周達(dá)+范建高
摘 要 非酒精性脂肪性肝?。╪on-alcoholic fatty liver disease, NAFLD)在全球范圍內(nèi)越來(lái)越常見(jiàn),造成極大的疾病負(fù)擔(dān),故對(duì)其發(fā)生、發(fā)展及防治措施進(jìn)行研究變得十分迫切。近年來(lái),腸道菌群被認(rèn)為是機(jī)體的一個(gè)重要的“特殊器官”,它參與機(jī)體的代謝并與相關(guān)疾病的發(fā)生、發(fā)展相關(guān),與NAFLD的關(guān)系亦密切,值得深入探索,以期能尋找到防治NAFLD的新措施。
關(guān)鍵詞 腸道菌群 非酒精性脂肪性肝病 發(fā)病機(jī)制
中圖分類(lèi)號(hào):R589.2 文獻(xiàn)標(biāo)識(shí)碼:A 文章編號(hào):1006-1533(2016)19-0013-04
Gut microbiota and non-alcoholic fatty liver disease*
ZHOU Da**, FAN Jiangao***(Department of Gastroenterology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China)
ABSTRACT Non-alcoholic fatty liver disease (NAFLD) is getting more and more prevalent worldwide which causes great burden of disease, it is urgent to investigate the development, progression, prevention and treatment of NAFLD. Gut microbiota, as an “important and special organ” of the body, intimately participates in the metabolism of the body, the onset and progression of NAFLD as well, which merits further studies in order to find new breakthrough for NAFLD.
KEY WORDS gut microbiota; non-alcoholic fatty liver disease; mechanisms
非酒精性脂肪性肝?。╪on-alcoholic fatty liver disease, NAFLD)是代謝綜合征的一種常見(jiàn)肝臟表現(xiàn),現(xiàn)已成為在西方國(guó)家乃至全世界引起人們肝酶水平異常的主要原因,造成了極大的疾病負(fù)擔(dān)[1]。目前,有關(guān)NAFLD的發(fā)病機(jī)制仍模糊不清,未獲完全闡明。除環(huán)境和遺傳因素外,越來(lái)越多的研究提示,腸道菌群在NAFLD的發(fā)生、發(fā)展過(guò)程中起著重要作用。
NAFLD主要包括單純性肝脂肪變、非酒精性脂肪性肝炎(non-alcoholic steatohepatitis, NASH)、NASH相關(guān)肝硬化和肝癌。NAFLD患者的心、腦血管疾病發(fā)病率較高,疾病相關(guān)死亡率也更高。依賴(lài)現(xiàn)有診斷方法(生化、影像學(xué)和病理檢查),NAFLD和NASH的全球人口患病率平均分別約為30%和4%,但世界不同地區(qū)數(shù)據(jù)的差異較大[2]。
關(guān)于NAFLD的發(fā)病機(jī)制,最早提出的是“二次打擊”假說(shuō),即:胰島素抵抗使得脂質(zhì)聚積于肝內(nèi),隨后引發(fā)氧化應(yīng)激造成肝損害[3]。近年又出現(xiàn)了“多元平行打擊”假說(shuō),它認(rèn)為炎癥和脂肪變的出現(xiàn)不分先后,是同時(shí)伴隨的脂毒性、氧化應(yīng)激、線粒體功能障礙和鐵超載等共同促進(jìn)了NAFLD的發(fā)生和發(fā)展[4]。不過(guò),隨著對(duì)腸道菌群研究的深入,其與NAFLD的關(guān)系已逐漸被揭開(kāi)。
腸道菌群為機(jī)體不可或缺的一個(gè)特殊“器官”,參與機(jī)體的代謝活動(dòng),如提供能量、合成并分泌激素和維生素、促進(jìn)機(jī)體免疫成熟等,數(shù)量級(jí)達(dá)1014,基因總量超過(guò)30萬(wàn)條,是人基因總量的100倍[5]。相關(guān)研究是自尋找NAFLD患者與健康對(duì)照者糞便菌群間的差異開(kāi)始的。Zhu等[6]通過(guò)16S rRNA測(cè)序發(fā)現(xiàn),經(jīng)肝活組織檢查證實(shí)的NASH患者及肥胖兒童糞便中的擬桿菌數(shù)量顯著增加而厚壁菌數(shù)量顯著減少,同時(shí)發(fā)現(xiàn)NASH患者腸道內(nèi)的擬桿菌門(mén)數(shù)量對(duì)厚壁菌門(mén)數(shù)量的比值提高。但對(duì)后一發(fā)現(xiàn),在隨后的研究中差異很大。比如,Raman等[7]并未發(fā)現(xiàn)NAFLD患者腸道內(nèi)的擬桿菌門(mén)數(shù)量對(duì)厚壁菌門(mén)數(shù)量的比值有變化;Mouzaki等[8]的研究則發(fā)現(xiàn),NASH患者的此比值顯著降低;而Spencer等[9]的研究還發(fā)現(xiàn),腸道內(nèi)γ-變形菌屬的豐度與肝脂肪變呈顯著負(fù)相關(guān)性,故該豐度可用來(lái)預(yù)測(cè)膽堿缺乏個(gè)體發(fā)生脂肪肝的可能性。由此可見(jiàn),單純從菌門(mén)水平來(lái)分析腸道菌群與NAFLD的關(guān)系顯然不夠,深入至菌屬甚至菌種水平可能更為精準(zhǔn),同時(shí)靶向性也更明確。當(dāng)然,由于研究方法、人群和飲食等的差異,要發(fā)現(xiàn)明確具有促進(jìn)NAFLD發(fā)生和發(fā)展作用的菌屬確實(shí)存在一定的難度。
腸道菌群與NAFLD發(fā)生和發(fā)展的關(guān)系十分復(fù)雜,目前的研究成果主要集中在如下幾個(gè)方面。
1)腸道菌群失衡可導(dǎo)致肥胖,而后者是引發(fā)NAFLD的重要因素。
此類(lèi)研究的數(shù)量較多。比如,Backhed等[10]發(fā)現(xiàn),盡管無(wú)菌小鼠攝入的能量較存在腸道菌群的小鼠高,但體重卻明顯更低,而對(duì)無(wú)菌小鼠腸道移植正常鼠腸道菌群后再使之?dāng)z入高能量,則其體重顯著增加;Turnbaugh等[11]發(fā)現(xiàn),將肥胖小鼠的腸道菌群和體重正常小鼠的腸道菌群分別移植至無(wú)菌小鼠腸道,移植了肥胖小鼠腸道菌群的無(wú)菌小鼠的體重增加明顯更多,且出現(xiàn)了肥胖體征;Derrien等[12]發(fā)現(xiàn),腸道內(nèi)Akkermansia municiphila的豐度與非肥胖呈顯著正相關(guān)性,即提高腸道內(nèi)Akkermansia municiphila的豐度有助于減重和抑制肥胖發(fā)生(后續(xù)還有很多Akkermansia municiphila改善機(jī)體代謝的具體機(jī)制的研究,主要為調(diào)節(jié)機(jī)體免疫和炎癥反應(yīng)等[13-14])。由此可見(jiàn),腸道菌群與機(jī)體能量的吸收、代謝密切相關(guān)。此外,小腸細(xì)菌過(guò)度生長(zhǎng)(small intestinal bacterial overgrowth, SIBO)現(xiàn)象也須予以重視。在NAFLD患者及動(dòng)物模型中均發(fā)現(xiàn)存在SIBO現(xiàn)象[15-17],后者可顯著增加機(jī)體的能量吸收,同時(shí)提高腸道的通透性、增加有害物質(zhì)入血并加重肝臟炎癥。但目前在SIBO的診斷(主要通過(guò)呼氣試驗(yàn))上仍存在問(wèn)題,包括缺乏統(tǒng)一的標(biāo)準(zhǔn)及高效的方法等,未來(lái)需探索更精確、更有效的SIBO診斷方法。
2)腸道菌群產(chǎn)生的內(nèi)生性乙醇可促進(jìn)NAFLD的發(fā)展。
最早在排除飲酒的情況下發(fā)現(xiàn),肥胖女性體內(nèi)的乙醇含量顯著提高[18]。隨后又發(fā)現(xiàn),NASH兒童體內(nèi)的乙醇含量顯著提高[6],并發(fā)現(xiàn)NASH患者肝內(nèi)的乙醇代謝酶水平顯著提高[19]。這些數(shù)據(jù)提示了內(nèi)生性乙醇的潛在危害,即可能造成肝臟脂肪聚積和引起氧化應(yīng)激(即乙醇的“二次打擊”)。另外,乙醇可提高腸道的通透性,促進(jìn)有害物質(zhì)入血,促進(jìn)NAFLD的發(fā)生和發(fā)展[20]。不過(guò),腸道菌群產(chǎn)生的內(nèi)生性乙醇含量有限,其與NAFLD的關(guān)系是繼發(fā)還是使動(dòng)尚有待更多研究的揭示。
3)腸道菌群可通過(guò)內(nèi)毒素介導(dǎo)肝內(nèi)炎癥。
眾所周知,內(nèi)毒素由革蘭陰性菌產(chǎn)生,其活性成分為脂多糖,后者可與肝內(nèi)Toll樣受體結(jié)合,致使炎癥因子釋放并引發(fā)后續(xù)炎癥反應(yīng)而促進(jìn)NAFLD的發(fā)展[21]。有關(guān)研究發(fā)現(xiàn),對(duì)正常小鼠注射低劑量脂多糖可致肝炎發(fā)生[22],對(duì)NAFLD小鼠注射脂多糖可顯著促進(jìn)肝臟疾病進(jìn)展[23]。研究還發(fā)現(xiàn),高脂誘導(dǎo)的NAFLD動(dòng)物模型的血清脂多糖水平顯著升高[24],NAFLD患者的血清脂多糖水平也高于健康對(duì)照者,尤其是在出現(xiàn)肝臟早期纖維化時(shí)[25-26]。由此可見(jiàn),脂多糖水平升高為NAFLD的病理特征,脂多糖可引起炎癥級(jí)聯(lián)反應(yīng)而造成對(duì)肝臟的“二次打擊”。
4)腸道菌群可調(diào)節(jié)膽堿代謝。
腸道菌群失衡可促進(jìn)腸道內(nèi)的膽堿代謝為甲胺,后者有肝損害作用,同時(shí)可造成機(jī)體膽堿缺乏,繼而引發(fā)肝內(nèi)脂質(zhì)沉積[27]。腸道菌群介導(dǎo)的膽堿缺乏可能是促進(jìn)NAFLD發(fā)展的機(jī)制之一,但此目前仍需得到更多直接證據(jù)、尤其是來(lái)自人體研究數(shù)據(jù)的支持。
腸道菌群促進(jìn)NAFLD發(fā)生和發(fā)展還可能有其他更為復(fù)雜的機(jī)制,比如腸道菌群通過(guò)調(diào)節(jié)機(jī)體免疫細(xì)胞間接促進(jìn)或改善NAFLD。腸道菌群可調(diào)控腸道中不同淋巴細(xì)胞亞群[如輔助性T細(xì)胞(T helper cells, Th)1/Th2、調(diào)節(jié)性T細(xì)胞/Th17]的分化,調(diào)節(jié)B細(xì)胞、自然殺傷T細(xì)胞、樹(shù)突狀細(xì)胞和巨噬細(xì)胞等免疫細(xì)胞的功能和活性,以及維持黏膜免疫系統(tǒng)中促炎與抗炎機(jī)制間的動(dòng)態(tài)平衡(為黏膜免疫穩(wěn)態(tài)維持的關(guān)鍵調(diào)節(jié)因素,同時(shí)可避免自身免疫反應(yīng))等[28-30]。不過(guò),更多的研究還是僅提示免疫細(xì)胞分泌的免疫因子可間接影響肝臟,而腸道淋巴細(xì)胞是否可特異性地歸巢入肝、進(jìn)而直接影響NAFLD的進(jìn)展仍需得到進(jìn)一步的強(qiáng)有力的直接證據(jù)的支持。
早在腸道菌群與NAFLD的關(guān)系受到高度關(guān)注之前,腸道益生菌的補(bǔ)充可改善機(jī)體代謝的事實(shí)就已被發(fā)現(xiàn)。有研究提示,益生菌Lactobacillus rhamnosus GG[31]和Lactobacillus casei Shirota[32]均可顯著改善飲食誘導(dǎo)小鼠模型的NAFLD和NASH,其機(jī)制之一即為改善疾病小鼠的腸道菌群。但是,有關(guān)益生菌改善人NAFLD的研究數(shù)較少。Wong等[33]研究發(fā)現(xiàn),對(duì)經(jīng)肝穿刺檢查證實(shí)的NASH患者給予益生菌治療可顯著減少患者肝內(nèi)的脂質(zhì)含量。一項(xiàng)meta分析顯示,益生菌療法可顯著降低NAFLD患者的肝酶、總膽固醇和炎癥因子水平,改善胰島素抵抗[34]。最近進(jìn)行的一項(xiàng)研究揭示,NAFLD的嚴(yán)重程度與腸道菌群失衡及其代謝功能的變化有關(guān),其中擬桿菌屬的豐度與NASH呈獨(dú)立相關(guān)性,瘤胃球菌屬的豐度與顯著的肝纖維化呈獨(dú)立相關(guān)性[35]。這些研究提示,調(diào)節(jié)腸道菌群可成為NAFLD的治療方案之一,而對(duì)腸道菌群的深度分析也許還可幫助我們尋找到NAFLD的新的診斷和病情判斷方法,這也是未來(lái)進(jìn)行相關(guān)研究的更具體的方向。
當(dāng)然,盡管有關(guān)腸道菌群與NAFLD關(guān)系的研究數(shù)甚多,但這些研究仍存在很多不足之處:①由于受到現(xiàn)有菌群研究方法或技術(shù)的限制,還有很多腸道菌、尤其是與NAFLD相關(guān)的腸道菌無(wú)法確定種屬,更無(wú)法進(jìn)行體外培養(yǎng)的具體研究,因此更應(yīng)建立標(biāo)準(zhǔn)化的研究預(yù)案,使對(duì)不同地區(qū)、不同人群的研究數(shù)據(jù)相互間具有一定的參考價(jià)值;②大部分研究?jī)H分析了糞便中的菌群,因此還應(yīng)將研究對(duì)象聚焦于小腸內(nèi)的細(xì)菌,后者與糞便中的菌群差異很大,同時(shí)與NAFLD發(fā)生的關(guān)系也更密切;③腸道內(nèi)除了細(xì)菌外,還有病毒、古生菌等,它們是否與NAFLD相關(guān)也值得探索;④菌群研究耗資大,故不能僅單純檢測(cè)細(xì)菌,還應(yīng)同步進(jìn)行RNA、DNA和蛋白組學(xué)的分析及檢測(cè),以開(kāi)拓新的研究視野。
隨著美國(guó)“人類(lèi)微生物組計(jì)劃”(http://commonfund. nih.gov/hmp)、歐洲“腸道微生物組計(jì)劃”(http://www. metahit.eu)和國(guó)際“聯(lián)合人類(lèi)微生物組計(jì)劃”(http:// www.human-microbiome.org)[36]的相繼實(shí)施,腸道菌群與疾病的關(guān)系開(kāi)始被廣泛探索,研究成果與日俱增,其中腸道菌群與代謝性疾病、包括NAFLD的關(guān)系得到了最為廣泛和深入的探索[37]。從精準(zhǔn)醫(yī)學(xué)和轉(zhuǎn)化醫(yī)學(xué)的角度看,研究的深入、技術(shù)和方法的更新必將對(duì)闡明腸道微生物與NAFLD進(jìn)展的關(guān)系提供莫大的幫助,進(jìn)而為NAFLD的診斷與治療提供新的思路和靶點(diǎn)。
參考文獻(xiàn)
[1] Wang FS, Fan JG, Zhang Z, et al. The global burden of liver disease: the major impact of China [J]. Hepatology, 2014, 60(6): 2099-2108.
[2] Rinella ME. Nonalcoholic fatty liver disease: a systematic review [J]. JAMA, 2015, 313(22): 2263-2273.
[3] Day CP, James OF. Steatohepatitis: a tale of two “hits”? [J]. Gastroenterology, 1998, 114(4): 842-845.
[4] Tilg H, Moschen AR. Evolution of inflammation in nonalcoholic fatty liver disease: the multiple parallel hits hypothesis [J]. Hepatology, 2010, 52(5): 1836-1846.
[5] Blaut M. Gut microbiota and energy balance: role in obesity[J]. Proc Nutr Soc, 2015, 74(3): 227-234.
[6] Zhu L, Baker SS, Gill C, et al. Characterization of gut microbiomes in nonalcoholic steatohepatitis (NASH) patients: a connection between endogenous alcohol and NASH [J]. Hepatology, 2013, 57(2): 601-609.
[7] Raman M, Ahmed I, Gillevet PM, et al. Fecal microbiome and volatile organic compound metabolome in obese humans with nonalcoholic fatty liver disease [J]. Clin Gastroenterol Hepatol, 2013, 11(7): 868-875.e1-e3.
[8] Mouzaki M, Comelli EM, Arendt BM, et al. Intestinal microbiota in patients with nonalcoholic fatty liver disease[J]. Hepatology, 2013, 58(1): 120-127.
[9] Spencer MD, Hamp TJ, Reid RW, et al. Association between composition of the human gastrointestinal microbiome and development of fatty liver with choline deficiency [J]. Gastroenterology, 2011, 140(3): 976-986.
[10] Backhed F, Ding H, Wang T, et al. The gut microbiota as an environmental factor that regulates fat storage [J]. Proc Natl Acad Sci U S A, 2004, 101(44): 15718-15723.
[11] Turnbaugh PJ, Ley RE, Hamady M, et al. The human microbiome project [J]. Nature, 2007, 449(7164): 804-810.
[12] Derrien M, Vaughan EE, Plugge CM, et al. Akkermansia muciniphila gen. nov., sp. nov., a human intestinal mucindegrading bacterium [J]. Int J Syst Evol Microbiol, 2004, 54(Pt 5): 1469-1476.
[13] Shin NR, Lee JC, Lee HY, et al. An increase in the Akkermansia spp. population induced by metformin treatment improves glucose homeostasis in diet-induced obese mice [J]. Gut, 2014, 63(5): 727-735.
[14] Everard A, Belzer C, Geurts L, et al. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity [J]. Proc Natl Acad Sci U S A, 2013, 110(22): 9066-9071.
[15] Wu WC, Zhao W, Li S. Small intestinal bacteria overgrowth decreases small intestinal motility in the NASH rats [J]. World J Gastroenterol, 2008, 14(2): 313-317.
[16] Miele L, Valenza V, La Torre G, et al. Increased intestinal permeability and tight junction alterations in nonalcoholic fatty liver disease [J]. Hepatology, 2009, 49(6): 1877-1887.
[17] Sabaté JM, Jouet P, Harnois F, et al. High prevalence of small intestinal bacterial overgrowth in patients with morbid obesity: a contributor to severe hepatic steatosis [J]. Obes Surg, 2008, 18(4): 371-377.
[18] Nair S, Cope K, Risby TH, et al. Obesity and female gender increase breath ethanol concentration: potential implications for the pathogenesis of nonalcoholic steatohepatitis [J]. Am J Gastroenterol, 2001, 96(4): 1200-1204.
[19] Baker SS, Baker RD, Liu W, et al. Role of alcohol metabolism in non-alcoholic steatohepatitis [J/OL]. PLoS One, 2010, 5(3): e9570 [2016-04-07]. http://journals.plos.org/plosone/article/ asset?id=10.1371%2Fjournal.pone.0009570.PDF.
[20] Volynets V, Kuper MA, Strahl S, et al. Nutrition, intestinal permeability, and blood ethanol levels are altered in patients with nonalcoholic fatty liver disease (NAFLD) [J]. Dig Dis Sci, 2012, 57(7): 1932-1941.
[21] Ruiz AG, Casafont F, Crespo J, et al. Lipopolysaccharidebinding protein plasma levels and liver TNF-alpha gene expression in obese patients: evidence for the potential role of endotoxin in the pathogenesis of non-alcoholic steatohepatitis[J]. Obes Surg, 2007, 17(10): 1374-1380.
[22] Yang SQ, Lin HZ, Lane MD, et al. Obesity increases sensitivity to endotoxin liver injury: implications for the pathogenesis of steatohepatitis [J]. Proc Natl Acad Sci U S A, 1997, 94(6): 2557-2562.
[23] Imajo K, Fujita K, Yoneda M, et al. Hyperresponsivity to low-dose endotoxin during progression to nonalcoholic steatohepatitis is regulated by leptin-mediated signaling [J]. Cell Metab, 2012, 16(1): 44-54.
[24] Cani PD, Amar J, Iglesias MA, et al. Metabolic endotoxemia initiates obesity and insulin resistance [J]. Diabetes, 2007, 56(7): 1761-1772.
[25] Alisi A, Manco M, Devito R, et al. Endotoxin and plasminogen activator inhibitor-1 serum levels associated with nonalcoholic steatohepatitis in children [J]. J Pediatr Gastroenterol Nutr, 2010, 50(6): 645-649.
[26] Harte AL, da Silva NF, Creely SJ, et al. Elevated endotoxin levels in non-alcoholic fatty liver disease [J/OL]. J Inflamm(Lond), 2010, 7: 15 [2016-04-13]. http://www.ncbi.nlm.nih. gov/pmc/articles/PMC2873499/pdf/1476-9255-7-15.pdf.
[27] Dumas ME, Barton RH, Toye A, et al. Metabolic profiling reveals a contribution of gut microbiota to fatty liver phenotype in insulin-resistant mice [J]. Proc Natl Acad Sci U S A, 2006, 103(33): 12511-12516.
[28] Hooper LV, Littman DR, Macpherson AJ. Interactions between the microbiota and the immune system [J]. Science, 2012, 336(6086): 1268-1273.
[29] Wu HJ, Wu E. The role of gut microbiota in immune homeostasis and autoimmunity [J]. Gut Microbes, 2012, 3(1): 4-14.
[30] Shulzhenko N, Morgun A, Hsiao W, et al. Crosstalk between B lymphocytes, microbiota and the intestinal epithelium governs immunity versus metabolism in the gut [J]. Nat Med, 2011, 17(12): 1585-1593.
[31] Ritze Y, Bárdos G, Claus A, et al. Lactobacillus rhamnosus GG protects against non-alcoholic fatty liver disease in mice [J/OL]. PLoS One, 2014, 9(1): e80169[2016-04-14]. http://journals.plos.org/plosone/article/ asset?id=10.1371%2Fjournal.pone.0080169.PDF.
[32] Okubo H, Sakoda H, Kushiyama A, et al. Lactobacillus casei strain Shirota protects against nonalcoholic steatohepatitis development in a rodent model [J]. Am J Physiol Gastrointest Liver Physiol, 2013, 305(12): G911-G918.
[33] Wong VW, Tse CH, Lam TT, et al. Molecular characterization of the fecal microbiota in patients with nonalcoholic steatohepatitis — a longitudinal study [J/OL]. PLoS One, 2013, 8(4): e62885 [2016-04-17]. http://journals.plos.org/ plosone/article/asset?id=10.1371%2Fjournal.pone.0062885. PDF.
[34] Ma YY, Li L, Yu CH, et al. Effects of probiotics on nonalcoholic fatty liver disease: a meta-analysis [J]. World J Gastroenterol, 2013, 19(40): 6911-6918.
[35] Boursier J, Mueller O, Barret M, et al. The severity of nonalcoholic fatty liver disease is associated with gut dysbiosis and shift in the metabolic function of the gut microbiota [J]. Hepatology, 2016, 63(3): 764-775.
[36] Dubilier N, McFall-Ngai M, Zhao L. Microbiology: create a global microbiome effort [J]. Nature, 2015, 526(7575): 631-634.
[37] Stenman LK, Burcelin R, Lahtinen S. Establishing a causal link between gut microbes, body weight gain and glucose metabolism in humans — towards treatment with probiotics[J/OL]. Benef Microbes, 2015, 7(1): 11-22. [2016-04-19]. http://www.wageningenacademic.com/doi/pdf/10.3920/ BM2015.0069.