上皮細(xì)胞在氣道變態(tài)反應(yīng)性疾病中的作用
Role of airway epithelial cells in the pathogenesis on respiratory allergic diseases
王勇聰,彭華,汪建(廣州軍區(qū)廣州總醫(yī)院耳鼻咽喉科,廣東 廣州 510010)
[關(guān)鍵詞]氣道上皮細(xì)胞;變態(tài)反應(yīng)性疾病;發(fā)病機(jī)制
呼吸道變態(tài)反應(yīng)性疾病的發(fā)病率在臨床上呈日益增高的趨勢(shì),嚴(yán)重影響人們的生活和工作[1]。常見的呼吸道變態(tài)反應(yīng)性疾病包括:變態(tài)反應(yīng)性鼻炎(allergic rhinitis,AR)、支氣管哮喘(bronchial asthma,BA)以及過(guò)敏性咳嗽等。上、下氣道的變態(tài)反應(yīng)性疾病既相互關(guān)聯(lián),又有其特殊的組織特異性。近年來(lái),氣道上皮細(xì)胞在呼吸道變態(tài)反應(yīng)性疾病發(fā)病機(jī)制中的作用越來(lái)越受到人們的關(guān)注和重視。呼吸道上皮細(xì)胞分布于整個(gè)上下氣道,是阻擋吸入性過(guò)敏原入侵機(jī)體的第一道防線,同時(shí)也具有一定的免疫調(diào)節(jié)功能。氣道上皮細(xì)胞的研究為呼吸道變態(tài)反應(yīng)的治療提供新思路,本文綜述如下。
1氣道上皮細(xì)胞的黏液纖毛清除功能
呼吸道上皮中的杯狀細(xì)胞可分泌黏液,黏膜下層中的黏液腺可分泌黏液和漿液。呼吸道黏膜的每個(gè)上皮細(xì)胞約有200條纖毛,通過(guò)規(guī)律的擺動(dòng)將呼吸道分泌的黏液向咽部推移。吸入性變應(yīng)原通過(guò)氣道上皮進(jìn)入機(jī)體是氣道過(guò)敏性疾病發(fā)生的始動(dòng)因素。某些呼吸道病毒,如人類鼻病毒(human rhinovirus,HRV)、呼吸道合胞病毒(respiratory syneytial virus,RSV)等可誘導(dǎo)Th2型細(xì)胞因子分泌,這是引起呼吸道變態(tài)反應(yīng)性疾病發(fā)生或加重的重要因素[2]。柴油顆粒、粉塵等空氣中污染物則是誘發(fā)AR或BA的重要佐劑[3]。而呼吸道上皮細(xì)胞的黏液纖毛清除功能可直接將大部分吸入性變應(yīng)原、呼吸道的病原體、粉塵等清除體外,極大地減少了呼吸道變態(tài)反應(yīng)性疾病的發(fā)生概率。
另一方面,呼吸道黏膜變態(tài)反應(yīng)性炎癥可使氣道上皮細(xì)胞
的黏液纖毛清除功能減退。劉建國(guó)等[4]研究發(fā)現(xiàn)變應(yīng)原暴露會(huì)引起大鼠鼻黏膜細(xì)胞纖毛面積減少、排列紊亂,有的纖毛粘集成團(tuán)、向不同方向傾倒,上皮纖毛和絨毛等多數(shù)超微結(jié)構(gòu)發(fā)生進(jìn)行性損害,隨著變應(yīng)原暴露時(shí)間的延長(zhǎng)大鼠會(huì)出現(xiàn)鼻涕排除障礙。變應(yīng)原暴露、病毒感染或基因突變皆可引起哮喘患者氣道上皮細(xì)胞的纖毛結(jié)構(gòu)異常、擺動(dòng)頻率下降,進(jìn)而降低黏液纖毛的清除功能[5]。
2氣道上皮細(xì)胞的物理屏障功能
氣道表面由連續(xù)的上皮細(xì)胞覆蓋,通過(guò)緊密連接、半橋粒和粘著連接而形成一個(gè)完整的氣道黏膜屏障,將空氣中的有害物質(zhì)和黏膜下層的免疫細(xì)胞分離開來(lái)。病毒感染、煙霧等可直接損傷氣道上皮細(xì)胞,誘發(fā)或加重AR或BA的癥狀[6]。而變應(yīng)原則通過(guò)其蛋白水解酶活性破壞氣道上皮細(xì)胞間的連接,以及釋放炎癥因子、下調(diào)粘連蛋白的表達(dá)、直接損傷細(xì)胞等多種途徑造成氣道上皮細(xì)胞物理屏障功能破壞。塵螨等帶有蛋白水解活性酶的變應(yīng)原可直接水解氣道上皮細(xì)胞之間的連接,也可通過(guò)蛋白酶活化受體-2(protease activated receptor-2,PAR-2)的激活間接破壞氣道上皮細(xì)胞之間的連接[7-8]。細(xì)胞連接的粘附分子 (cell adhesion molecule,CAM)依賴于Ca2+才能發(fā)揮作用,而帶有酶活性變應(yīng)原可競(jìng)爭(zhēng)性結(jié)合Ca2+,導(dǎo)致氣道上皮細(xì)胞間的連接分離[9]。跨膜鈣粘附蛋白是緊密連接和粘著連接的重要組成成分,在連接復(fù)合體中起著支架作用。而體內(nèi)、外研究實(shí)驗(yàn)發(fā)現(xiàn)呼吸道變應(yīng)性疾病患者氣道上皮細(xì)胞之間的跨膜鈣粘附蛋白等多種連接蛋白表達(dá)減少[10-11]。氣道上皮細(xì)胞間連接的完整性遭到破壞導(dǎo)致變應(yīng)原輕易地穿過(guò)氣道上皮黏膜層,并與黏膜下層的免疫細(xì)胞相接觸,隨后啟動(dòng)免疫應(yīng)答反應(yīng)[12]。
氣道上皮細(xì)胞的物理屏障功能障礙還促進(jìn)了呼吸道重塑。在正常呼吸道上皮細(xì)胞中,表皮生長(zhǎng)因子(epithelial growth factors,EGF)從細(xì)胞的基底側(cè)分泌,而表皮生長(zhǎng)因子受體(epithelial growth factors receptors,EGFR)位于細(xì)胞的頂面,兩者被氣道上皮細(xì)胞形成的物理屏障分隔開來(lái)[13]。變應(yīng)原刺激可導(dǎo)致氣道上皮細(xì)胞表達(dá)的EGF、EGFR增加[14-15]。當(dāng)氣道上皮細(xì)胞的物理屏障功能出現(xiàn)障礙后,細(xì)胞基底側(cè)分泌的EGF能與位于氣道上皮細(xì)胞頂面的EGFR相結(jié)合,進(jìn)而促進(jìn)氣道上皮組織增厚、重構(gòu)[13]。呼吸道變態(tài)反應(yīng)性疾病患者的上皮細(xì)胞高表達(dá)的骨膜素可促進(jìn)嗜酸性粒細(xì)胞、肌纖維細(xì)胞釋放轉(zhuǎn)化生長(zhǎng)因子-β(transforming growth factor-β,TGF-β),后者可促使纖維母細(xì)胞分化為成熟的纖維細(xì)胞并合成大量的膠原蛋白和細(xì)胞外基質(zhì),導(dǎo)致氣道上皮細(xì)胞向間充質(zhì)轉(zhuǎn)化,引起呼吸道增厚、組織重構(gòu)[13,16]。而氣道上皮細(xì)胞向間充質(zhì)轉(zhuǎn)化后又可導(dǎo)致跨膜鈣粘附蛋白生成減少,進(jìn)一步破壞氣道上皮細(xì)胞的物理屏障功能[12]。
變應(yīng)原引起呼吸道上皮細(xì)胞黏膜屏障功能障礙在機(jī)體對(duì)變應(yīng)原易感性中起到重要作用[12]。變應(yīng)原導(dǎo)致的氣道上皮細(xì)胞間連接破壞、呼吸道重構(gòu)、氧自由基生成增多、氣道高反應(yīng)等均可引起機(jī)體對(duì)變應(yīng)原的易感性增加。研究還發(fā)現(xiàn)變應(yīng)原可通過(guò)激活核因子κB(nuclear factor kappa B,NF-κB)途徑導(dǎo)致氣道上皮細(xì)胞表達(dá)大量的易感基因,如:PCDH1[17],CDHR3[18],SMAD3,HLA-DR,IL1RL1[19]。反復(fù)變應(yīng)原暴露可促進(jìn)小鼠氣道上皮細(xì)胞的蛋白酪氨酸磷酸酶SHP2基因表達(dá)增加,而SHP2能夠調(diào)控小鼠氣道上皮細(xì)胞TGF-β1的產(chǎn)生[20]。氣道上皮細(xì)胞表達(dá)大量易感基因增加了機(jī)體對(duì)吸入性變應(yīng)原、空氣中粉塵等有害物質(zhì)的易損傷性,同時(shí)也導(dǎo)致氣道上皮細(xì)胞的自我修復(fù)和分化形成完整的氣道上皮細(xì)胞屏障的功能下降,進(jìn)一步促進(jìn)呼吸道變態(tài)反應(yīng)性疾病的發(fā)生[12]。
3氣道上皮細(xì)胞的免疫功能
近年來(lái)研究發(fā)現(xiàn)人類呼吸道上皮細(xì)胞具有活躍的免疫功能。氣道上皮細(xì)胞表面表達(dá)多種模式識(shí)別受體(pattern recognition receptors,PRRs),包括:Toll樣受體(Toll-like receptors,TLRs)、PARs-2、NOD樣受體(NOD-like receptors,NLRs)、C型凝集素受體(C-type lectins receptors,CTLRs)、EGFR等。吸入性變應(yīng)原激活氣道上皮細(xì)胞表面的PRPs后,通過(guò)激活NF-κB途徑促進(jìn)多種炎癥相關(guān)的細(xì)胞因子基因表達(dá)以及多種細(xì)胞因子、趨化因子的釋放,如:胸腺基質(zhì)淋巴細(xì)胞生成素(thymic stromal lymphopoietin,TSLP)、白細(xì)胞介素-33(interleukin-33,IL-33)、白細(xì)胞介素25(interleukin-25,IL-25)、血管內(nèi)皮生長(zhǎng)因子-A(vascular endothelial growth factor-A,VEGF-A)、血管內(nèi)皮生長(zhǎng)因子-C(vascular endothelial growth factor-C,VEGF-C)、粒細(xì)胞集落刺激因子(granulocyte,monocyte colony stimulating factor,GM-CSF)、CC趨化因子2(CC chemokine ligand 2,CCL2)、CC趨化因子20(CC chemokine ligand 20,CCL20)、嗜酸性粒細(xì)胞活化趨化因子、干細(xì)胞因子(stem cell factor, SCF)、細(xì)胞間粘附分子1(intracellular adhesion molecule-1,ICAM-1)、白細(xì)胞介素6(interleukin-6,IL-6)、白細(xì)胞介素8(interleukin-8,IL-8)等的釋放,隨后觸發(fā)呼吸道變態(tài)反應(yīng)性炎癥的發(fā)生或加重[13,21]。
樹突狀細(xì)胞作為抗原遞呈細(xì)胞,在變應(yīng)原誘導(dǎo)的呼吸道變態(tài)反應(yīng)性疾病的發(fā)病機(jī)制中起著重要的橋梁作用。氣道上皮細(xì)胞可通過(guò)釋放細(xì)胞因子控制樹突狀細(xì)胞的抗原遞呈功能[22]。變應(yīng)原刺激氣道上皮細(xì)胞后分泌的CCL2、CCL20等能促使血液中的單核細(xì)胞游出至黏膜下層,分泌的VEGF-A和VEGF-C能促進(jìn)黏膜基底層血管和淋巴管的生成[23]。而新生的血管和淋巴管對(duì)單核細(xì)胞的游出以及攜帶變應(yīng)原的樹突狀細(xì)胞向淋巴結(jié)轉(zhuǎn)移提供了便利[13]。氣道上皮細(xì)胞分泌的IL-33、IL-25、TSLP、GM-CSF等細(xì)胞因子可抑制樹突狀細(xì)胞表達(dá)Th1型免疫反應(yīng)相關(guān)的細(xì)胞因子IL-12,同時(shí)促進(jìn)Th2型免疫反應(yīng)相關(guān)的多種細(xì)胞因子,如:IL-4、IL-6、白三烯C4(leukotriene C4,LTC4)等的釋放[13]。游出的單核細(xì)胞在氣道上皮細(xì)胞分泌的趨化因子、細(xì)胞因子、氧自由基等的共同作用下分化成為成熟的樹突狀細(xì)胞并攜帶變應(yīng)原進(jìn)入淋巴結(jié),隨后刺激淋巴結(jié)內(nèi)的原始Th0細(xì)胞向Th2細(xì)胞分化,抑制其向Th1細(xì)胞方向分化,導(dǎo)致Th1/Th2失衡[13]。氣道上皮細(xì)胞間充質(zhì)轉(zhuǎn)化后也可持續(xù)激活樹突狀細(xì)胞并促進(jìn)成熟樹突狀細(xì)胞向淋巴結(jié)轉(zhuǎn)移[24]。
氣道上皮細(xì)胞分泌的TSLP、IL-25、IL-33、ICAM-1、SCF等細(xì)胞因子除了招募、激活樹突狀細(xì)胞外,同時(shí)也能直接激活其他的免疫相關(guān)細(xì)胞,包括嗜酸性粒細(xì)胞、嗜堿性粒細(xì)胞、肥大細(xì)胞、T淋巴細(xì)胞等。TSLP能激活樹突狀細(xì)胞產(chǎn)生IL-8和嗜酸性粒細(xì)胞活化趨化因子,進(jìn)而刺激CD4+T細(xì)胞產(chǎn)生Th2型細(xì)胞因子[25]。IL-25通過(guò)激活樹突狀細(xì)胞促進(jìn)Th2型細(xì)胞因子的產(chǎn)生[26]。氣道上皮細(xì)胞分泌的IL-33能與巨噬細(xì)胞、肥大細(xì)胞、嗜堿性粒細(xì)胞、CD4+T細(xì)胞等免疫相關(guān)細(xì)胞表面的相應(yīng)受體ST2受體相結(jié)合,促進(jìn)這些細(xì)胞釋放大量的Th2型細(xì)胞因子和趨化因子,在過(guò)敏性炎癥的免疫調(diào)節(jié)中起重要作用[27-28]。IL-33與嗜堿性粒細(xì)胞表面ST2受體結(jié)合后還能促進(jìn)IgE受體介導(dǎo)的組胺釋放[28]。研究發(fā)現(xiàn)激活I(lǐng)L-33/ST2軸不僅調(diào)節(jié)多種細(xì)胞產(chǎn)生Th2型細(xì)胞因子,還導(dǎo)致氣道的高反應(yīng)[29]。呼吸道黏膜上皮細(xì)胞產(chǎn)生的IL-33在缺乏T細(xì)胞和B細(xì)胞的情況下也能誘導(dǎo)過(guò)敏反應(yīng)[30]。氣道上皮細(xì)胞來(lái)源的SCF可促進(jìn)肥大細(xì)胞的成熟并向呼吸道黏膜浸潤(rùn)[31]。嗜酸性粒細(xì)胞活化趨化因子有促進(jìn)嗜酸性粒細(xì)胞在呼吸道黏膜浸潤(rùn)的作用[32]。AR或BA臨床癥狀消失后仍有少量ICAM-1、嗜酸性粒細(xì)胞存在于氣道黏膜內(nèi),導(dǎo)致呼吸道黏膜仍然處于高敏狀態(tài)[33]。
氣道上皮細(xì)胞除了通過(guò)分泌的細(xì)胞因子產(chǎn)生免疫反應(yīng),也可通過(guò)產(chǎn)生的多種損傷相關(guān)分子模式(damage-associated molecular patterns,DAMP)誘導(dǎo)免疫應(yīng)答。變應(yīng)原刺激呼吸道黏膜引起黏膜血漿外滲,隨后導(dǎo)致氣道上皮細(xì)胞缺氧、水腫,并釋放大量的DAMP,包括自由基、三磷酸腺苷、尿酸、溶血磷脂酸等,這些DAMP可通過(guò)激活TLRs、NLRs等模式識(shí)別受體,誘導(dǎo)免疫應(yīng)答[34]。氧自由基(reactive oxygen species,ROS)可通過(guò)損傷氣道上皮細(xì)胞的生物膜、核酸、蛋白或者減少抗氧化劑的表達(dá)而導(dǎo)致機(jī)體對(duì)過(guò)敏原易感性增加[35],也可通過(guò)誘導(dǎo)氣道上皮細(xì)胞表達(dá)細(xì)胞因子和EGFR而觸發(fā)變態(tài)反應(yīng)性疾病的發(fā)生或加重[36]。三磷酸腺苷、尿酸、溶血磷脂酸等DAMP分子通過(guò)NF-κB途徑激活樹突狀細(xì)胞以及其他相關(guān)免疫細(xì)胞,同時(shí)通過(guò)促進(jìn)氣道上皮細(xì)胞進(jìn)一步釋放TSLP、GM-CSF、IL-33、IL-25等細(xì)胞因子,進(jìn)一步導(dǎo)致Th1/Th2失衡[13,37-38]。呼吸道變應(yīng)性疾病患者的氣道上皮細(xì)胞大量表達(dá)誘生型一氧化氮合成酶,進(jìn)一步加重呼吸道黏膜炎癥[39]。
4總結(jié)與展望
呼吸道黏膜上皮細(xì)胞具有黏液纖毛清除功能、物理屏障功能以及多種免疫功能,氣道上皮細(xì)胞結(jié)構(gòu)及功能的異??善茐臍獾赖墓逃忻庖?,導(dǎo)致免疫系統(tǒng)的異常信號(hào)傳導(dǎo)、氣道重塑以及氣道高反應(yīng)性,在呼吸道變應(yīng)性疾病的發(fā)生和發(fā)展中起著重要作用。雖然近年來(lái)人們對(duì)氣道上皮細(xì)胞在呼吸道變應(yīng)性疾病發(fā)病機(jī)制中的作用日益重視,但還有很多未明之處有待進(jìn)一步研究。以氣道上皮細(xì)胞為靶點(diǎn)的研究在呼吸道變應(yīng)性疾病的機(jī)制及治療中具有重要的意義[1]。
[參考文獻(xiàn)]
[1] Lotvall J,Pawankar R,Wallace DV,et al.We call for iCAALL:international collaboration in asthma,allergy and immunology[J].J Allergy Clin Immunol,2012,129(4):904-905.
[2] Kumar RK,Foster PS,Rosenberg HF.Respiratory viral infection,epithelial cytokines,and innate lymphoid cells in asthma exacerbations[J].J Leukoc Biol,2014,96(3):391-396.
[3] Ple C,Chang Y,Wallaert B,et al.Environmental pollution and allergy: immunological mechanisms[J].Rev Pneumol Clin,2013,69(1):18-25.
[4] 劉建國(guó),劉月輝.變應(yīng)性鼻炎大鼠鼻黏膜纖毛超微結(jié)構(gòu)和鼻癥狀的研究[J].臨床耳鼻咽喉頭頸外科雜志,2010,8(24):365-368.
[5] Gudis DA,Cohen NA.Cilia dysfunction[J].Otolaryngol Clin North Am,2010,43(3):461-472.
[6] Hackett TL,Singhera GK,Shaheen F,et al.Intrinsic phenotypic differences of asthmatic epithelium and its inflammatory responses to RSV and air pollution[J].Am J Respir Cell Mol Biol,2011,45(5):1090-1100.
[7] Winter MC,Shasby SS,Ries DR,et al.PAR2 activation interrupts E-cadherin adhesion and compromises the airway epithelial barrier:protective effect of beta-agonists[J].Am J Physiol Lung Cell Mol Physiol,2006,291(4):628-635.
[8] Jacquet A.Interactions of airway epithelium with protease allergens in the allergic response[J].Clin Exp Allergy, 2011,41(3):305-311.
[9] Post S,Nawijn MC,Jonker MR,et al.House dust mite-induced calcium signaling instigates epithelial barrier dysfunction and CCL20 produc-tion[J].Allergy,2013,68(9):1117-1125.
[10] Boer WI,Sharma HS,Baelemans SM,et al.Altered expression of epithelial junctional proteins in atopic asthma:possible role in inflammation[J].Can J Physiol Pharmacol,2008,86(5):105-112.
[11] Xiao C,Puddicombe SM,Field S,et al.Defective epithelial barrier function in asthma[J].J Allergy Clin Immunol,2011,128(3):549-556.
[12] Heijink IH,Nawijn MC,Hackett TL.Airway epithelial barrier function regulates the pathogenesis of allergic asthma[J].Clin Exp Allergy,2014,44(5):620-630.
[13] Lambrecht BN,Hammad H.The airway epithelium in asthma[J].Nat Med,2012,18(5):684-692.
[14] Boxall C,Holgate ST,Davies DE.The contribution of transforming growth factor-{beta}and epidermal growth factor signalling to airway remodeling in chronic asthma[J].Eur Respir J,2006,27(1):208-229.
[15] Sidhu SS,Yuan S,Sheena AL,et al.Roles of epithelial cell-derived periostin in TGF-β activation,collagen production,and collagen gel elasticity in asthma[J].Proc Natl Acad Sci,2010,107(32):14170-14175.
[16] Lechapt-Zalcman E,Pruliere-Escabasse V,Advenier D,et al.Transforming growth factor-beta1 increases airway wound repair via MMP-2 upregulation: a new pathway for epithelial wound repair[J].Am J Physiol Lung Cell Mol Physiol,2006,290(6):1277-1282.
[17] Koppelman GH,Meyers DA,Howard TD,et al.Identification of PCDH1 as a novel susceptibility gene for bronchial hyperresponsiveness[J].Am J Resp Crit Care,2009,180(10):929-935.
[18] Bonnelykke K,Sleiman P,Nielsen K,et al.A genome-wide association study identifies CDHR3 as a susceptibility locus for early childhood asthma with severe exacerbations[J].Nat Genet,2014,46(1):51-55.
[19] Moffatt MF,Gut IG,Demenais F,et al.A large-scale,consortium-based genomewide association study of asthma[J].N Engl J Med,2010,363(13):1211-1221.
[20] Qin XJ,Zhang GS,Zhang X,et al.Protein tyrosine phosphatase SHP2 regulates TGF-beta1 production in airway epithelia and asthmatic airway remodeling in mice[J].Allergy,2012,67(12):1547-1556.
[21] 孔維佳,周梁,許庚,等.耳鼻咽喉頭頸外科學(xué)[M].北京:人民衛(wèi)生出版社,2005:290.
[22] Hammad H,Lambrecht BN.Dendritic cells and airway epithelial cells at the interface between innate and adaptive immune responses[J].Allergy,2011,66(5):579-587.
[23] Post S,Nawijn MC,Jonker MR,et al.House dust mite-induced calcium signaling instigates epithelial barrier dysfunction and CCL20 production[J].Allergy,2013,68(9):1117-1125.
[24] van Rijt LS,Vos N,Willart F,et al.Persistent activation of dendritic cells after resolution of allergic airway inflammation breaks tolerance to inhaled allergens in mice[J].Am J Respir Crit Care Med,2011,184(3):303-311.
[25] Liu YJ.TSLP in epithelial cell and dendritic cell cross talk[J].Adv Immunol,2009,101:1-25.
[26] Li HJ,Zhang CQ,Lu DG,et al.IL-25 promotes Th2 immunity responses in airway inflammation of asthmatic mice via activation of dendritic cells[J].Inflammation,2014,37(4):1070-1777.
[27] Fux M,Pecaric PT,Odermatt A,et al.IL-33 is a mediator rather than a trigger of the acute allergic response in humans[J].Allergy,2014,69(2):216-222.
[28] Clare ML.IL-33 family members and asthma-bridging innate and adaptive immune responses[J].Curr Opin Immunol,2010,22(6):800-806.
[29] Kearley J,Buckland KF,Mathie SA,et al.Resolution of allergic inflammation and AHR is dependent upon disruption of the T1/ST2-IL-33 pathway[J].Am J Respir Crit Care Med,2009,179(9):772-781.
[30] Kondo Y,Yoshimoto T,Yasuda K,et al.Administration of IL-33 induces airway hyperresponsiveness and goblet cell hyperplasia in the lungs in the absence of adaptive immune system[J].Int Immunol,2008,20(6):791-800.
[31] Ito T,Smrz D,Jung MY,et al.Stem cell factor programs the mast cell activation phenotype[J].J Immunol,2012,188(11):5428-5437.
[32] Persson C.Eotaxins may contribute to both accumulation and elimination of eosinophils in asthma[J].Thorax,2013,68(2):188-189.
[33] Ester MM,Kim DG,Quirijn J,et al.Integrative genomic analysis identifies a role for intercellular adhesion molecule 1 in childhood asthma[J].Pediat Allergy Immunol,2014,25(2):166-172.
[34] Van K,Jacob F,Zhang N,et al.Damage-associated molecular patterns and their receptors in upper airway pathologies[J].Cell Mol Life Sci, 2013,70(22):4307-4321.
[35] Xiao C,Puddicombe SM,Field S,et al.Defective epithelial barrier function in asthma[J].J Allergy Clin Immunol,2011,128(3):549-556.
[36] Rada B,Gardina P,Myers TG,et al.Reactive oxygen species mediate inflammatory cytokine release and EGFR-dependent mucin secretion in airway epithelial cells exposed to pseudomonas pyocyanin[J].Mucosal Immunol,2011,4(2):158-171.
[37] Kool M,Monique AM,Menno MV,et al.An unexpected role for uric acid as an inducer of T helper 2 cell immunity to inhaled antigens and inflammatory mediator of allergic asthma[J].Immunity,2011,34(4):527-540.
[38] Idzko M,Hammad H,Kool M,et al.Extracellular ATP triggers and maintains asthmatic airway inflammation by activating dendritic cells[J].Nat Med, 2007,13(8):913-919.
[39] Yuksel H,Kirmaz C,Yilmaz O,et al.Nasal mucosal expression of nitric oxide synthases in patients with allergic rhinitis and its relation to asthma[J].Ann Allergy Asthma Immunol,2008,100(1):12-16.
(編輯:周小林)
[收稿日期]2014-11-18[修回日期] 2014-11-29
[通訊作者]汪建,E-mail:13889909318@139.com
[基金項(xiàng)目]國(guó)家自然科學(xué)基金項(xiàng)目資助(2013046)
doi:10.11659/jjssx.11E014025
[中圖分類號(hào)]R562.25;R765.21
[文獻(xiàn)標(biāo)識(shí)碼]B
[文章編號(hào)]1672-5042(2015)03-0333-04