漸變?nèi)?。這種格局可能是不同緯度上不同的生長(zhǎng)季節(jié)長(zhǎng)度對(duì)基因型自然選擇的結(jié)果。另外,入侵植物對(duì)不同生境中降雨、溫度、水分環(huán)境梯度等的適應(yīng)進(jìn)化而表現(xiàn)出的局域適應(yīng)特征也會(huì)導(dǎo)致地理漸變?nèi)旱漠a(chǎn)生[103,105,107- 111]。

3.5 物種形成事件

生物入侵可能會(huì)導(dǎo)致新物種的形成。當(dāng)入侵物種侵入與來源地截然不同的生境中后,選擇壓力的作用可導(dǎo)致表型的改變[112- 113]。入侵種生理生化上的改變可能會(huì)阻礙來源地與入侵地種群間的基因交流,甚至產(chǎn)生生殖隔離,最終導(dǎo)致新物種的產(chǎn)生或物種復(fù)合種的形成[112- 113]。植食性的昆蟲在遷移到新的寄主上后形成彼此間生殖隔離的寄主?;瓦@一現(xiàn)象反映了生物入侵導(dǎo)致新物種形成的可能性[114]。另外,紅鮭Oncorhynchusnerka在海灘僅飼養(yǎng)13代后就與其野生種群產(chǎn)生了顯著的遺傳分化,生殖隔離現(xiàn)象也開始顯現(xiàn)[115]。

4 基于遺傳信息的外來物種入侵歷史的研究

4.1 鑒定入侵物種

明確是何種物種引起的生物入侵是研究其入侵歷史的前提。一些外來入侵物種存在多個(gè)隱種,如煙粉虱Bemisiatabaci[116- 117],或?qū)儆趶?fù)合種的一員,如桔小實(shí)蠅Bactroceradorsalis[118- 119]。采用形態(tài)分類的方法很難將入侵種與其近緣種區(qū)分開。

隨著分子生物學(xué)技術(shù)的發(fā)展,分子標(biāo)記越來越多的運(yùn)用入侵物種的鑒定。煙粉虱生物型的鑒定是采用分子標(biāo)記技術(shù)鑒定入侵種的范例。采用隨機(jī)擴(kuò)增多態(tài)性DNA標(biāo)記確定了入侵突尼斯、委內(nèi)瑞拉、哥倫比亞、法國(guó)及西班牙等國(guó)的煙粉虱為B型煙粉虱[120]。通過對(duì)比線粒體DNAcox1基因片段發(fā)現(xiàn),入侵我國(guó)的煙粉虱為B型和Q型[121]。分子生物學(xué)技術(shù)的應(yīng)用還使原來從形態(tài)上不能分辨的近緣種與桔小實(shí)蠅區(qū)分開來[122- 126]。

4.2 確定入侵種群來源地

分子標(biāo)記的方法是確定缺乏發(fā)生歷史記錄的入侵種群的來源地的重要手段。地中海實(shí)蠅Ceratitiscapitata在美國(guó)多個(gè)地區(qū)對(duì)農(nóng)業(yè)生產(chǎn)造成了嚴(yán)重的威脅,但是長(zhǎng)期以來不能確定這些地區(qū)入侵種群的來源。通過對(duì)入侵美國(guó)加利福尼亞州和夏威夷群島的地中海實(shí)蠅種群及南美洲的秘魯、巴西、危地馬拉、厄瓜多爾、阿根廷和薩爾瓦多等地區(qū)地中海實(shí)蠅遺傳信息的分析發(fā)現(xiàn),美國(guó)加州的入侵種群可能來源于厄瓜多爾[51]。

采用分子標(biāo)記的方法確定入侵種群的來源地還可與入侵種發(fā)生歷史記錄相互印證。遺傳信息顯示,美國(guó)加利福尼亞州的虎紋鈍口螈Ambystomamavortium來自美國(guó)中部的平原地區(qū)及美國(guó)西南部;發(fā)生歷史記錄也表明,虎紋鈍口螈從德克薩斯州、新墨西哥州及科羅拉多州向其他地方擴(kuò)散[127]。基于遺傳信息的推斷的入侵種群的來源地有時(shí)與發(fā)生歷史記錄相矛盾。歷史記錄顯示,美國(guó)加利福尼亞州塔瑪莉海灣的蛤蜊Gemmagemma種群來自于大西洋中部,而分子生物學(xué)證據(jù)則表明該地區(qū)的種群由不同來源地的蛤蜊獨(dú)立入侵形成[67]。在確定入侵種群的來源時(shí),聯(lián)合發(fā)生記錄及分子數(shù)據(jù)可獲得更加可信的結(jié)果。根據(jù)紅火蟻S.invicta的發(fā)生記錄及分布區(qū)內(nèi)種群的遺傳信息,南美洲被認(rèn)為是該物種的起源地。紅火蟻從南美進(jìn)入美國(guó)后,再通過美國(guó)這個(gè)橋頭堡擴(kuò)散到世界上其他地方[128]。

通過分子數(shù)據(jù)推斷入侵種群的來源地受到許多因素的影響,如樣本采集的覆蓋度、分子標(biāo)記的靈敏性及入侵地種群與來源地種群間遺傳變異的程度等[129]。由于在印度及中東地區(qū)采樣不足,印度紅頰獴Herpestesauropunctatus的來源僅劃定為斯里蘭卡或巴基斯坦這一大致的范圍[130]。

4.3 回溯擴(kuò)散路徑

入侵物種在不同地域的發(fā)生記錄在一定程度上反映了入侵種的擴(kuò)散路徑。但是,單一的以發(fā)生歷史記錄為依據(jù)來描述入侵種的擴(kuò)散路徑往往會(huì)導(dǎo)致偏差。玉米根螢葉甲D.virgifera原產(chǎn)于墨西哥及北美洲東海岸,1992年在南斯拉夫的貝爾格萊德首次發(fā)現(xiàn)該蟲入侵到歐洲地區(qū),此后該蟲以每年100km左右的速度迅速向歐洲東部及中部擴(kuò)散。理論上,入侵物種的擴(kuò)散是一個(gè)連續(xù)的過程,但在玉米根螢葉甲擴(kuò)散的前沿地帶發(fā)現(xiàn)了數(shù)個(gè)孤立的入侵點(diǎn)。這一現(xiàn)象被認(rèn)為是位于擴(kuò)散前沿的種群跳躍式入侵所形成的[63]。但是,采用分子標(biāo)記對(duì)起源地種群及入侵地種群遺傳信息分析后卻表明,這幾個(gè)孤立的入侵種群是玉米根螢葉甲直接從起源地跨越大西洋形成的[63,131]。分子標(biāo)記的方法基于種群間內(nèi)在的遺傳聯(lián)系,以獨(dú)特的視角重現(xiàn)了入侵物種的擴(kuò)散路徑。

全球范圍內(nèi),采用分子標(biāo)記的方法重現(xiàn)了多個(gè)入侵物種的入侵路徑[63- 71,79- 82,132- 135]。盡管我國(guó)是遭受生物入侵最嚴(yán)重的地區(qū)之一,但在侵入我國(guó)的500多種外來入侵生物中,僅有極少數(shù)幾個(gè)入侵物種的擴(kuò)散路徑通過分子標(biāo)記的方法得以復(fù)現(xiàn)。利用擴(kuò)增長(zhǎng)度多態(tài)性標(biāo)記發(fā)現(xiàn),紫莖澤蘭A.adenophora可能從緬甸、老撾及越南等地侵入我國(guó)云南南部,然后再向北部的四川、東北部的貴州及東部的廣西等地區(qū)擴(kuò)散,風(fēng)及水流是其在我國(guó)傳播擴(kuò)散的主要載體[136]。

4.4 檢測(cè)入侵過程中的瓶頸效應(yīng)或奠基者效應(yīng)

非本土種被遠(yuǎn)距離傳入到新的區(qū)域中時(shí),可能會(huì)經(jīng)歷種群發(fā)展的瓶頸時(shí)期,來源地與入侵地間劇烈的環(huán)境變化會(huì)導(dǎo)致種群數(shù)量急劇減少,甚至使種群面臨滅絕[137- 138]。種群的瓶頸效應(yīng)導(dǎo)致等位基因的缺失速度快于遺傳多樣性降低的速度,從而表現(xiàn)出雜合度過量[139]。通過檢測(cè)多態(tài)性位點(diǎn)上等位基因的頻率及比較哈迪-溫伯格平衡 假設(shè)下期望雜合度與實(shí)際觀測(cè)雜合度之間的差異可以發(fā)現(xiàn)種群近期是否發(fā)生過瓶頸效應(yīng)[139- 140]。對(duì)入侵物種大量的遺傳信息的分析表明,大多數(shù)入侵種在擴(kuò)散的過程中都會(huì)經(jīng)歷明顯的瓶頸效應(yīng)[129]。外來入侵物種在新入侵地區(qū)中所經(jīng)歷的瓶頸效應(yīng)可能會(huì)導(dǎo)致入侵種群間產(chǎn)生顯著的遺傳分化。德國(guó)黃胡蜂Vespulagermanica起源于歐洲,在入侵大洋洲的過程中由于種群瓶頸效應(yīng)的作用導(dǎo)致塔斯馬尼亞島種群與其余入侵種群間產(chǎn)生了顯著的遺傳分化[141]。入侵過程中不斷發(fā)生的瓶頸效應(yīng)形成了入侵種群間的遺傳距離與地理距離呈正相關(guān)的遺傳格局[141]。

進(jìn)入新生境的外來入侵物種的個(gè)體數(shù)量可能很少,這些奠基者只攜帶了來源地種群少部分的遺傳特征,導(dǎo)致新建立的種群遺傳多樣性降低[142]。由人為傳播所引起的生物入侵事件中,幾乎在每一個(gè)外來入侵物種上都存在奠基者效應(yīng)[129]。由于缺乏基因交流,奠基者效應(yīng)在入侵物種擴(kuò)散到一個(gè)相對(duì)封閉的環(huán)境中后表現(xiàn)得尤為明顯[129]。

4.5 分析擴(kuò)散模式

4.5.1 擴(kuò)散過程中的橋頭堡效應(yīng)

在回溯外來入侵物種的擴(kuò)散路徑時(shí)發(fā)現(xiàn),某一特定的成功入侵的種群扮演了作為其余地區(qū)入侵種群來源的角色,這種現(xiàn)象被稱為入侵過程中的“橋頭堡”效應(yīng)[143]。盡管在一些入侵物種的擴(kuò)散過程中觀察到了“橋頭堡”效應(yīng)[68,131,144- 146],但要獲取令人信服的結(jié)果還存在一些困難——回溯入侵物種擴(kuò)散路徑的方法相對(duì)缺乏;回溯擴(kuò)散路徑時(shí)種群數(shù)量有限,不能獲得入侵物種在全球范圍內(nèi)的完整的擴(kuò)散過程[76,143]。

原產(chǎn)于亞洲的異色瓢蟲Harmoniaaxyridis在全球范圍內(nèi)的擴(kuò)散呈現(xiàn)出顯著的“橋頭堡”效應(yīng)[143]。該蟲是1916年作為防治蚜蟲的天敵引入北美洲的[147- 148],直到1988年才在美國(guó)東部發(fā)現(xiàn)其野生種群[149],其后又于1991年在美國(guó)西北部發(fā)現(xiàn)入侵種群[150]。2001—2004年相繼在歐洲、南美洲及非洲發(fā)現(xiàn)異色瓢蟲的入侵種群[151- 153]。采用近似貝葉斯估算,結(jié)合微衛(wèi)星分子標(biāo)記數(shù)據(jù)及發(fā)生歷史記錄發(fā)現(xiàn),歐洲、南美洲及非洲地區(qū)的異色瓢蟲不是直接來源于亞洲,上述地區(qū)的入侵種群是美國(guó)東北部的異色瓢蟲入侵形成的,該地區(qū)的種群在異色瓢蟲向其余地區(qū)擴(kuò)散的過程中扮演了橋頭堡的作用[143]。

4.5.2 多重入侵及種內(nèi)雜交

外來入侵物種不同來源地的多重入侵是生物入侵過程中的普遍現(xiàn)象[154- 170]。多重入侵被認(rèn)為是入侵種群克服種群建立階段的瓶頸效應(yīng)或奠基者效應(yīng)的重要機(jī)制[137]。不同來源地的遺傳背景不同入侵個(gè)體在侵入同一區(qū)域后,增加了入侵種群的遺傳多樣性,種內(nèi)雜交導(dǎo)致的基因重組進(jìn)一步增加了種群的遺傳多樣性。在由多重入侵形成的入侵種群中檢測(cè)不到瓶頸效應(yīng)或奠基者效應(yīng)[129]。

同一入侵區(qū)域內(nèi)的種內(nèi)雜交產(chǎn)生的后代由于雜種優(yōu)勢(shì),往往表現(xiàn)出比母代更強(qiáng)的適應(yīng)性,因此多重入侵被認(rèn)為是推動(dòng)成功入侵的重要因素[86]。盡管由多重入侵后的種內(nèi)雜交推動(dòng)的成功入侵在一些文獻(xiàn)中已有描述,但這一假說還需要進(jìn)一步檢驗(yàn)。綜合采用遺傳信息、室內(nèi)實(shí)驗(yàn)及野外數(shù)據(jù)分析,證實(shí)多重入侵后的種內(nèi)雜交推動(dòng)了瘤擬黑螺Melanoidestuberculata的成功入侵。來自于日本、馬來西亞及印西馬來群島等地區(qū)瘤擬黑螺無性繁殖系在入侵到南美的提尼克島后,產(chǎn)生了兩個(gè)有性繁殖系。與無性繁殖的母種群相比,有性繁殖的瘤擬黑螺產(chǎn)生的后代的數(shù)量較少但個(gè)體變大,這一生活史策略使有性繁殖系在自然環(huán)境中具有更強(qiáng)的競(jìng)爭(zhēng)力[171- 172]。

Wolfe等[173]提出,多重入侵后的種內(nèi)雜交推動(dòng)成功入侵需滿足3個(gè)條件:1) 不同來源地種群間的遺傳分化顯著,2) 來自于不同母種群的個(gè)體間可交配,3) 雜交后代與入侵性相關(guān)的特征與母種群不同。異色瓢蟲H.axyridi在歐洲的成功入侵符合上述假設(shè)[179]。入侵法國(guó)的種群與用于生物防治的種群間有顯著的遺傳分化;無飛行能力的用于生物防治的種群與野外種群交配后,產(chǎn)生了可以飛行的后代;與入侵種群相比,雜交后代世代時(shí)間更短、個(gè)體更大、遺傳多樣性更豐富[174]。

4.6 探究種間雜交及基因滲透

當(dāng)外來入侵物種與入侵地的本土物種存在雜交時(shí),外來物種更易成功入侵。一方面,種間雜交抑制本土物種種內(nèi)的交配,降低本土種群的遺傳多樣性,導(dǎo)致本土種加速消失,甚至滅絕[175]。另一方面,種間雜交可使本土物種的基因滲透到外來入侵物種,增強(qiáng)其在新生境中的適合度[176]。另外,種間雜交還可減緩?fù)鈦砣肭治锓N種群建立過程中加性遺傳消失的速度,使入侵種群保持較高遺傳多樣性[176]。

利用微衛(wèi)星分子標(biāo)記對(duì)大西洋北部地區(qū)的條紋平鮋Sebastesfasciatus及尖吻平鮋S.mentella種群遺傳多樣性的分析發(fā)現(xiàn),在兩者的混合分布區(qū),條紋平鮋的種群遺傳多樣性顯著高于其單獨(dú)分布區(qū)的種群,而該區(qū)域尖吻平鮋的遺傳多樣性則顯著低于單獨(dú)分布區(qū)[177]。外來入侵物種與本土物種的雜交還可能導(dǎo)致新物種的產(chǎn)生。采用RAPD證實(shí)了互花米草Spartinaalterniflora從北美傳入英國(guó)后,與當(dāng)?shù)氐暮0睹撞軸.maritima雜交產(chǎn)生了入侵性更強(qiáng)的大米草S.aglica[178]。

5 存在的問題

采用分子標(biāo)記的方法對(duì)許多入侵生物的入侵歷史有了全新的認(rèn)識(shí),但是該方法的局限性也顯而易見。采用分子標(biāo)記方法描述的入侵歷史只是入侵物種復(fù)雜的入侵歷史中的一小部分,具有很高的隨機(jī)性。造成該現(xiàn)象的主要原因?yàn)?,用于遺傳信息分析的個(gè)體數(shù)量對(duì)整個(gè)入侵種群的個(gè)體數(shù)量來說相當(dāng)有限,這些個(gè)體不能代表整個(gè)入侵種群的真實(shí)情況[76]。不同的采樣范圍、不同的采樣方法或不同的個(gè)體數(shù)量都可能得出不同的入侵歷史[76,83]。另外,在分析入侵歷史時(shí),不管采用多少分子標(biāo)記都不可能全面反映入侵種遺傳變異及進(jìn)化的過程,分子標(biāo)記的數(shù)量,不同類型分子標(biāo)記的組合都可能影響入侵歷史重構(gòu)的結(jié)果[84- 85]。盡管通過入侵物種遺傳信息來重構(gòu)入侵歷史有諸多局限,但該方法仍是最為行之有效的手段[86]。

[1] 成新躍, 徐汝梅. 中國(guó)外來動(dòng)物入侵概況. 生物學(xué)通報(bào), 2007, 42(9): 1- 4.

[2] 蔣文志, 曹文志, 馮硯艷, 方婧, 李穎. 我國(guó)區(qū)域間生物入侵的現(xiàn)狀及防治. 生態(tài)學(xué)雜志, 2010, 29(7): 1451- 1457.

[3] Meyerson L A, Mooney H A. Invasive alien species in an era of globalization. Frontiers in Ecology and Environment, 2007, 5(4): 199- 208.

[4] 萬方浩, 郭建英, 張峰. 中國(guó)生物入侵研究. 北京: 科學(xué)出版社, 2009: 3- 4.

[5] 萬方浩, 嚴(yán)盈, 王瑞, 楊國(guó)慶. 中國(guó)入侵生物學(xué)學(xué)科的構(gòu)建與發(fā)展. 生物安全學(xué)報(bào), 2011, 20(1): 1- 19.

[6] Williamson M, Fitter A. The varying success of invaders. Ecology, 1996, 77(6): 1661- 1666.

[7] Kaneskro K Y. Introduction, colonization, and establishment of exotic insect populations: fruit flies in Hawaii and California. American Entomologist, 1993, 39(1): 23- 30.

[8] Anderson R M, May R M. Understanding the AIDS pandemic. Scientific American, 1992, 266(5): 58- 66.

[9] Carey J R. The incipient Mediterranean fruit fly population in California: implications for invasion biology. Ecology, 1996, 77(6): 1690- 1697.

[10] 吳兆錄, 閆海忠. 生物多樣性保護(hù)的一個(gè)理論框架—生物最小面積概念. 生物多樣性, 1996, 4(1): 26- 31.

[11] Kraus B, Page R E. Effect of Varroa jacobsoni (Mesostigmata: Varroidae) on feral Apis mellifera (Hymenoptera: Apidae) in California. Environmental Entomology, 1995, 24(6): 1473- 1480.

[12] Cohen A N, Carlton J T. Accelerating invasion rate in a highly invaded estuary. Science, 1998, 279(5350): 555- 558.

[13] Vitousek P M, Mooney H A, Lubchenco J, Melillo J M. Human domination of Earth′s ecosystems. Science, 1997, 277(5325): 494- 499.

[14] Mack R N, Simberloff D, Lonsdale W M, Evans H, Clout M, Bazzaz F A. Biotic invasions: Causes, epidemiology, global consequences and control. Ecological Applications, 2000, 10(3): 689- 710.

[15] Courchamp F, Chapuis J L, Pascal M. Mammal invaders on islands: impact, control and control impact. Biological Reviews, 2003, 78(3): 347- 383.

[16] Ehrenfeld J G. Effects of exotic plant invasions on soil nutrient cycling processes. Ecosystems, 2003, 6(6): 503- 523.

[17] Koenig W D. European starlings and their effect on native cavity-nesting birds. Conservation Biology, 2003, 17(4): 1134- 1140.

[18] Orrock J L, Danielson B J. Rodents balancing a variety of risks: invasive fire ants and indirect and direct indicators of predation risk. Oecologia, 2004, 140(4): 662- 667.

[19] Phillips B L, Shine R. An invasive species induces rapid adaptive change in a native predator: cane toads and black snakes in Australia. Proceedings of the Royal Society of London Series B-biological Science, 2006, 273(1593): 1545- 1550.

[20] Phillips B L, Brown G P, Webb J K, Shine R. Invasion and the evolution of speed in toads. Nature, 2006, 439(7078): 803- 803.

[21] Strayer D L, Eviner V T, Jeschke J M, Pace M L. Understanding the long-term effects of species invasions. Trends in Ecology and Evolution, 2006, 21(11): 645- 651.

[22] Levine J M. Species diversity and biological invasions: relating local process to community pattern. Science, 2000, 288(5467): 852- 854.

[23] Lee C E. Evolutionary genetics of invasive species. Trends in Ecology and Evolution, 2002, 17(8): 386- 391.

[24] Callaway R M, Ridenour W M. Novel weapons: invasive success and the evolution of increased competitive ability. Frontiers in Ecology and the Environment, 2004, 2(8): 436- 443.

[25] Dewalt S J, Denslow J S, Ickes K. Natural-enemy release facilitates habitat expansion of the invasive tropical shrub Clidemia hirta. Ecology, 2004, 85(2): 471- 483.

[26] Lockwood J L, Cassey P, Blackburn T. The role of propagule pressure in explaining species invasions. Trend in Ecology and Evolution, 2005, 20(5): 223- 228.

[27] Pianaro A, Flach A, Patricio E F, Nogueira-Neto P, Marsaioli A J. Chemical changes associated with the invasion of a Melipona scutellaris colony by Melipona rufiventris workers. Journal of Chemical Ecology, 2007, 33(5): 971- 984.

[28] Bossdorf O, Auge H, Lafuma L, Rogers W E, Siemann E, Prati D. Phenotypic and genetic differentiation between native and introduced plant populations. Oecologia, 2005, 144(1): 1- 11.

[29] Prevosti A, Ribo G, Serra L, Aguade M, Balaa J, Monclus M, Mestres F. Colonization of America by Drosophila subobscura: experiment in natural populations that supports the adaptive role of chromosomal-inversion polymorphism. Proceedings of the National Academy of Sciences of the United States of America, 1988, 85(15): 5597- 5600.

[30] Lee C E. Rapid and repeated invasions of fresh water by the saltwater copepod Eurytemora affinis. Evolution, 1999, 53(5): 1423- 1434.

[31] Keller S R, Taylor D R. History, chance and adaptation during biological invasion: separating stochastic phenotypic evolution from response to selection. Ecology Letters, 2008, 11(8): 852- 866.

[32] Peterson A T, Vieglais D A. Predicting species invasions using ecological niche modeling: New approaches from bioinformatics attack a pressing problem. BioScience, 2001, 51(5): 363- 371.

[33] Hastings A, Cuddington K, Davies K F, Dugaw C J, Elmendorf S, Freestone A, Harrison S, Holland M, Lambrinos J, Malvadkar U, Melbourne B A, Moore K, Taylor C, Thomson D. The spatial spread of invasions: new developments in theory and evidence. Ecology Letters, 2005, 8(1): 91- 101.

[34] Kulhanek S A, Ricciardi A, Leung B. Is invasion history a useful tool for predicting the impact of the world′s worst aquatic invasive species? Ecological Applications, 2011, 21(1): 189- 202.

[35] Ricciardi A. Predicting the impacts of an introduced species from its invasion history: an empirical approach applied to zebra mussel invasions. Freshwater Biology, 2003, 48(6): 972- 981.

[36] Ricciardi A. Are modern biological invasions an unprecedented form of global change? Conservation Biology, 2007, 21(2): 329- 336.

[37] Dibble E D, Kovalenko K. Ecological impact of grass carp: a review of the available data. Journal of Aquatic Plant Management, 2009, 47: 1- 15.

[38] Branch G M, Steffani C N. Can we predict the effects of alien species? A case-history of the invasion of South Africa by Mytilus galloprovincialis (Lamarck). Journal of Experimental Marine Biology and Ecology, 2004, 300(1/2): 189- 215.

[39] Jokela A, Ricciardi A. Predicting zebra mussel fouling on native mussels from physicochemical variables. Freshwater Biology, 2008, 53(9): 1845- 1856.

[40] McCarthy J M, Hein C L, Olden J D, Jake Vander Zanden M. Coupling long-term studies with meta-analysis to investigate impacts of non-native crayfish on zoobenthic communities. Freshwater Biology, 2006, 51(2): 224- 235.

[41] Vander Zanden M J, Olden J D, Thorne J H, Mandrak N E. Predicting occurrences and impacts of smallmouth bass introductions in north temperate lakes. Ecological Applications, 2004, 14(1): 132- 148.

[42] Byers J E, Reichard S, Randall J M, Parker I M, Smith C S, Lonsdale W M, Atkinson I A E, Seastedt T R, Williamson M, Chornesky E, Hayes D. Directing research to reduce the impacts of nonindigenous species. Conservation Biology, 2002, 16(3): 630- 640.

[43] Parker I M, Simberloff D, Lonsdale W M, Goodell K, Wonham M, Kareiva P M, Williamson M H, Von Holle B, Moyle P B, Byers J E, Goldwasser L. Impact: toward a framework for understanding the ecological effects of invaders. Biological Invasions, 1999, 1(1): 3- 19.

[44] McIntosh A R. Habitat and size-related variation in exotic trout impact on native galaxiid fishes in New Zealand streams. Canadian Journal of Fisheries and Aquatic Sciences, 2000, 57(10): 2140- 2151.

[45] Ross D J, Johnson C R, Hewitt C L. Variability in the impact of an introduced predator (Asterias amurensis: Asteroidea) on soft-sediment assemblages. Journal of Experimental Marine Biology and Ecology, 2003, 288(2): 257- 278.

[46] Ricciardi A, Kipp R. Predicting the number of ecologically harmful exotic species in an aquatic system. Diversity and Distributions, 2008, 14(2): 374- 380.

[47] Le Roux J J, Wieczorek A M, Meyer J-Y. Genetic diversity and structure of the invasive tree Miconia calvescens in Pacific islands. Diversity and Distributions, 2008, 14(6): 935- 948.

[48] Hulme P E. Beyond control: wider implications for the management of biological invasions. Journal of Applied Ecology, 2006, 43(5): 835- 847.

[49] Kang M, Buckley Y M, Lowe A J. Testing the role of genetic factors across multiple independent invasions of the shrub Scotch broom (Cytisus scoparius). Molecular Ecology, 2007, 16(22): 4662- 4673.

[50] Roderick G K, Navajas M. Genes in new environments: genetics and evolution in biological control. Nature Reviews Genetics, 2003, 4(11): 889- 899.

[51] Bonizzoni M, Zheng L, Guglielmino C R, Haymer D S, Gasperi G, Gomulski L M, Malacrida A R. Microsatellite analysis of medfly bioinfestations in California. Molecular Ecology, 2001, 10(10): 2515- 2524.

[52] Prentis P J, Sigg D P, Raghu S, Dhileepan K, Pavasovic A, Lowe A J. Understanding invasion history: genetic structure and diversity of two globally invasive plants and implications for their management. Diversity and Distributions, 2009, 15(5): 822- 830.

[53] Wang R, Wang Y Z. Invasion dynamics and potential spread of invasive alien plant species, Ageratina adenophora (Asteraceae) in China. Diversity and Distributions, 2006, 12(4): 397- 408.

[54] Gui F R, Wan P F H, Guo J Y. Population genetics of Ageratina adenophora using inter-simple sequence repeat (ISSR) molecular markers in China. Plant Biosystems, 2008, 142(2): 255- 263.

[55] Gui F R, Wan F H, Guo J Y. Determination of the population genetic structure of the invasive weed Ageratina adenophora using ISSR-PCR markers. Russian Journal of Plant Physiology, 2009, 56(3): 410- 416.

[56] Huang W K, Wan F H, Guo J Y, Gao B D, Xie B Y, Peng D L. AFLP analyses of genetic variation of Eupatorium adenophorum (Asteraceae) populations in China. Canadian Journal of Plant Science, 2009, 89(1): 119- 126.

[57] Wang R, Wang J F, Qiu Z J, Meng B, Wan F H, Wang Y Z. Multiple mechanisms underlie rapid expansion of an invasive alien plant. New Phytologist, 2011, 191(3): 828- 839.

[58] 黃俊, 曾玲, 梁廣文, 陸永躍,許益鐫, 高億波, 張勤添, 張森泉, 楊洪志, 陳忠南, 李小妮, 吳仕豪, 王琳. 紅火蟻疫情滅除技術(shù)示范. 中國(guó)植保導(dǎo)刊, 2007, 27(8): 41- 43.

[59] 陸永躍, 梁廣文, 曾玲. 華南地區(qū)紅火蟻局域和長(zhǎng)距離擴(kuò)散規(guī)律研究. 中國(guó)農(nóng)業(yè)科學(xué), 2008, 41(4): 1053- 1063.

[60] Robinet C, Roques A, Pan H Y, Fang G F, Ye J R, Zhang Y Z, Sun J H. Role of human-mediated dispersal in the spread of the Pinewood Nematode in China. PLoS ONE, 2009, 4(2): e4646.

[61] 王春林, 王福祥. 蘋果蠹蛾疫情防控阻截動(dòng)態(tài)及思考. 植物保護(hù), 2009, 35(2): 102- 103.

[62] Suarez A V, Holway D A, Case T J. Patterns of spread in biological invasions dominated by long-distance jump dispersal: insights from Argentine ants. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(3): 1095- 1100.

[63] Ciosi M, Miller N J, Kim K S, Giordano R, Estoup A, Guillemaud T. Invasion of Europe by the western corn rootworm, Diabrotica virgifera virgifera: multiple transatlantic introductions with various reductions of genetic diversity. Molecular Ecology, 2008, 17(16): 3614- 3627.

[64] Darling J A, Bagley M J, Roman J, Tepolt C K, Geller J B. Genetic patterns across mult iple introductions of the globally invasive crab genus Carcinus. Molecular Ecology, 2008, 17(23): 4992- 5007.

[65] Davies N, Villablanca F X, Roderick G K. Bioinvasions of the medfly Ceratitis capitata: source estimation using DNA sequences at multiple intron loci. Genetics, 1999, 153(1): 351- 360.

[66] Facon B, Pointier J P, Glaubrecht M, Poux C, Jarne P, David P. A molecular phylogeography approach to biological invasions of the New World by parthenogenetic Thiarid snails. Molecular Ecology, 2003, 12(11): 3027- 3039.

[67] Fonseca D M, LaPointe D A, Fleischer R C. Bottlenecks and multiple introductions: population genetics of the vector of avian malaria in Hawaii. Molecular Ecology, 2000, 9(11): 1803- 1814.

[68] Kolbe J J, Glor R E, Schettino L R, Lara A C, Larson A, Losos J B. Genetic variation increases during biological invasion by a Cuban lizard. Nature, 2004, 431(7005): 177- 181.

[69] Hoos P M, Whitma Miller A, Ruiz G M, Vrijenhoek R C, Geller J B. Genetic and historical evidence disagree on the likely sources of the Atlantic amethyst gem clam Gemma gemma (Totten, 1834) in California. Diversity and Distribution, 2010, 16(4): 582- 592.

[70] Lindholm A K, Breden F, Alexander H J, Chan W K, Thakurta S G, Brooks R. Invasion success and genetic diversity of introduced populations of guppies Poecilia reticulata in Australia. Molecular Ecology, 2005, 14(12): 3671- 3682.

[71] Thibault I, Bernatchez L, Dobson J J. The contribution of newly established populations to the dynamics of range expansion in a one-dimensional fluvial-estuarine system: rainbow trout (Oncorhynchus mykiss) in Eastern Quebec. Diversity and Distribution, 2009, 15(6): 1060- 1072.

[72] Work T T, McCullough D G, Cavey J F, Komsa R. Arrival rate of nonindigenous insect species into the United States through foreign trade. Biological Invasions, 2005, 7(2): 323- 332.

[73] Tatem A J, Hay S I, Rogers D J. Global traffic and disease vector dispersal. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(16): 6242- 6247.

[74] Williamson M. Explaining and predicting the success of invading species at different stages of invasion. Biological Invasions, 2006, 8(7): 1561- 1568.

[75] Lozier J D, Roderick G K, Mills N J. Tracing the invasion history of mealy plum aphid, Hyalopterus pruni (Hemiptera: Aphididae), in North America: a population genetics approach. Biological Invasions, 2009, 11(2): 299- 314.

[76] Estoup A, Guillemaud T. Reconstructing routes of invasion using genetic data: why, how and so what?. Molecular Ecology, 2010, 19(19): 4113- 4130.

[77] Pritchard J K, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics, 2000, 155(2): 945- 959.

[78] Guillot G, Mortier F, Estoup A. GENELAND: a computer package for landscape genetics. Molecular Ecology Notes, 2005, 5(3): 712- 715.

[79] Eldridge M D, Kinnear J E, Onus M L. Source population of dispersing rock-wallabies (Petrogale lateralis) identified by assignment tests on multilocus genotypic data. Molecular Ecology, 2001, 10(12): 2867- 2876.

[80] Marrs R A, Sforza R, Hufbauer R A. Evidence for multiple introductions of Centaurea stoebe micranthos (spotted knapweed, Asteraceae) to North America. Molecular Ecology, 2008, 17(19): 4197- 4208.

[81] Rosenthal D M, Ramakrishnan A P, Cruzan M B. Evidence for multiple sources of invasion and intraspecific hybridization in Brachypodium sylvaticum (Hudson) Beauv. in North America. Molecular Ecology, 2008, 17(21): 4657- 4669.

[82] Rollins L A, Woolnough A P, Wilton A N, Sinclair R, Sherwin W B. Invasive species can′t cover their tracks: using microsatellites to assist management of starling (Sturnus vulgaris) populations in Western Australia. Molecular Ecology, 2009, 18(8): 1560- 1573.

[83] Muirhead J R, Gray D K, Kelly D W, Ellis S M, Heath D D, Macisaac H J. Identifying the source of species invasions: sampling intensity vs. genetic diversity. Molecular Ecology, 2008, 17(4): 1020- 1035.

[84] Handley Lawson L-J, Estoup A, Evans D M, Thomas C E, Lombaert E, Facon B, Aebi A, Roy H E. Ecological genetics of invasive alien species. BioControl, 2011, 56(4): 409- 428.

[85] Fitzpatrick B M, Fordyce J A, Niemiller M L, Reynolds R G. What can DNA tell us about biological invasion? Biological Invasions, 2012, 14(2): 245- 253.

[86] Geller J B, Darling J A, Carlton J T. Genetic perspectives on marine biological invasions. Annual Review of Marine Science, 2010, 2: 367- 393.

[87] Reznick D N, Shaw F H, Rodd F H, Shaw R G. Evaluation of the rate of evolution in natural populations of guppies (Poecilia reticulata). Science, 1997, 275(5308): 1934- 1937.

[88] Carroll S P, Dingle H, Famula T R, Fox C W. Genetic architecture of adaptive differentiation in evolving host races of the soapberry bug, Jadera haematoloma. Genetica, 2001, 112- 113(1): 257- 272.

[89] Hard J J, Bradshaw W E, Holzapfel C M. Genetic coordination of demography and phenology in the pitcher-plant mosquito, Wyeomyia smithii. Journal of Evolutionary Biology, 1993, 6(5): 707- 723.

[90] Badyaev A V, Martin T E. Individual variation in growth trajectories: phenotypic and genetic correlations in ontogeny of the house finch (Carpodacus mexicanus). Journal of Evolutionary Biology, 2000, 13(2): 290- 301.

[91] Pappert R A, Hamrick J L, Donovan L A. Genetic variation in Pueraria lobata (Fabaceae), an introduced, clonal, invasive plant of the southeastern United States. American Journal of Botany, 2000, 87(9): 1240- 1245.

[92] Tsutsui N D, Case T J. Population genetics and colony structure of the argentine ant (Linepithema humile) in its native and introduced ranges. Evolution, 2001, 55(5): 976- 985.

[93] Ellstrand N C, Schierenbeck K A. Hybridization as a stimulus for the evolution of invasiveness in plants? Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(13): 7043- 7050.

[94] Rieseberg L H, Archer M A, Wayne R K. Transgressive segregation, adaptation and speciation. Heredity, 1999, 83(3): 363- 372.

[95] Krieger M J B, Ross K G. Identification of a major gene regulating complex social behavior. Science, 2002, 295(5553): 328- 332.

[96] Porter S D, Savignano D A. Invasion of polygyne fire ants decimates native ants and disrupts arthropod community. Ecology, 1990, 71(6): 2095- 2106.

[97] Paterson A H, Schertz K F, Lin Y R, Liu S C, Chang Y L. The weediness of wild plants: molecular analysis of genes influencing dispersal and persistence of johnsongrass, Sorghum halepense (L.) Pers. Proceedings of the National Academy of Sciences of the United States of America, 1995, 92(13): 6127- 6131.

[98] Winn A A, Gross K L. Latitudinal variation in seed weight and flower number in Prunella vulgaris. Oecologia, 1993, 93(1): 55- 62.

[99] Li B, Suzuki J I, Hara T. Latitudinal variation in plant size and relative growth rate in Arabidopsis thaliana. Oecologia, 1998, 115(3): 293- 301.

[100] Jonas C S, Geber M A. Variation among populations of Clarkia unguiculata (Onagraceae) along altitudinal and latitudinal gradients. American Journal of Botany, 1999, 86(3): 333- 343.

[101] Li Y P, Feng Y L. Differences in seed morphometric and germination traits of crofton weed (Eupatorium adenophorum) from different elevations. Weed Science, 2009, 57(1): 26- 30.

[102] 張常隆, 李揚(yáng)蘋, 馮玉龍, 鄭玉龍, 類延寶. 表型可塑性和局域適應(yīng)在紫莖澤蘭入侵不同海拔生境中的作用. 生態(tài)學(xué)報(bào), 2009, 29(4): 1940- 1946.

[103] Montague J L, Barrett S C H, Eckert C G. Re-establishment of clinal variation in flowering time among introduced populations of purple loosestrife (Lythrum salicaria, Lythraceae). Journal of Evolutionary Biology, 2008, 21(1): 234- 245.

[104] Kollmann J, Bauelos M J. Latitudinal trends in growth and phenology of the invasive alien plant Impatiens glandulifera (Balsaminaceae). Diversity and Distributions, 2004, 10(5/6): 377- 385.

[105] Weber E, Schmid B. Latitudinal population differentiation in two species of Solidago (Asteraceae) introduced into Europe. American Journal of Botany, 1998, 85(8): 1110- 1121.

[106] Monty A, Mahy G. Clinal differentiation during invasion: Senecio inaequidens (Asteraceae) along altitudinal gradients in Europe. Oecologia, 2009, 159(2): 305- 315.

[107] Rice K J, Mack R N. Ecological genetics of Bromus tectorum. III. The demography of reciprocally sown populations. Oecologia, 1991, 88(1): 91- 101.

[108] Leger E A, Rice K J. Assessing the speed and predictability of local adaptation in invasive California poppies (Eschscholzia californica). Journal of Evolutionary Biology, 2007, 20(3): 1090- 1103.

[109] Maron J L, Elmendorf S C, Vilà M. Contrasting plant physiological adaptation to climate in the native and introduced range of Hypericum perforatum. Evolution, 2007, 61(8): 1912- 1924.

[110] Dlugosch K M, Parker I M. Invading populations of an ornamental shrub show rapid life history evolution despite genetic bottlenecks. Ecology Letters, 2008, 11(7): 701- 709.

[111] Etterson J R, Delf D E, Craig T P, Ando Y, Ohgushi T. Parallel patterns of clinal variation in Solidago altissima in its native range in central USA and its invasive range in Japan. Botany, 2008, 86(1): 91- 97.

[112] Rice W R, Hostert E E. Laboratory experiments on speciation: what have we learned in 40 years?. Evolution, 1993, 47(6): 1637- 1653.

[113] Gavrilets S. Waiting time to parapatric speciation. Proceedings of the Royal Society of London Series: B-biological Sciences, 2000, 267(1461): 2483- 2492.

[114] Jiggins C D, Bridle J R. Speciation in the apple maggot fly: a blend of vintages? Trends in Ecology and Evolution, 2004, 19(3): 111- 114.

[115] Hendry A P, Wenburg J K, Bentzen P, Volk E C, Quinn T P. Rapid evolution of reproductive isolation in the wild: evidence from introduced salmon. Science, 2000, 290(5491): 516- 518.

[116] 劉樹生. 煙粉虱是一個(gè)物種復(fù)合體. 中國(guó)生物防治學(xué)報(bào), 2012, 28(4): 466- 466.

[117] 劉銀泉, 劉樹生. 煙粉虱的分類地位及在中國(guó)的分布. 生物安全學(xué)報(bào), 2012, 21(4): 247- 255.

[118] 陳鵬, 葉輝. 橘小實(shí)蠅復(fù)合體分類學(xué)研究進(jìn)展. 昆蟲知識(shí), 2007, 44(1): 41- 47.

[119] 熊小真, 劉建宏, 楊麗英, 黎小軍. 桔小實(shí)蠅及其復(fù)合種研究進(jìn)展. 安徽農(nóng)業(yè)科學(xué), 2011, 39(7): 3975- 3977, 3996- 3996.

[120] Guirao P, Beitia F, Cenis J L. Biotype determination of Spanish populations of Bemisia tabaci (Hemiptera: Aleyrodidae). Bulletin of Entomological Research, 1997, 87(6): 587- 593.

[121] 羅晨, 姚遠(yuǎn), 王戎疆, 閻鳳鳴, 胡敦孝, 張芝利. 利用mtDNA COⅠ基因序列鑒定我國(guó)煙粉虱的生物型. 昆蟲學(xué)報(bào), 2002, 45(6): 759- 763.

[122] Muraji M, Nakahara S. Discrimination among pest species of Bactrocera (Diptera: Tephritidae) based on PCR-RFLP of the mitochondrial DNA. Applied Entomology and Zoology, 2002, 37(3): 437- 446.

[123] Armstrong K F, Ball S L. DNA barcodes for biosecurity: invasive species identification. Philosophical Transactions of the Royal Society B: Biological Sciences, 2005, 360(1462): 1813- 1823.

[124] Han H Y, McPheron B A. Phylogenetic study of selected tephritid flies (Insecta: Diptera: Tephritidae) using partial sequences of the nuclear 18S ribosomal DNA. Biochemical Systematics and Ecology, 1994, 22(5): 447- 457.

[125] Haymer D S, Tanaka T, Teramae C. DNA probes can be used to discriminate between tephritid species at all stages of the life cycle (Diptera: Tephritidae). Journal of Economic Entomology, 1994, 87(3): 741- 746.

[126] Naeole C K M, Haymer D S. Use of oligonucleotide arrays for molecular taxonomic studies of closely related species in the oriental fruit fly (Bactrocera dorsalis) complex. Molecular Ecology Resources, 2003, 3(4): 662- 665.

[127] Johnson J R, Thomson R C, Micheletti S J, Shaffer H B. The origin of tiger salamander (Ambystoma tigrinum) populations in California, Oregon, and Nevada: introductions or relicts? Conservation Genetics, 2011, 12(2): 355- 370.

[128] Ascunce M S, Yang C C, Oakey J, Calcaterra L, Wu W J, Shih C J, Goudet J, Ross K G, Shoemaker D. Global invasion history of the fire ant Solenopsis invicta. Science, 2011, 331(6020): 1066- 1068.

[129] Dlugosch K M, Parker I M. Founding events in species invasions: Genetic variation, adaptive evolution, and the role of multiple introductions. Molecular Ecology, 2008, 17(1): 431- 449.

[130] Thulin C G, Simberloff D, Barun A, Mccracken G, Pascal M, Islam M A. Genetic divergence in the small Indian mongoose (Herpestes auropunctatus), a widely distributed invasive species. Molecular Ecology, 2006, 15(13): 3947- 3956.

[131] Miller N, Estoup A, Toepfer S, Bourguet D, Lapchin L, Derridj S, Kim K S, Reynaud P, Guillemaud T. Multiple transatlantic introductions of the western corn rootworm. Science, 2005, 310(5750): 992- 992.

[132] Pascual M, Chapuis M P, Mestres F, Balanya J, Huey R B, Gilchrist G W, Serra L, Estoup A. Introduction history of Drosophila subobscura in the New World: a microsatellite-based survey using ABC methods. Molecular Ecology, 2007, 16(15): 3069- 3083.

[133] Guillemaud T, Beaumont M A, Ciosi M, Cornuet J M, Estoup A. Inferring introduction routes of invasive species using approximate Bayesian computation on microsatellite data. Heredity, 2010, 104(1): 88- 99.

[134] Patin E, Laval G, Barreiro L B, Salas A, Semino O, Santachiara-Benerecetti S, Kidd K K, Kidd J R, Veen L V D, Hombert J M, Gessain A, Froment A, Bahuchet S, Heyer E, Quintana-Murci L. Inferring the demographic history of African farmers and Pygmy hunter-gatherers using a multilocus resequencing data set. PLoS Genetics, 2009, 5(4): e1000448.

[135] Toni T, Welch D, Strelkowa N, Ipsen A, Stumpf M P H. Approximate Bayesian computation scheme for parameter inference and model selection in dynamical systems. Journal of the Royal Society Interface, 2009, 6(31): 187- 202.

[136] 段惠, 強(qiáng)勝, 蘇秀紅, 吳海榮, 朱云枝, 劉琳莉. 用AFLP技術(shù)分析紫莖澤蘭的遺傳多樣性. 生態(tài)學(xué)報(bào), 2005, 25(8): 2109- 2114.

[137] Frankham R. Resolving the genetic paradox in invasive species. Heredity, 2005, 94(4): 385- 385.

[138] Russell J C, Abdelkrim J, Fewster R M. Early colonisation population structure of a Norway rat island invasion. Biological Invasions, 2009, 11(7): 1557- 1567.

[139] Cornuet J M, Luikart G. Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics, 1996, 144(4): 2001- 2014.

[140] Luikart G, Allendorf F W, Cornuet J M, Sherwin W B. Distortion of allele frequency distributions provides a test for recent population bottlenecks. Journal of Heredity, 1998, 89(3): 238- 247.

[141] Goodisman M A D, Matthews R W, Crozier R H. Hierarchical genetic structure of the introduced wasp Vespula germanica in Australia. Molecular Ecology, 2001, 10(6): 1423- 1432.

[142] Hundertmark K J, Van Daele L J. Founder effect and bottleneck signatures in an introduced, insular population of elk. Conservation Genetics, 2010, 11(1): 139- 147.

[143] Lombaert E, Guillemaud T, Cornuet J-M, Malausa T, Facon B, Estoup A. Bridgehead effect in the worldwide invasion of the biocontrol harlequin ladybird. PLoS ONE, 2010, 5(3): e9743.

[144] Downie D A. Locating the sources of an invasive pest, grape phylloxera, using a mitochondrial DNA gene genealogy. Molecular Ecology, 2002, 11(10): 2013- 2026.

[145] Floerl O, Inglis G J, Dey K, Smith A. The importance of transport hubs in stepping-stone invasions. Journal of Applied Ecology, 2009, 46(1): 37- 45.

[146] Hanfling B, Carvalho G R, Brandl R. Mt-DNA sequences and possible invasion pathways of the Chinese mitten crab. Marine Ecology-Progress Series, 2002, 238: 307- 310.

[147] Krafsur E S, Kring T J, Miller J C, Nariboli P, Obrycki J J, Ruberson J R, Schaefer P W. Gene flow in the exotic colonizing ladybeetle Harmonia axyridis in North America. Biological Control, 1997, 8(3): 207- 214.

[148] Tedders W L, Schaefer P W. Release and Establishment of Harmonia Axyridis (Coleoptera, Coccinellidae) in the Southeastern United States. Entomological News, 1994, 105(4): 228- 243.

[149] Chapin J B, Brou V A. Harmonia axyridis (Pallas), the third species of the genus to be found in the United States (Coleoptera: Coccinellidae). Proceedings of the Entomological Society of Washington, 1991, 93(3): 630- 635.

[150] LaMana M L, Miller J C. Field observations on Harmonia axyridis Pallas (Coleoptera: Coccinellidae) in Oregon. Biological Control, 1996, 6(2): 232- 237.

[151] Adriaens T, Branquart E, Maes D. The Multicoloured Asian Ladybird Harmonia axyridis Pallas (Coleoptera: Coccinellidae), a threat for native aphid predators in Belgium?. Belgian Journal of Zoology, 2003, 133(2): 195- 196.

[152] Saini E D. Presencia de Harmonia axyridis (Pallas) (Coleoptera: coccinellidae) en la provincia de Buenos Aires: Aspectos biológicos y morfológicos. Revista de Investigaciones Agropecuarias, 2004, 33(1): 151- 160.

[153] Stals R, Prinsloo G. Discovery of an alien invasive, predatory insect in South Africa: the multicoloured Asian ladybird beetle, Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae). South African Journal of Science, 2007, 103(3- 4): 123- 126.

[154] Kelly D W, Muirhead J R, Heath D D, Macisaac H J. Contrasting patterns in genetic diversity following multiple invasions of fresh and brackish waters. Molecular Ecology, 2006, 15(12): 3641- 3653.

[155] Roman J, Darling J A. Paradox lost: genetic diversity and the success of aquatic invasions. Trends in Ecology and Evolution, 2007, 22(9): 454- 464.

[156] Durka W, Bossdorf O, Prati D, Auge H. Molecular evidence for multiple introductions of garlic mustard (Alliaria petiolata, Brassicaceae) to North America. Molecular Ecology, 2005, 14(6): 1697- 1706.

[157] Genton B J, Shykoff J A, Giraud T. High genetic diversity in French invasive populations of common ragweed, Ambrosia artemisiifolia, as a result of multiple sources of introduction. Molecular Ecology, 2005, 14(14): 4275- 4285.

[158] Lavergne S, Molofsky J. Increased genetic variation and evolutionary potential drive the success of an invasive grass. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(10): 3883- 3888.

[159] Grapputo A, Bisazza A, Pilastro A. Invasion success despite reduction of genetic diversity in the European populations of eastern mosquitofish (Gambusia holbrooki). Italian Journal of Zoology, 2006, 73(1): 67- 73.

[160] Hawley DM, Hanley D, Dhondt A A, Lovette I J. Molecular evidence for a founder effect in invasive house finch (Carpodacus mexicanus) populations experiencing an emergent disease epidemic. Molecular Ecology, 2006, 15(1): 263- 275.

[161] Colautti R I, Manca M, Viljanen M, Ketelaars H A, Bürgi H, Macisaac H J, Heath D D. Invasion genetics of the Eurasian spiny waterflea: evidence for bottlenecks and gene flow using microsatellites. Molecular Ecology, 2005, 14(7): 1869- 1879.

[162] Berg D J, Garton D W, Macisaac H J, Panov V E, Telesh I V. Changes in genetic structure of North American Bythotrephes populations following invasion from Lake Ladoga, Russia. Freshwater Biology, 2002, 47(2): 275- 282.

[163] Pinceel J, Jordaens K, Vanhoutte N, De Winter A J, Backeljau T. Molecular and morphological data reveal cryptic taxonomic diversity in the terrestrial slug complex Arion subfuscus/fuscus (Mollusca, Pulmonata, Arionidae) in continental north-west Europe. Biological Journal of the Linnean Society, 2004, 83(1): 23- 38.

[164] Pinceel J, Jordaens K, Van Houtte N, Bernon G, Backeljau T. Population genetics and identity of an introduced terrestrial slug: Arion subfuscus s. l. in the North-east USA (Gastropoda, Pulmonata, Arionidae). Genetica, 2005, 125(2/3): 155- 171.

[165] Stepien C A, Taylor C D, Dabrowska K A. Genetic variability and phylogeographical patterns of a nonindigenous species invasion: a comparison of exotic vs. native zebra and quagga mussel populations. Journal of Evolutionary Biology, 2002, 15(2): 314- 328.

[166] Urbanelli S, Bellini R, Carrieri M, Sallicandro P, Celli G. Population structure of Aedes albopictus (Skuse): the mosquito which is colonizing Mediterranean countries. Heredity, 2000, 84(3): 331- 337.

[167] Astanei I, Gosling E, Wilson J I M, Powell E. Genetic variability and phylogeography of the invasive zebra mussel, Dreissena polymorpha (Pallas). Molecular Ecology, 2005, 14(6): 1655- 1666.

[168] Baker DA, Loxdale H D, Edwards O R. Genetic variation and founder effects in the parasitoid wasp, Diaeretiella rapae (M′intosh) (Hymenoptera: Braconidae: Aphidiidae), affecting its potential as a biological control agent. Molecular Ecology, 2003, 12(12): 3303- 3311.

[169] Baliraine F N, Bonizzoni M, Guglielmino C R, Osir E O, Lux S A, Mulaa F J, Gomulski L M, Zheng L, Quilici S, Gasperi G, Malacridacida A R. Population genetics of the potentially invasive African fruit fly species, Ceratitis rosa and Ceratitis fasciventris (Diptera: Tephritidae). Molecular Ecology, 2004, 13(3): 683- 695.

[170] Reiland J, Hodge S, Noor M A F. Strong founder effect in Drosophila pseudoobscura colonizing New Zealand from North America. Journal of Heredity, 2002, 93(6): 415- 420.

[171] Facon B, Jarne P, Pointier J P, David P. Hybridization and invasiveness in the freshwater snail Melanoides tuberculata: hybrid vigour is more important than increase in genetic variance. Journal of Evolutionary Biology, 2005, 18(3): 524- 535.

[172] Facon B, Pointier J P, Jarne P, Sarda V, David P. High genetic variance in life-history strategies within invasive populations by way of multiple introductions. Current Biology, 2008, 18(5): 363- 367.

[173] Wolfe L M, Blair A C, Penna B M. Does intraspecific hybridization contribute to the evolution of invasiveness?: An experimental test. Biological Invasions, 2007, 9(5): 515- 521.

[174] Facon B, Crespin L, Loiseau A, Lombaert E, Magro A, Estoup A. Can things get worse when an invasive species hybridizes? The harlequin ladybird Harmonia axyridis in France as a case study. Evolutionary Applications, 2011, 4(1): 71- 88.

[175] Riley S P D, Shaffer H B, Voss S R, Fitzpatrick B M. Hybridization between a rare, native tiger salamander (Ambystoma californiense) and its introduced congener. Ecological Application, 2003, 13(5): 1263- 1275.

[176] Sakai A K, Allendorf F W, Holt J S, Lodge D M, Molofsky J, With K A, Baughman S, Cabin R J, Cohen J E, Ellstrand N C, McCauley D E, O′Neil P, Parker I M, Thompson J N, Weller S G. The population biology of invasive species. Annual Review Ecology and Systematics, 2001, 32: 305- 332.

[177] Roques S, Sevigny J M, Bernatchez L. Evidence for broadscale introgressive hybridization between two redfish (genus Sebastes) in the North-west Atlantic: a rare marine example. Molecular Ecology, 2001, 10(1): 149- 165.

[178] Amsellem L, Noyer J L, Le Bourgeois T, Hossaert-McKey M. Comparison of genetic diversity of the invasive weed Rubus alceifolius Poir. (Rosaceae) in its native range and in areas of introduction, using amp lified fragment length polymorphism (AFLP) markers. Molecular Ecology, 2000, 9(4): 443- 455.

Inference on the invasion history of invasive alien species based on molecular methods

WAN Xuanwu1, 2,LIU Yinghong1,*,LUO Linming2,F(xiàn)ENG Chuanhong2,WANG Sheng2,MA Li2

1CollegeofPlantProtection,ChongqingKeyLaboratoryofEntomologyandPestControlEngineering,SouthwestUniversity,Chongqing400716,China2SichuanPlantProtectionStation,Chengdu610041,China

Biological invasions are a worldwide challenge, inducing losses of up to more than one trillion dollars (US) per annum. Having a detailed knowledge about the invasion process by following the invasive species from their source to their incursion areas i.e., their invasion history, may reveal the biological and ecological mechanisms that result in successful invasions. This information may assist researchers in finding effective controls. Applying molecular markers to the population genetics of an invasive species provides a new approach to investigate invasion history. Molecular methods have been applied to infer the invasion history, for example identifying the invasive species, the origin and pathway of the invader, reconstructing the colonization routes, analyzing the dispersal models, inferring the changes in the invasive alien species and the ecosystem effect on the regions invaded. Although the invasion processes of many species have been reconstructed using molecular makers, the reliability of these invasion history is debatable, because the inferred invasion scenarios may be affected by factors such as sampling range, type and the number of molecular markers used.

biological invasion; invasive species; invasion history; molecular markers

國(guó)家“973”前期專項(xiàng)(2009CB125903);西南大學(xué)研究生科技創(chuàng)新基金(kb2011014)

2013- 09- 02;

2014- 07- 18

10.5846/stxb201309022182

*通訊作者Corresponding author.E-mail: yhliu@swu.edu.cn

萬宣伍,劉映紅,羅林明,封傳紅,王勝,馬利.基于分子生物學(xué)方法的外來入侵物種入侵歷史重構(gòu).生態(tài)學(xué)報(bào),2015,35(4):1296- 1309.

Wan X W,Liu Y H,Luo L M,F(xiàn)eng C H,Wang S,Ma L.Inference on the invasion history of invasive alien species based on molecular methods.Acta Ecologica Sinica,2015,35(4):1296- 1309.

猜你喜歡
生物入侵來源種群
山西省發(fā)現(xiàn)刺五加種群分布
將來吃魚不用調(diào)刺啦
研究性學(xué)習(xí)在初中生物教學(xué)中的應(yīng)用
試論《說文》“丵”字的來源
中華蜂種群急劇萎縮的生態(tài)人類學(xué)探討
紅土地(2018年7期)2018-09-26 03:07:38
“赤”的來源與“紅”在服裝中的應(yīng)用
流行色(2018年11期)2018-03-23 02:21:22
探析生物入侵對(duì)我國(guó)生態(tài)環(huán)境的重要影響及防治策略
高校通識(shí)課程“生物入侵”的教學(xué)改革實(shí)踐
544種外來生物致我國(guó)農(nóng)業(yè)損失無數(shù)
崗更湖鯉魚的種群特征
东乡县| 盐源县| 那坡县| 巴塘县| 寿宁县| 锡林浩特市| 黑山县| 牙克石市| 陇川县| 永修县| 富平县| 昌黎县| 汶上县| 城固县| 扎赉特旗| 东宁县| 中牟县| 邵阳市| 张家界市| 上林县| 合山市| 灵川县| 大足县| 广宁县| 新化县| 赣榆县| 南投县| 巴彦淖尔市| 涞水县| 长寿区| 泉州市| 长海县| 开平市| 屏南县| 定西市| 资溪县| 冕宁县| 永登县| 卓资县| 彩票| 久治县|