黃曉江 熊 鵬 曾 勇 李 明 陳 鵬
精神分裂癥谷氨酸假說(shuō)及外周血生物標(biāo)志物檢測(cè)*
黃曉江熊鵬曾勇李明陳鵬
【摘要】精神分裂癥是病因尚未完全闡明的重性疾病,其診斷具有很強(qiáng)的主觀(guān)性,缺乏客觀(guān)生物診斷指標(biāo)。本文從谷氨酸假說(shuō)角度,綜述谷氨酸介導(dǎo)的興奮性毒性效應(yīng)在精神分裂癥中研究進(jìn)展,并探討外周血特異性生物標(biāo)志物,為其診療提供新思路。
【關(guān)鍵詞】精神分裂癥谷氨酸興奮性毒性效應(yīng)NMDA受體血清標(biāo)志物
近來(lái)谷氨酸假說(shuō)在精神分裂癥發(fā)病機(jī)制中逐漸受到重視,特別是N-甲基-D-天冬氨酸(NMDA)受體功能失調(diào)及動(dòng)物模型研究、神經(jīng)生化研究、遺傳特性研究、基礎(chǔ)藥理研究和臨床病理特征研究逐漸將這一假說(shuō)推向成熟。本文從精神分裂癥谷氨酸假說(shuō)機(jī)制,綜述谷氨酸介導(dǎo)的興奮性毒性效應(yīng)在精神分裂癥中研究進(jìn)展,并嘗試討論在外周血中的有關(guān)生物標(biāo)志物,為精神分裂癥的診斷和治療提供新策略。
谷氨酸(Glutamate,Glu)是一種腦內(nèi)興奮性神經(jīng)遞質(zhì),不能通過(guò)血腦屏障,只能腦內(nèi)代謝產(chǎn)生[1]。正常情況下Glu被攝入、聚集、貯存于神經(jīng)元囊泡內(nèi),當(dāng)神經(jīng)元去極化時(shí),Glu釋放于突觸間隙,與突觸后Glu受體結(jié)合,介導(dǎo)興奮性突觸傳遞和其他生理作用,多余的Glu由位于神經(jīng)元細(xì)胞膜和膠質(zhì)細(xì)胞膜上Na+依賴(lài)性谷氨酸轉(zhuǎn)運(yùn)體(glutamate transporter,GLT)迅速攝回膠質(zhì)細(xì)胞并由谷氨酰胺合成酶轉(zhuǎn)變?yōu)楣劝滨0?,再轉(zhuǎn)運(yùn)至突觸前神經(jīng)末梢,經(jīng)線(xiàn)粒體內(nèi)的谷氨酰胺酶脫氨生成谷氨酸完成再循環(huán),另一部分在谷氨酸脫羧酶作用下生成γ-氨基丁酸(GABA)。病理情況下,突觸間隙中Glu濃度過(guò)高,介導(dǎo)“興奮性毒性效應(yīng)”對(duì)中樞神經(jīng)系統(tǒng)產(chǎn)生損傷。通常細(xì)胞外液中沒(méi)有使Glu失活的水解酶系統(tǒng),突觸間隙Glu的清除和失活都依賴(lài)于星形膠質(zhì)細(xì)胞膜上的GLT,當(dāng)其表達(dá)或功能缺失時(shí),可引起Glu濃度過(guò)高或低于正常,引發(fā)疾病。谷氨酸受體分為兩類(lèi):一類(lèi)為離子型受體,包括: N-甲基-D-天冬氨酸受體(NMDAR)海人藻酸受體(KAR)和α-氨基-3羥基-5甲基-4異惡唑丙酸受體(AMPAR) ;另一類(lèi)屬于代謝型受體(mGluRs),與膜內(nèi)G-蛋白偶聯(lián),激活后通過(guò)G-蛋白效應(yīng)酶、腦內(nèi)第二信使等產(chǎn)生較緩慢的生理作用Glu與離子型受體(主要是AMPA和NMDA受體)結(jié)合,Ca2+離子通道打開(kāi),使膜去極化,興奮性增高NMDAR由亞基NR1、NR2、NR3組成,NR1是功能亞基,與NR2、NR3亞基組成異聚體。NR1亞基是甘氨酸或D-絲氨酸結(jié)合位點(diǎn),而谷氨酸與NR2、NR3亞基結(jié)合,兩個(gè)位點(diǎn)同時(shí)連結(jié)后才能激活NMDA受體。NMDAR具有電壓依賴(lài)的Mg2+阻斷作用,對(duì)Ca2+有高通透性,正常情況下可誘導(dǎo)長(zhǎng)時(shí)程增強(qiáng)作用(LTP)、介導(dǎo)突觸可塑性等;病理情況下介導(dǎo)興奮性毒性作用、誘導(dǎo)神經(jīng)元凋亡及神經(jīng)元退行性病變[2]
谷氨酸系統(tǒng)參與精神分裂癥的病理過(guò)程主要來(lái)源于這樣的觀(guān)察,谷氨酸受體拮抗劑如環(huán)苯己哌啶(PCP)和氯胺酮中毒后,人們往往表現(xiàn)出類(lèi)精神分裂癥樣癥狀,這些綜合征可以歸入精神分裂癥的陽(yáng)性癥狀和陰性癥狀及認(rèn)知功能障礙中去[3]。精神分裂癥患者尸腦研究證實(shí)PFC區(qū)存在NMDA受體數(shù)目減少和去磷酸化,與精神分裂癥陰性癥狀和認(rèn)知功能障礙密切相關(guān)。推測(cè)是腦內(nèi)NMDA受體功能原發(fā)性低下(或PCP和氯胺酮與腦內(nèi)NMDA受體結(jié)合,抑制了谷氨酸與NMDA受體結(jié)合,引起NMDA受體功能不足),抑制了GABA神經(jīng)元活性,使GABA釋放減少導(dǎo)致對(duì)谷氨酸能神經(jīng)元抑制減弱,進(jìn)而谷氨酸能神經(jīng)元脫抑制性導(dǎo)致Glu大量釋放,最終發(fā)生精神病性癥狀[4,5]。
動(dòng)物模型研究發(fā)現(xiàn)給予嚙齒動(dòng)物NMDA受體拮抗劑后發(fā)現(xiàn)在紋狀體和前額葉皮質(zhì)谷氨酸釋放增加[6],在前額葉皮質(zhì)谷氨酰胺的合成也增加[7]。在健康成人參與的一項(xiàng)試驗(yàn)中,服用氯胺酮麻醉劑后,質(zhì)子磁共振波譜(H-MRS)顯示受試者前扣帶回谷氨酸和谷氨酰胺量均增加[8]。對(duì)于未服過(guò)藥的首發(fā)精神分裂癥患者H-MRS亦發(fā)現(xiàn)高水平谷氨酸和谷氨酰胺,提示未治療的精神分裂癥患者存在谷氨酸能神經(jīng)元過(guò)度興奮,而治療后處于緩解期的患者谷氨酸和谷氨酰胺水平下降或與健康對(duì)照組水平相似[9~12]。在一項(xiàng)縱向研究中顯示,對(duì)藥物治療反應(yīng)較好的首發(fā)精神分裂癥患者經(jīng)抗精神病藥物治療4周后,PANSS陽(yáng)性癥狀分和陰性癥狀分至少下降30%,谷氨酸水平在紋狀體明顯下降[10],而抗精神病藥治療效果差的患者前扣帶回皮質(zhì)谷氨酸水平仍較高[13]。最近的一篇綜述也顯示,未服藥的精神分裂癥患者存在較高谷氨酸水平,提示谷氨酸興奮性毒性存在,而治療有效的患者谷氨酸水平和健康對(duì)照組相似[14]。但也有少數(shù)研究持不同結(jié)論,Marsman A等[15]研究顯示精神分裂癥患者較健康對(duì)照組隨著年齡的增加谷氨酸和谷氨酰胺水平快速下降。腦細(xì)胞外高濃度的谷氨酸水平是神經(jīng)元功能失調(diào)和變性的潛在因素[16],不斷累積的谷氨酸引起細(xì)胞興奮性毒性,導(dǎo)致Ca2+內(nèi)流,激活多種效應(yīng)酶,最終導(dǎo)致神經(jīng)元死亡。最近一項(xiàng)Meta分析表明精神分裂癥患者神經(jīng)纖維網(wǎng)減少,樹(shù)突棘和樹(shù)突長(zhǎng)度減少,膠質(zhì)細(xì)胞和神經(jīng)元密度降低,皮質(zhì)體積縮小以及腦室擴(kuò)大,提示在早期可能存在NMDA受體功能低下,導(dǎo)致了神經(jīng)元異常、大量凋亡,可能與谷氨酸介導(dǎo)的興奮性毒性有關(guān)[17]。
精神分裂癥谷氨酸假說(shuō)在分子生物學(xué)研究方面主要集中于谷氨酸受體及相關(guān)酶、轉(zhuǎn)運(yùn)體、受體結(jié)合蛋白等mRNA的表達(dá)和基因多態(tài)性研究,在外周血中討論與谷氨酸假說(shuō)相關(guān)的特異性生物標(biāo)志物,可進(jìn)一步支持該假說(shuō),并對(duì)進(jìn)一步探討精神分裂癥的發(fā)病機(jī)制及診療具有重大意義。
2.1NMDAR抗體NMDAR抗體靶抗原為NR1/NR2功能二聚體??筃MDAR是NMDAR拮抗劑,與PCP、氯胺酮等類(lèi)似可使NMDA受體功能減退,與突觸后膜抗原決定簇特異性結(jié)合,但不影響AMPAR、GABAR等突觸蛋白,不改變突觸數(shù)量也不影響神經(jīng)元存活[18]。通過(guò)抗原抗體特異性反應(yīng)NMDA受體密度可選擇性和可逆性下降、功能缺失,且與抗體滴度成正比,谷氨酸信號(hào)傳遞受抑制,導(dǎo)致谷氨酸蓄積,使NMDAR、AMPAR過(guò)度激活,引起突觸后鈣離子超載,誘導(dǎo)神經(jīng)元死亡,與認(rèn)知功能障礙密切相關(guān)。同時(shí)NMDA受體密度減少和功能失調(diào)可使GABA能神經(jīng)元活性下降,谷氨酸能抑制減弱,導(dǎo)致突觸間隙和胞外谷氨酸濃度升高,引起精神病性癥狀。最近的一項(xiàng)Meta分析[19]顯示,在9篇研究中,其中5篇顯示精神分裂癥、分裂情感性精神病、雙相情感障礙、重度抑郁癥患者相比健康對(duì)照組血清抗NMDAR陽(yáng)性具有高度特異性,這些由不同IgG、IgM和IgA組成的陽(yáng)性抗體包括抗NR1、抗NR1/NR2B和抗NR2A/NR2B,其抗體滴度是健康對(duì)照組的3倍,但是首發(fā)和慢性精神分裂癥組及分裂情感性精神病之間并無(wú)顯著差異;抗NR2A/NR2B平均滴度在首發(fā)精神分裂癥和急性躁狂發(fā)作者較健康對(duì)照組有顯著性差異,58%首發(fā)患者抗體滴度在治療第8周下降,而13%急性躁狂者在第4天就下降。
2.2神經(jīng)調(diào)節(jié)因子1(neuregulin 1,NRG1)NRG1多肽在神經(jīng)系統(tǒng)調(diào)節(jié)中具有重要作用,表皮生長(zhǎng)因子4(ErbB4)是其關(guān)鍵性受體,NRG1-ErbB4信號(hào)轉(zhuǎn)導(dǎo)與NMDA受體功能調(diào)節(jié)、突觸可塑性及神經(jīng)元的增生和再生緊密相關(guān),參與谷氨酸、多巴胺、γ-氨基丁酸等神經(jīng)遞質(zhì)傳遞[20]。動(dòng)物模型研究敲除小鼠NRG1或ErbB4基因后,表現(xiàn)出精神分裂癥谷氨酸能低下樣改變,如高活動(dòng)性、刻板行為增加、前脈沖抑制受損等,空間記憶、反向?qū)W習(xí)等認(rèn)知功能下降,突觸可塑性降低[20~22]。研究發(fā)現(xiàn)NRG1-ErbB4 mRNA與蛋白的表達(dá)在精神分裂癥患者前額葉和海馬內(nèi)均異常,前額葉內(nèi)NRG1-ErbB4受體活性水平顯著增高,減弱NMDA受體功能,引起精神病性癥狀[23~24]。一項(xiàng)地佐環(huán)平(MK-801)誘導(dǎo)的動(dòng)物模型研究[25]顯示,NRG1-ErbB4信號(hào)轉(zhuǎn)導(dǎo)增強(qiáng)經(jīng)由突觸后支架蛋白PSD-95介導(dǎo)NMDA受體功能低下且全額葉皮層較海馬明顯。但國(guó)內(nèi)張海三等[26]采用雙抗體夾心法研究顯示,首發(fā)精神分裂癥患者血清NRG1蛋白濃度顯著低于健康對(duì)照組,利培酮治療4周后恢復(fù)正常。
2.3蛋白激酶C(protein kinase C,PKC)PKC是在磷脂和甘油二酯(diacylglycerol,DAG)存在下,依賴(lài)Ca2+激活的蛋白絲氨酸/蘇氨酸酶,在細(xì)胞信號(hào)轉(zhuǎn)導(dǎo)、蛋白質(zhì)磷酸化、生長(zhǎng)因子應(yīng)答等發(fā)揮重要作用。PKC家族A組稱(chēng)為傳統(tǒng)或經(jīng)典型PKC,由α、βⅠ、βⅡ、γ亞類(lèi)組成、Bo Kyung Leea等[27]研究顯示神經(jīng)元谷氨酸興奮毒性促進(jìn)Na+/H+交換器1(NHE-1)磷酸化作用,進(jìn)而激活PKC-βⅠ、βⅡ,最終導(dǎo)致神經(jīng)元死亡,同時(shí)PKC-β抑制劑較NHE-1抑制劑更好地保護(hù)神經(jīng)元。2.4神經(jīng)元特異性烯醇化酶(NSE) NSE是烯醇化酶中的γ亞基,為神經(jīng)組織所特有,正常情況下NSE不能分泌到細(xì)胞外液,當(dāng)腦實(shí)質(zhì)破壞和脫髓鞘病變時(shí),NSE從神經(jīng)元釋放入腦脊液和血液中,與腦損傷程度呈正相關(guān)[28]。季莉等[29]對(duì)60例精神分裂癥患者研究顯示,治療前血清NSE水平顯著高于健康對(duì)照組,提示精神分裂癥患者存在腦實(shí)質(zhì)破壞,用阿立哌唑治療8周后血清NSE水平顯著下降并與對(duì)照組相近,NSE水平下降程度與認(rèn)知功能的改善呈顯著正相關(guān)。2.5雌激素雌激素由內(nèi)分系統(tǒng)產(chǎn)生,亦參與神經(jīng)系統(tǒng)功能調(diào)節(jié)。有研究[30]報(bào)道對(duì)谷氨酸興奮性毒性引起的神經(jīng)元損傷雌激素可發(fā)揮重要的抵抗和保護(hù)作用,可能通過(guò)抑制NMDAR介導(dǎo)的動(dòng)作電位,抑制高壓電激活的Ca2+通道同時(shí)減少Ca2+內(nèi)流從而減輕Glu興奮性毒性導(dǎo)致的神經(jīng)元損傷或死亡[31~33]。Occhiuto F等[34]研究發(fā)現(xiàn)雌激素可降低皮層神經(jīng)元內(nèi)Glu脫氫酶含量,提示谷氨酸水平降低,提高受損神經(jīng)元存活能力。最近一項(xiàng)研究[35]顯示雌二醇還能增強(qiáng)星形膠質(zhì)細(xì)胞中谷氨酸轉(zhuǎn)運(yùn)體-1(GLT-1)和谷氨酸-天冬氨酸轉(zhuǎn)運(yùn)體(GLAST) mRNA和蛋白表達(dá),增加谷氨酸的攝取,降低興奮性毒性,轉(zhuǎn)化生長(zhǎng)因子-α(TGF-α)可能介導(dǎo)了這一過(guò)程,應(yīng)用雌二醇競(jìng)爭(zhēng)性拮抗劑他莫昔芬后GLT-1表達(dá)減少。于魯璐等[36]對(duì)55例男性精神分裂癥患者研究顯示,治療前患者血清雌激素水平顯著低于正常對(duì)照組,治療12周后雌激素水平提高與正常對(duì)照組接近,且患者雌激素水平與PANSS陰性癥狀分呈負(fù)相關(guān)。
精神分裂癥的病理機(jī)制目前仍不完全清楚,谷氨酸假說(shuō)為探討精神分裂癥的發(fā)病機(jī)制、病理過(guò)程提供了一個(gè)相對(duì)合理的解釋?zhuān)谠缙陔A段谷氨酸NMDA受體功能減退構(gòu)成了發(fā)病基礎(chǔ),長(zhǎng)久的進(jìn)展導(dǎo)致疾病發(fā)作與慢性化。展望今后,應(yīng)加強(qiáng)谷氨酸能與多巴胺能、5-羥色胺能、膽堿能等相互作用研究,對(duì)NMDA受體功能失調(diào)從不同層面深入研究,發(fā)現(xiàn)更多的特異性生物標(biāo)志物,找到既能增強(qiáng)NMDA受體功能又不產(chǎn)生興奮性神經(jīng)毒性的藥物。
參考文獻(xiàn)
[1]Bliss TV,Collingridge GL.A synaptic model of memory: longterm potentiation in the hippocampus[J].Nature,1993,361 (6407) : 31-39
[2]Turle-Lorenzo N,Breysse N,Baunez C,et al.Functional interaction between mGlu 5 and NMDA receptors in a rat model of Parkinson' s disease[J].Psychopharmacology (Berl),2005,179(1) : 117-127
[3]Vollenweider FX,Geyer MA.A systems model of altered consciousness: integratingnaturalanddrug-induced psychoses[J].Brain Res Bull,2001,56(5) : 495-507
[4]Javitt DC,Zukin SR,Heresco-Levy U,et al.Has an angel shown the way? Etiological and therapeutic implications of the PCP/NMDA model of schizophrenia[J].Schizophrenia Bulletin,2012,38(5) : 958-966
[5]Moghaddam B,Krystal JH.Capturing the angel in“angel dust”: twenty years of translational neuroscience studies of NMDA receptor antagonists in animals and Humans[J].Schizophrenia Bulletin,2012,38(5) : 942-949
[6]Bustos G,Abarca J,F(xiàn)orray MI,et al.Regulation of excitatory amino acid release by N-methyl-D-aspartate receptors in rat striatum: in vivo microdialysis studies[J].Brain Research,1992,585(1-2) : 105-115
[7]Iltis I,Koski DM,Eberly LE,et al.Neurochemical changes in the rat prefrontal cortex following acute phencyclidine treatment: an in vivo localized (1) H MRS study[J].NMR Biomed,2009,22(7) : 737-744
[8]Stone JM,Dietrich C,Edden R,et al.Ketamine effects on brain GABA and glutamate levels with 1H-MRS: relationship to ketamine-induced psychopathology[J].Molecular Psychiatry,2012,17(7) : 664-665
[9]Kraguljac NV,White DM,Reid MA,et al.Increased hippocampal glutamate and volumetric deficits in unmedicated patients with schizophrenia[J].JAMA Psychiatry,2013,70(12) : 1294-1302
[10]de la Fuente-Sandoval C,Leon-Ortiz P,Azcarraga M,et al.Glutamate levelsin the associative striatum before and after 4 weeks of antipsychotic treatmentin first-episode psychosis: a longitudinal proton magnetic resonance spectroscopy study [J].JAMA Psychiatry,2013,70(10) : 1057-1066
[11]Goto N,Yoshimura R,Kakeda S,et al.Six-month treatment with atypical antipsychotic drugs decreased frontal-lobe levels of glutamate plus glutamine in early-stage firstepisode schizophrenia[J].Neuropsychiatr Dis Treat,2012,8: 119-122
[12]Rowland LM,Kontson K,West J,et al.In vivo measurements of glutamate,GABA,and NAAG in Schizophrenia[J].Schizophr Bull,2013,39(5) : 1096-1104
[13]Demjaha A,Egerton A,Murray RM,et al.Antipsychotic treatment resistance in schizophrenia associated with elevated glutamate levels but normal dopamine function[J].Biological Psychiatry,2014,75(5) : 11-13
[14]Poels EM,Kegeles LS,Kantrowitz JT,et al.Glutamatergic abnormalities in schizophrenia: a review of proton MRS findings[J].Schizophrenia Research,2014,152(2-3) :325-332
[15]Marsman A,van den Heuvel MP,Klomp DW,et al.Glutamate in schizophrenia: a focused review and meta-analysis of 1HMRS studies[J].Schizophrenia Bulletin,2013,39(1) : 120 -129
[16]Mehta A,Prabhakar M,Kumar P,et al.Excitotoxicity: bridge to various triggers in neurodegenerative disorders[J].Eur J Pharmacol,2013,698(1-3) : 6-18
[17]Plitman E,Nakajima S,de la Fuente-Sandoval C,et al.Glutamate-Mediated excitotoxicity in schizophrenia: A Review[J].European Neuropsychopharmacology,2014,24 (10) : 1591-1605
[18]Dalmau J,Lancaster E,Martinez-Hernandez E,et al.Clinical experience and laboratory investigations in patients with anti-NMDAR encephalitis[J].Lancet Neurol,2011,10 (1) : 63-74
[19]Pearlman DM,Najjar S.Meta-analysis of the association between N-methyl-D-aspartate receptor antibodies and schizophrenia,schizoaffective disorder,bipolar disorder,and major depressive disorder[J].Schizophy Res,2014,157(1-3) : 249-258
[20]Hahn CG,Wang HY,Cho DS,et al.Altered neuregulin 1-erbB4 signaling contributes to NMDA receptor hypofunction in schizophrenia[J].Nat Med,2006,12(7) : 824-828
[21]Wong J,Weickert CS.Transcriptional interaction of an estrogen receptor splice variant and ErbB4 suggests convergenceingenesusceptibilitypathwaysin schizophrenia[J].J Biol Chem,2009,284(28) : 18824-18832
[22]Shiota S,Tochigi M,Shimada H,et al.Association and interaction analyses of NRG1 and ERBB4 genes with schizophrenia in a Japanese population[J].J Hum Genet,2008,53(10) : 929-935
[23]Law AJ,Lipska BK,Weickert CS,et al.Neuregulin 1 transcripts are differentially expressed in schizophrenia and regulated by 5’SNP associated with the disease[J].Proc Natl Acad Sci USA,2006,103(17) : 6747-6752
[24]Hashimoto R,Straub RE,Weickert CS,et al.Expression analysis of neuregulin-1 in the dorsolateral prefrontal cortex in schizophrenia[J].Mol Psychiatry,2004,9(3) : 299-307
[25]Li JT,F(xiàn)eng Y,Su YA,et al.Enhanced interaction among ErbB4,PSD-95 and NMDAR by chronic MK-801 treatment is associated with behavioral abnormalities[J].Pharmacol Biochem Behav,2013,108: 44-53
[26]張海三,孟焱,張紅星,等.首發(fā)陽(yáng)性亞型精神分裂癥患者血清神經(jīng)調(diào)節(jié)蛋白1水平的研究[J].中國(guó)神經(jīng)精神疾病雜志,2009,35(8) : 454-456
[27]Lee BK,Yoon JS,Lee MJ,et al.Protein kinase C-β mediates neuronal activation of Na+/H+exchanger-1 during glutamate excitotoxicity[J].Cellular Signalling,2014,26(4) : 697-704
[28]Pelinka LE,Hertz H,Mauritz W,et al.Nonspecific increase of systemic neuron-specific enolase after trauma: clinical and experimental findings[J].Shock,2005,24(2) : 119 -123
[29]季莉,袁宏偉,趙幸福,等.阿立派唑?qū)穹至寻Y認(rèn)知功能及神經(jīng)元特異性烯醇化酶水平的影響[J].中國(guó)健康心理學(xué)雜志,2013,21(2) : 167-169
[30]Simpkings JW,Yi KD,Yang SH,et al.Mitochondrial mechanisms of estrogen neuroprotection[J].Biochim Biophys Acta,2010,1800(10) : 1113-1120
[31]Sribnick EA,Del RA,Ray SK,et al.Estrogen attenuates glutamate-induced cell death by inhibiting Ca2+infux through L-type voltage-gated Ca2+channels[J].Brain Res,2009,1276: 159-170
[32]Aquirre CC,Baudry M.Progesterone reverses 17β-estradiolmediated neuroprotection and BDNF induction in cultured hippocampal slices[J].Eur J Neurosci,2009,29(3) : 447 -454
[33]Schreihofer DA,Redmond L.Soy phytoestrogens are neuroprotective against stroke-like injury in vitro[J].Neuroscience,2009,158(2) : 602-609
[34]Occhiuto F,Zangla G,Samperi S,et al.The phytoestrogenic isoflavones from trifolium pratense L.(Red clover) protects human cortical neurons from glutamate toxicity[J].Phytomedicine,2008,15(9) : 676-682
[35]Karki P,Smith K,Johnson J Jr,et al.Astrocyte-derived growth factors and estrogen neuroprotection: Role of transforminggrowthfactor-αinestrogen-induced upregulation of glutamate transporters in astrocytes[J].Mol Cell Endocrinol,2014,389(1-2) : 58–64
[36]于魯璐,王學(xué)義,金圭星,等.男性精神分裂癥患者雌激素水平及藥物影響研究[J].中國(guó)神經(jīng)精神疾病雜志,2012,38(12) : 742-746
(收稿日期:2014-09-04)
通訊作者:曾勇,教授,碩士生導(dǎo)師,E-mail: zhangsl900@163.com
*基金項(xiàng)目:國(guó)家自然科學(xué)基金項(xiàng)目(編號(hào):81360210)
doi:10.3969/j.issn.2095-9346.2015.01.022
【中圖分類(lèi)號(hào)】R749.3
【文獻(xiàn)標(biāo)識(shí)碼】A
【文章編號(hào)】2095-9346(2015)-01-0066-04
作者單位:650031云南昆明,昆明醫(yī)科大學(xué)第一附屬醫(yī)院