李婷,李智佩,白建科,李曉英
(中國地質(zhì)調(diào)查局西安地質(zhì)調(diào)查中心,陜西 西安 710054)
伊犁地塊達根別里新元古代花崗巖的鋯石年代學(xué)、地球化學(xué)及其地質(zhì)意義
李婷,李智佩,白建科,李曉英
(中國地質(zhì)調(diào)查局西安地質(zhì)調(diào)查中心,陜西 西安 710054)
西天山伊犁地塊南緣特克斯縣東的達根別里花崗巖具有高硅SiO2=76.22%~76.86%)、富堿(ALK=7.07~7.93)、貧鈣鎂(CaO=0.95%~1.21%,MgO=0.10%~0.20%)、弱過鋁質(zhì)(ACNK=1.03~1.08)的特征;稀土元素含量中等,具有強烈的Eu負異常;原始地幔標(biāo)準(zhǔn)化蛛網(wǎng)圖上顯示其具有較高的Rb、Th、Sm、Ga、Nb和較低的Ba、Ti、Sr含量;鋯石飽和溫度平均為759℃,固結(jié)指數(shù)為1.07~2.14,分異指數(shù)為89.98~92.11,總體顯示弱過鋁質(zhì)高鉀鈣堿性系列的高分異S型花崗巖的特征。LA-ICP-MS鋯石U-Pb測年法獲得其形成時代為(942.5±2.6)Ma。巖體中Nb/Ta值接近上地殼,Mg#值為4.52~7.33,鋯石Hf同位素研究顯示其εHf(t)值為較低的正值或負值(-0.41~+4.34),二階段模式年齡TDM2=1.41~1.66 Ga,表明該花崗巖巖漿可能是中元古代地殼和新生地殼混合源區(qū)部分熔融的產(chǎn)物,同時也暗示了伊犁地塊具有形成年齡不小于1.7 Ga的中元古代結(jié)晶基底。結(jié)合天山地區(qū)及塔里木周邊地塊新元古代巖漿熱事件,認為伊犁地塊發(fā)育與天山造山帶各地一樣的新元古代花崗巖,這為西天山前寒武紀(jì)基底曾經(jīng)響應(yīng)過全球Rodinia超大陸匯聚事件,提供了進一步證據(jù)。
新元古代花崗巖;鋯石U-Pb年齡和Hf同位素;地球化學(xué);西天山;伊犁地塊
天山造山帶是出露于中國境內(nèi)的中亞巨型復(fù)合造山系重要組成部分,其構(gòu)造演化研究一直受到重視。隨著近年在天山地區(qū)發(fā)現(xiàn)許多大型-超大型礦床和認識到其對中亞增生型造山帶構(gòu)造演化研究的意義,國內(nèi)外學(xué)者加緊了對天山造山帶的研究步伐,獲得了一批重要成果(Gao et al., 1998, 2003;Windley, et al, 1990;Xiao, et al, 2004)。天山造山帶發(fā)育面積約65 000 km2的花崗巖體,這些花崗巖時代遍及新元古代、古生代及中生代,在空間上顯示一定的分帶性(徐學(xué)義等,2005)。目前,眾多的研究主要集中于分布在中天山北緣斷裂南側(cè)的博羅科努—依連哈比爾尕山一帶、中天山南緣斷裂和那拉提山北坡斷裂之間的狹長區(qū)域,以及巴倫臺至冰達坂地區(qū)(圖1a)的花崗巖(夏祖春等,2005;王博等,2007;徐學(xué)義等,2006,2010;龍靈利等,2007;陳必河等,2007;楊經(jīng)綏等,2011;Long et al,2011)。研究表明這些花崗巖體主要形成于古生代,是南天山洋和北天山洋向伊犁-中天山地塊俯沖的產(chǎn)物。新元古代巖體出露面積相對較少,前人研究其形成時代主要集中于960~910 Ma(胡藹琴等,2010)。同時750~800 Ma也存在巖漿熱事件記錄(李繼磊等,2009)。一般認為其為全球性Rodinia超大陸匯聚和裂解事件的響應(yīng)(陳義兵等,1999;胡藹琴等,2010;陳新躍等,2009)。伊犁地塊為西天山重要組成部分,同樣發(fā)育不同時代的花崗巖,但研究成果少有報道,已有的研究結(jié)果均集中在古生代花崗巖(徐學(xué)義等,2006;韓寶福等,2004)。對前寒武紀(jì)花崗巖體仍缺乏可靠的年代學(xué)數(shù)據(jù)和巖石地球化學(xué)資料,這不利于西天山構(gòu)造演化的整體認識。筆者在前期的地質(zhì)調(diào)研工作中從西天山伊犁地塊南部的達根別里花崗巖體中獲得了新元古代早期的形成時代,前人對此并沒有詳細的研究工作。為此,筆者對該巖體開展了系統(tǒng)的年代學(xué)、巖石地球化學(xué)和鋯石Hf同位素研究工作,以期準(zhǔn)確限定其成因、源區(qū)性質(zhì)和形成時代,并為探討伊犁地塊新元古代早期侵入巖的巖石成因及其在全球Rodinia超大陸演化中的意義提供依據(jù)。
中國天山造山帶夾持于北部西伯利亞板塊、南部卡拉庫姆-塔里木板塊和華北板塊之間(李錦軼等,2006),以托克遜—庫米什為界又被分為東天山和西天山。西天山被北側(cè)的依連哈比爾尕山北坡構(gòu)造推覆斷裂帶和南側(cè)霍拉山-黑鷹山推覆斷裂帶所圍限,總體為三角形并呈向北和向南逆掩推覆的扇狀分布的復(fù)合造山帶(左國朝等,2008)(圖1),以中天山北緣斷裂、那拉提北緣斷裂和南天山縫合帶為界,分為北天山弧增生體、伊犁地塊、中天山復(fù)合弧地體和塔里木北部被動大陸邊緣(高俊等,2009)。
西天山地區(qū)出露的最古老的前寒武紀(jì)變質(zhì)結(jié)晶基底為下元古界木扎爾特巖群、那拉提群和溫泉巖群(新疆地礦局,1993)。其中,木扎爾特巖群分布在哈爾克山南坡木扎爾特達坂一帶,為一套角閃巖相變質(zhì)的層狀巖系(于海峰等,2011),Nd同位素模式年齡表明其存有1 900~1 700 Ma的基底地殼殘留(陳義兵等,2000);那拉提群沿那拉提山脊分布,主要巖性為斜長角閃巖、云母石英片巖、角閃斜長片麻巖、腸狀混合片麻巖、眼球狀片麻巖及花崗片麻巖等(徐學(xué)義等,2010),在最新的區(qū)域地質(zhì)圖件中重新厘定為木扎爾特巖群(王洪亮等,2008);溫泉巖群分布于別珍套山北部阿克薩依一帶,主體為一套高級片麻巖類與變質(zhì)表殼巖類組成的中深變質(zhì)巖系,其Sm-Nd模式年齡為2 081~1 884 Ma(劉偉等,2009),同位素U-Pb法測定其花崗巖年齡為1 800 Ma。
圖1 (a)西天山構(gòu)造分區(qū)和侵入巖分布簡圖(據(jù)Xu et al. 2013修改);(b)達根別里巖體地質(zhì)簡圖(據(jù)王洪亮等,2008)Fig.1 (a)Simplified geological map of Chinese Western Tianshan showing the distribution of intrusions and the tectonic division(Modified after Xu et al 2013);(b)Simplified geological map of the Dagenbieli intrusion(Modified after Wang Hongliang et al, 2008)
研究區(qū)位于西天山南部特克斯縣以東,構(gòu)造位置上屬于伊犁板塊。區(qū)內(nèi)出露的地層從老到新為長城系特克斯巖群、薊縣系科克蘇群、青白口系庫什臺群等古老地層以及石炭系火山-沉積巖系。
特克斯群為一套整合于科克蘇群之下的正常沉積淺變質(zhì)碎屑巖,自上而下可分為3個組:珠瑪汗薩依組、莫合西薩依組、泊侖干布拉克組,其中泊侖干布拉克組主要為一套淺變質(zhì)淺海相碎屑巖夾少量火山碎屑巖和碳酸鹽巖建造。1978年1∶20萬莫合爾幅區(qū)調(diào)將該群劃歸為長城紀(jì),隨后新疆地質(zhì)志(1993)及本研究沿用該方案;科克蘇群為一套富含疊層石的碳酸鹽巖,被庫什臺群不整合覆蓋;庫什臺群主要巖性為白云巖、灰?guī)r、假鮞狀灰?guī)r、大理巖、硅質(zhì)巖夾硅質(zhì)灰?guī)r及粉砂巖,富含疊層石(新疆地礦局,1999)。石炭紀(jì)火山-沉積巖系分別角度不整合于早古生界地層或前寒武紀(jì)變質(zhì)基底上(白建科,2015)。
筆者研究的達根別里花崗巖侵入體呈北西向不規(guī)則狀巖株產(chǎn)出,整體形狀類似“工”字型,面積約10 km2。侵入的圍巖為長城系泊侖干布拉克組,北部被第四系覆蓋。巖石整體呈灰白色,中細?;◢徑Y(jié)構(gòu),塊狀構(gòu)造。主要礦物組合為石英(30%~35%)、微斜長石(50%~55%)、黑云母(5%~8%)和斜長石(5%),以及少量綠泥石化、云母化的角閃石。其中,石英呈他形分布,波狀消光;微斜長石自形程度低,多為半自形-他形板狀,發(fā)育明顯的格子雙晶;黑云母呈鱗片狀分布,部分蝕變發(fā)生綠泥石化;斜長石含量很少,具聚片雙晶結(jié)構(gòu);副礦物主要有鋯石、綠簾石、磁鐵礦等。
樣品采集于新疆特克斯縣東南卡拉托海鄉(xiāng)南約10 km處,地理坐標(biāo)為北緯43°10.602′,東經(jīng)82°15.579′,采樣位置見圖1b。
2.1 全巖地球化學(xué)測定
地球化學(xué)測試數(shù)據(jù)在中國地質(zhì)調(diào)查局西安地質(zhì)調(diào)查中心完成(表1)。主量元素除FeO、LOI采用標(biāo)準(zhǔn)濕化學(xué)法分析外,其他采用PW4400型X螢光光譜儀(XRF)測定,分析誤差低于5%;微量元素和稀土元素采用X-SeriesII型電感耦合等離子質(zhì)譜儀(ICP-MS)測定,檢測限優(yōu)于5×10-9,相對標(biāo)準(zhǔn)偏差優(yōu)于5%。
表1 達根別里巖體化學(xué)成分主量元素(%)、稀土和微量元素表(10-6)
續(xù)表1
樣品號11DG01-1h11DG01-2h11DG01-3h11DG01-4h樣品號11DG01-1h11DG01-2h11DG01-3h11DG01-4hALK7.667.897.357.19Co0.880.841.281.52K/Na1.721.601.991.79Li8.096.8150.2050.10A/NK1.251.231.281.29Rb326.00281.00276.00285.00A/CNK1.031.051.081.05Cs4.562.698.158.27Mg#7.294.527.337.07Mo0.240.440.130.14SI1.701.072.142.09Sr17.0022.1033.1034.10DI91.5892.1190.6589.98Ba13.4023.70168.00171.00La4.625.0048.2046.50V3.692.515.417.09Ce13.4013.80103.00100.00Sc2.282.253.013.22Pr2.182.2112.1011.90Nb24.5021.0012.7012.60Nd10.8010.5046.2044.50Ta1.861.610.900.89Sm5.745.1110.309.53Zr68.4053.40162.00184.00Eu0.140.140.590.51Hf4.702.495.075.86Gd8.675.768.268.35Ga19.7020.3018.5018.80Tb1.751.131.391.35U8.116.264.595.02Dy13.808.598.928.57Th40.8039.9039.6039.80Ho3.171.911.751.80Th/U5.036.378.637.93Er8.925.775.165.07Nb/Ta13.1713.0414.1114.16Tm1.440.830.770.7210000Ga/Al3.013.042.912.97Ni1.301.451.200.80
注:數(shù)據(jù)來源:西安地質(zhì)調(diào)查中心測試。
2.2 鋯石LA-ICP-MS定年
本次CL陰極發(fā)光照片、LA-ICP-MS U-Pb同位素測定及鋯石Lu-Hf同位素測試均在西北大學(xué)大陸動力學(xué)國家重點實驗室完成。
野外采集新鮮樣品約10 kg,由河北省廊坊地質(zhì)所進行鋯石分選。在雙目鏡下挑選無包裹體、無裂紋、透明度好、粒度較大的單顆粒鋯石進行制靶并拋光使鋯石內(nèi)部充分暴露,然后進行鋯石透射光、反射光、CL照相,LA-ICPMS U-Pb同位素測定及鋯石Lu-Hf同位素測試。
鋯石U-Pb年齡測試所得數(shù)據(jù)應(yīng)用Glitter(ver4.0)程序進行計算和處理,并對其進行普通鉛校正。詳細分析步驟和數(shù)據(jù)處理方法參見Ballard J R et al.,2001;袁洪林等,2003。所有樣品均采用206Pb/238U年齡,年齡計算及諧和圖采用Isoplot(ver3.0)完成。單個數(shù)據(jù)點的誤差均為1σ,其加權(quán)平均值為95%的置信度(表2)。
2.3 鋯石Lu-Hf同位素測試
鋯石原位微區(qū)Lu-Hf同位素詳細測試流程及條件等參見Yuan et al.,2004。應(yīng)用176Lu/175Lu= 0.026 55和176Yb/172Yb=0.588 6(Lizuka et al.,2005)進行同量異位的干涉校正,來計算測定樣品的176Lu/177Hf以及176Hf/177Hf值。本次εHf的計算采用的176Lu衰變常數(shù)為1.865×10-11a-1(Scherer et al.,2001),球粒隕石現(xiàn)今的176Hf/177Hf=0.282 772,176Lu/177Hf=0.033 2 (Blichert-Toft et al.,1997);虧損地?,F(xiàn)今176Hf/177Hf=0.283 250,176Lu/177Hf=0.038 4(Griffin et al.,2002)。由于筆者涉及巖性主要為花崗質(zhì)巖石,因此用硅鋁質(zhì)大陸地殼的Lu/Hf(fLu/Hf=-0.72;Vervoort et al.,1996)來二階段模式年齡(表3)。
3.1 巖石地球化學(xué)特征
巖石具有高硅(SiO2=76.22%~76.86%)、低鋁(Al2O3=11.97%~12.62%)的地球化學(xué)特征,TiO2含量為0.06%~0.16%,K2O、Na2O含量分別為4.61%~4.89%和2.46%~3.04%,ALK=7.07~7.93,K2O/Na2O值為1.60~1.99,F(xiàn)eO含量為0.96%~1.57%,CaO含量為0.95%~1.21%,MgO為0.10%~0.20%。堿度率(AR)為2.22~2.62;在TAS圖解中,樣品點全部落在花崗巖范圍內(nèi)(圖2a);在K2O-SiO2圖解中樣品點落在為高鉀鈣堿系列巖石范圍內(nèi)(圖2b);巖石的鋁飽和指數(shù)A/CNK為1.03~1.08;以上特征說明達根別里巖體為弱過鋁質(zhì)高鉀鈣堿性系列花崗巖。
巖石的稀土總量中等,為66.57×10-6~252.06×10-6,根據(jù)稀土配分曲線(圖3a)可將樣品分為兩組,一組顯示相對富集輕稀土〔(LREE/HREE)N=3.83~3.91〕,(La/Yb)N值為6.73~6.91,呈“右傾型”分布;另一組樣品輕重稀土分餾現(xiàn)象并不明顯,且呈現(xiàn)輕微的左傾型特征,輕稀土略虧損,〔(LREE/HREE)N=0.43~0.69〕,(La/Yb)N值為0.34~0.67。
所有樣品均表現(xiàn)出強烈的Eu負異常(δEu=0.06~0.19)(圖3a)。在原始地幔標(biāo)準(zhǔn)化的微量元素蛛網(wǎng)圖中(圖3b),表現(xiàn)出虧損大離子親石元素(如Ba、La、Ce、Sr等)以及Pr、P和Ti等元素,富集Rb、Th、Pb、Nd、Sm等元素。
圖2 (a)侵入巖的SiO2-K2O+Na2O圖解(據(jù)middlemost ,1994);(b)SiO2-K2O圖解 (據(jù)Peccerillo and Taylor,1976) Fig.2 (a)Diagrams of SiO2-K2O+Na2O(After middlemost ,1994);(b)SiO2-K2O (After Peccerillo and Taylor,1976)
圖3 (a)達根別里巖體REE球粒隕石標(biāo)準(zhǔn)化配分型式和(b)微量元素原始地幔標(biāo)準(zhǔn)化分 配圖(球粒隕石和原始地幔標(biāo)準(zhǔn)化值據(jù)Sun et al.,1989)Fig.3 (a)Chondrite-normalized REE diagram and (b)primitive mantle-normalized trace elements diagram of Dagenbieli intrusion (Chondrite-normalized and primitive mantle- normalized values after Sun and McDonough,1989)
3.2 鋯石LA-ICP-MS定年結(jié)果
鋯石CL圖像見圖4。達根別里巖體鋯石結(jié)晶較好,大多為半透明-透明的長柱狀晶體,呈淺褐色-淡黃色,長寬比為2∶1~3∶1,粒徑為100~300μm。鋯石的Th、U含量分別為596.37×10-6~5 129.8×10-6和197.64×10-6~1 289.79×10-6(表2),Th/U值為0.23~0.33,與巖漿鋯石接近。鋯石內(nèi)部均顯示典型的巖漿成因震蕩環(huán)帶結(jié)構(gòu)或明暗相間的條帶結(jié)構(gòu),部分鋯石具有核-幔結(jié)構(gòu),核部為不均勻的亮色殘核。以上特征表明其鋯石為巖漿成因(吳元保等,2004)。
圖4 達根別里巖體部分鋯石CL圖像Fig 4. CL images of zircons fromDagenbieli intrusion
達根別里巖體中LA-ICP-MS鋯石U-Pb定年結(jié)果見表2和圖5。巖體鋯石進行了25次分析,其中有14個測點的206Pb/238U表面年齡在諧和線附近形成了一個聚集區(qū)或沿不一致線分布,其加權(quán)平均年齡為942.5±2.6(95%conf,MSWD=0.43),與其下交點年齡為(941.0±3.8)Ma在誤差范圍內(nèi)一致,應(yīng)代表達根別里花崗巖的形成年齡。
3.3 Lu-Hf同位素測定結(jié)果
鋯石通常具有很高的Hf含量和很低的Lu/Hf(176Lu/177Hf?0.01)值,因此由176Lu衰變形成的176Hf比例非常低,其Hf同位素組成基本上代表了鋯石結(jié)晶時的初始Hf同位素組成(李獻華等,2003)。由表3中可知,所測樣品顆粒鋯石的176Lu/177Hf值大部分小于0.002,表明其具有較低的放射性成因Hf的積累,所測得的176Hf/177Hf值能有效的反映巖石源區(qū)的性質(zhì)。
達根別里巖體中鋯石的176Lu/177Hf為0.008 48~0.001 681,平均值為0.001 313;fLu/Hf=-0.95~-0.97,均低于上地殼(176Lu/177Hf=0.009 3,fLu/Hf=-0.82,Vervoort et al,1996)。鋯石的176Hf/177Hf值范圍0.282 191~0.282 321,平均值為0.282 232。利用巖體的形成年齡(942.5±2.6)Ma計算獲得鋯石的εHf(t)為-0.41~+4.34(圖6a),平均值為0.89。
二階段模式年齡(tDM2)范圍為1 417~1 666Ma(圖6b),平均值為1 592Ma。
圖5 (a)達根別里巖體的LA-ICP-MS鋯石U-Pb年齡諧和圖和(b)表面加權(quán)平均年齡圖Fig.5 (a)LA-ICP-MS zircon U-Pb condordia diagram and (b)weighted average ages of Dagenbieli intrusion
圖6 達根別里巖體鋯石Hf同位素組成圖Fig.6 Zircon Hf isotopic data of Dagenbieli intrusion
4.1 巖石成因類型分析
目前最常用的花崗巖成因分類方案為MISA型,即以巖漿源區(qū)性質(zhì)區(qū)分的I型(火成巖或下地殼來源)、S型(沉積巖或上地殼來源)、M型(地幔來源)以及強調(diào)形成環(huán)境(非造山、造山后拉張環(huán)境)和成分特點(堿性、無水)的A型花崗巖(吳福元等,2007)。
事實上,各類花崗巖的范圍并不是截然分明的,尤其是經(jīng)過高度分異演化的花崗巖,其礦物組成和化學(xué)成分都趨近于低共結(jié)花崗巖,使用原有的判斷標(biāo)志可能會鑒定困難,應(yīng)該結(jié)合巖石學(xué)、礦物學(xué)和地球化學(xué)等多種方法進行判定(Chappell et al,1992;吳福元等,2007)。
A.A型花崗巖;FG.分異M、S、I型花崗巖;OGT.未分異M、S、I型花崗巖圖7 達根別里巖體FeOT/MgO-Zr+Nb+Ce+Y、(K2O+Na2O)/CaO-Zr+Nb+Ce+Y和10000×Ga/Al-Zr+ Nb+Ce+Y圖解(A,B據(jù)Whalen et al., 1987;C據(jù)Eby,1990)Fig.7 TFeO/MgO/CaO-Zr+Nb+Ce+Y、(K2O+Na2O)/CaO-Zr+Nb+Ce+Y and 10000×Ga/Al/CaO-Zr +Nb+Ce+Y classification diagram(A,B after Whalen et al., 1987;C after Eby,1990)
達根別里花崗巖地化樣品具有高硅(76.22%~76.86%)、富堿(7.07%~7.93%)的地球化學(xué)特征,具有較高的10 000Ga/Al值(2.91~3.04),明顯高于I型和S型花崗巖的平均值(分別為2.1和2.28),且高于A型花崗巖的104Ga/Al值下限為2.6(Whalen et al.,1987),富含Rb、Th、Sm、Ga等元素,Al2O3、CaO、MgO、Ba、Ti、Sr等含量低,Eu負異常明顯,具有類似A型花崗巖的地球化學(xué)特征。前人研究表明,高分異的I、S型花崗巖通常會表現(xiàn)出與A型花崗巖相似的地球化學(xué)特征(King et al., 1997)。巖體中Rb/Sr值(8.34~19.18)高,Sr、Ba、Eu、P、Ti等元素具有顯著虧損特征,固結(jié)指數(shù)為1.07~2.14,分異指數(shù)為89.98~92.11,這些特征參數(shù)反映巖漿分異程度較高。樣品中Ce、Nb、Zr、Y等高場強元素含量較典型A型花崗巖偏低,其總和變化于145.8×10-6~345.2×10-6,小于A型花崗巖的下限值350×10-6(Whalen et al., 1987)。盡管在以104Ga/Al為X軸參數(shù)的圖解中,樣品多數(shù)落入A型花崗巖區(qū)域,但是在(K2O+Na2O)/CaO-Zr+Nb+Ce+Y、TFeO/MgO-Zr+Nb+Ce+Y、104Ga/Al-Zr+Nb+Ce+Y圖解(圖7)中顯示樣品基本落入分異花崗巖范圍內(nèi)。實驗巖石學(xué)證明,A型花崗巖形成于高溫低壓環(huán)境(King et al.,1997,2001)。
鋯石飽和溫度(Watson et al,1983)計算結(jié)果顯示達根別里巖體形成溫度分別為723℃、706℃、799℃、808℃,平均為759℃,低于典型A型花崗巖的鋯石飽和溫度(通常大于800℃,King et al.,1997)。而在花崗巖主元素判別圖(圖8)中,樣品全部顯示出高分異鈣堿性的特點,巖石含有云母等富水礦物也暗示了巖體具有高分異花崗巖的特點。因此,達根別里花崗巖應(yīng)屬于高分異I型或者S型花崗巖,而不是A型花崗巖。巖體富K低Ca,Na2O/K2O<1,SiO2含量范圍狹窄,F(xiàn)e2O3/FeO<0.4,具明顯Eu負異常等地化特征,與S型花崗巖主要特征相吻合;ACNK值均大于1,CIPW標(biāo)準(zhǔn)礦物計算結(jié)果顯示出現(xiàn)剛玉分子,含量為0.45%~0.98%,與S型花崗巖強過鋁質(zhì)、剛玉分子含量>1%的特征(Chappell et al.,2001)相近,且在演化過程中Pb含量基本呈逐漸減少趨勢(King et al., 1997)。同時區(qū)域上并未發(fā)現(xiàn)同時期或早期巖漿巖伴生現(xiàn)象,結(jié)合后文分析巖石具有殼源演化特征,認為達根別里花崗巖應(yīng)屬于高分異S型花崗巖。
圖8 花崗巖主元素判別圖(據(jù)Sylvester,1989)Fig.8 Discrimanation diagram of granite by major elements( after Sylvester,1989 )
圖9 達根別里花崗巖體Nb/Ta-Nb圖解Fig.9 Nb/Ta-Nb diagram for Dagenbieli intrusion
圖10 達根別里花崗巖的鋯石εHf(t)-年齡圖解Fig.10 Plot of εHf(t) versus U-Pb ages for Dagenbieli intrusion
4.2 巖漿源區(qū)特征
不同的微量元素在不同礦物中的分配系數(shù)差異較大。因此,可以通過研究巖石的稀土及微量元素特征,探討其源區(qū)熔融殘留物,并在結(jié)合實驗巖石學(xué)研究的基礎(chǔ)上,判斷巖石部分熔融的壓力條件。微量元素Eu、Sr在斜長石中的分配系數(shù)遠遠高于其他礦物。因此,花崗質(zhì)熔體中的Eu和Sr主要受殘留相中斜長石的控制,樣品具有明顯的Eu、Sr負異常,說明巖漿源區(qū)殘留有大量的斜長石(Xiong et al.,2005)。同時由于石榴子石強烈富集HREE,角閃石強烈富集MREE,因此當(dāng)石榴子石為主要殘留相時,熔體表現(xiàn)為HREE的強烈虧損;當(dāng)角閃石為主要殘留相時,熔體表現(xiàn)為HREE的相對平坦(張旗等,2006;Moyen et al.,2009)。筆者研究的樣品具有高的Y(48.40×10-6~97.60×10-6)和Yb(4.66×10-6~9.04×10-6)值以及未分異的HREE形態(tài),(Gd/Yb)N=0.77~1.45,表明源區(qū)殘留相主要為角閃石,并無石榴子石殘留,暗示其源區(qū)相對較淺,壓力較小。達根別里巖體的Nb、Ta含量分別為12.6×10-6~24.5×10-6和0.89×10-6~1.86×10-6,Nb/Ta值為13.04~14.16,與上地殼平均含量相近(Nb:12×10-6,Ta:0.9×10-6,Nb/Ta:13.3,Rudnick et al.,2003),低于原始地幔的Nb/Ta值17.4(Sun et al,1989)。在Nb/Ta-Nb圖解(圖9)中,樣品點均位于上地殼平均值附近,總體顯示了殼源演化巖石的特征。樣品Th/U值介于5.16~8.63,高于地殼平均值2.8(Taylor et al., 1985),而Th是親石元素,在巖漿演化過程中在地殼中優(yōu)先富集。實驗研究表明,Mg#能有效的判斷巖漿熔體單純來源于地殼還是有地幔物質(zhì)參與,無論熔融程度如何,地殼部分熔融形成的巖石Mg#較低(<40),而Mg#>40的巖石有可能與地幔物質(zhì)的加入有關(guān)(Rapp et al.,1995),樣品的Mg#為4.52~7.33,平均值為6.55,指示巖漿形成過程主要與地殼物質(zhì)有關(guān),并未受到地幔物質(zhì)的影響。
從Hf同位素測試結(jié)果來看,用于測試的11顆鋯石中,有4顆鋯石的εHf(t)值為負值(-0.12~-0.58),表明其巖漿來自于古老地殼的部分熔融。另外7顆的εHf(t)值為較低的正值(0.31~4.34),變化幅度很小,這種情況有兩種可能,一種指示了地幔巖漿的貢獻,殼幔巖漿混合形成混源巖漿;另一種可能地殼本身為新生地殼,在后期巖漿熱事件的影響下發(fā)生部分熔融形成巖石。而達根別里巖體的地球化學(xué)特征顯示其原始巖漿中并沒有幔源物質(zhì)的加入,同時在野外也沒有發(fā)現(xiàn)暗色基性-中性微粒包體等巖石學(xué)證據(jù)來證明原始巖漿與地幔物質(zhì)曾發(fā)生過明顯反應(yīng)。與此同時所有鋯石均具有均一的古—中元古代的二階段Hf模式年齡(tDM2=1.41~1.66Ga)(圖10),大于其結(jié)晶年齡,因此筆者更傾向于達根別里巖體的原始巖漿為古—中元古代古老地殼和新生地殼部分熔融后發(fā)生混合形成,并在隨后經(jīng)歷了高度的分異演化。值得注意的是,前文中提到稀土元素顯示兩種不同的配分型式,11DG01-1h、11DG01-2h號樣品表現(xiàn)出LREE略虧損的特征,稀土總量較低,有可能是繼承了玄武質(zhì)源巖的特征(李武顯等,2003),有待于進一步探討。
西天山地區(qū)最古老年齡信息是拉爾敦達坂石炭紀(jì)火山巖中獲得的太古宙鋯石,其SHRIMP U-Pb年齡為2 546Ma(朱永峰等,2006)。Nd同位素模式年齡表明木扎爾特巖群存有1 900~1 700Ma的基底地殼殘留(陳義兵等,2000),溫泉巖群的Sm-Nd模式年齡為2 081~1 884Ma(劉偉等,2009)。李繼磊等(2009)對阿吾拉勒西段低壓麻粒巖相片麻巖進行離子探針鋯石U-Pb年代學(xué)結(jié)果顯示其上交點年齡為(1 609±40)Ma,認為代表了其原巖的巖漿結(jié)晶年齡。徐學(xué)義等(2010)對那拉提地區(qū)古生代花崗巖進行鋯石Hf同位素研究,認為那拉提地區(qū)前寒武基底組成復(fù)雜,存在1.2~1.6Ga的中元古代源區(qū)、0.7~1.6Ga中新元古代混合源區(qū)及大于1.9Ga的古老地殼源區(qū)。這與筆者計算得出的伊犁地塊達根別里巖體Hf同位素一二階段模式年齡(1.4~1.7Ga)是相一致的,暗示伊犁地塊具有形成年齡不小于1.7Ga的中元古代結(jié)晶基底。
4.3 天山地區(qū)新元古代巖漿活動與Rodinia 超大陸的關(guān)系
McMenamin et al.(1990)和Hoffman(1991)根據(jù)對格林威爾造山運動及其造山帶的識別、對比,提出在古元古代初期至中元古代末期全球的主要大陸匯聚成一個全球性超大陸——Rodinia超大陸。Li et al.(2008)對Rodinia超大陸的匯聚—裂解演化過程進行了綜合研究,認為其在1 100~900Ma聚合,860~570Ma發(fā)生裂解。Rodinia超大陸匯聚-裂解事件在全球的構(gòu)造格局演化歷史中有重要作用,是新元古代時期全球范圍內(nèi)的重大地質(zhì)演化階段,在我國各地也有不同程度的響應(yīng)。例如,李獻華等(1998,2005,2008,2012)通過對揚子塊體周緣火山巖的研究認為,華南地區(qū)新元古代巖漿活動是超大陸裂解的響應(yīng),其形成機制與地幔柱有關(guān)。塔里木盆地周邊地塊、阿爾金造山帶、青藏高原等地區(qū)也發(fā)現(xiàn)了新元古代巖漿熱事件的記錄(胡藹琴等,1997;高振家等,1993;于海峰等,1999,2000;Gehrels et al.,2003;王超等,2006;陳能松等,2006;Lu et al,2008;張傳林等,2007;Zhang et al., 2007;覃小鋒等,2008;張志誠等,2010)。天山各地段均出露新元古代花崗巖,其形成時代主要集中在960~910Ma(胡藹琴等,2010),與格林威爾造山運動(晉寧運動)的時間(1 300~900Ma)相當(dāng),可能是這一期巖漿活動在天山地區(qū)的響應(yīng)。這些陸塊在新元古代早期(1 300~900Ma)經(jīng)歷了格林威爾造山運動后均參與聚合形成Rodinia超大陸的一部分(胡藹琴等,2010;左國朝等,2008;陳新躍等,2009;夏林圻等,2009),800Ma左右超大陸發(fā)生裂解分離(陸松年等,1998)。
關(guān)于伊犁地塊新元古代時期巖漿事件的記錄罕有報道。鋯石U-Pb定年結(jié)果表明達根別里花崗巖的形成年齡為(942.5±2.6)Ma,屬新元古代早期巖漿活動的產(chǎn)物。研究區(qū)內(nèi)青白口紀(jì)庫什臺群角度不整合覆蓋于薊縣紀(jì)科克蘇群之上,也暗示在10Ga左右伊犁地塊曾發(fā)生陸緣抬升作用。以上說明伊犁地塊在新元古代時期也參與匯聚,形成Rodinia大陸的一部分。這為研究西天山地區(qū)前寒武紀(jì)基底的構(gòu)造演化歷史及其在Rodinia超大陸中的位置提供了重要信息。
(1)LA-ICPMS鋯石U-Pb定年結(jié)果獲得達根別里花崗巖的形成年齡為(942.5 ± 2.6)Ma,是新元古代早期巖漿活動的產(chǎn)物。
(2)巖石地球化學(xué)特征表明達根別里花崗巖屬高鉀鈣堿性系列,具有高分異S型花崗巖的特征,是古—中元古代古老地殼和新生地殼部分熔融后發(fā)生混合形成原始巖漿,隨后經(jīng)高度分異演化形成。
(3)達根別里巖體為天山地區(qū)廣泛存在的~0.9Ga構(gòu)造熱事件的響應(yīng),結(jié)合塔里木周邊地塊同時代年齡分析,認為伊犁-中天山地塊在新元古代早期參與聚合形成Rodinia超大陸。
白建科,李智佩,徐學(xué)義,等.新疆西天山伊犁地區(qū)石炭紀(jì)火山-沉積序列及盆地性質(zhì)[J].地質(zhì)論評,2015,61(1):195-206.
BAI Jianke,LI Zhipei,XU Xueyi,et al. Carboniferous Volcanic-Sedimentary Succession and Basin Properties in Ili Area,Western Tianshan,Xinjiang[J].Geological Review,2015,61(1):195-206.
陳能松,李曉彥,王新宇,等.柴達木地塊南緣昆北單元變質(zhì)新元古代花崗巖鋯石SHRIMP U-Pb年齡[J].地質(zhì)通報,2006,25(11):1311-1314.
CHEN Nengsong,LI Xiaoyan,WANG Xinyu,et al. Zircon SHRIMP U-Pb age of Neoproterozoic metagranite in the North Kunlun unit on the southern margin of the Qaidam block in China[J]. Geological Bulletin of China,2006,25(11):1311-1314.
陳新躍,王岳軍,孫林華,等.天山冰達坂和拉爾敦達坂花崗片麻巖SHRIMP鋯石年代學(xué)特征及其地質(zhì)意義[J]. 地球科學(xué),2009,38(5):424-431.
CHEN Xinyue,WANG Yuejun,SUN Linhua,et al. Zircon SHRIMP U-Pb dating of the granitic gneisses from Bingdaban and Laerdundaban (Tianshan Orogen) and their geological significances[J].Geochimica,2009,38 (5) :424-431.
陳義兵,胡藹琴,張國新,等.西天山獨庫公路花崗片麻巖的鋯石U-Pb年齡及其地質(zhì)意義[J].科學(xué)通報,1999,44(21):2328-2332.
CHEN Yibing,HU Aiqin,ZHANG Guoxin,et al.Zircon U-Pb age of granitic gneiss on Duku highway in western Tianshan of China and its geological implications[J]. Chinese Sci Bull,1999,44(21):2328-2332.
高俊,錢青,龍靈利,等.西天山的增生造山過程[J]. 地質(zhì)通報,2009,28(12):1804-1816.
GAO Jun,QIAN Qing,LONG Lingli,et al . Accretionary orogen icprocess of Western Tianshan,China[J] . Geological Bulletin of China,2009,28( 12) :1 804-1816.
高振家,陳晉鐮,陸松年,等.前寒武紀(jì)地質(zhì)第6號: 新疆北部前寒武系[M]. 北京: 地質(zhì)出版社: 1993:1-171.
GAO Zhenjia,CHEN Jinlian,LU Songnian,et al.Precambrian Geology No.6:The Precambrian Geology in Northern Xinjiang[M].Beijing:Geological Publishing House,1993:1-171.
韓寶福,何國琦,吳泰然,等.天山早古生代花崗巖鋯石U-Pb定年、巖石地球化學(xué)特征及其大地構(gòu)造意義[J].新疆地質(zhì),2004,22(1):4-15.
HAN Baofu,HE Guoqi,WU Tairan,et al. Zircon U-Pb dating and geochemical features of Early Paleozoic granites from Tianshan,Xinjiang: Implications for tectonic evolution[J].Xinjiang Geology,2004,22( 1) :4-11.
胡靄琴,王中剛,涂光熾.新疆北部地質(zhì)演化及其成巖成礦規(guī)律[M].北京: 科學(xué)出版社: 1997:36-62.
HU Aiqin,WANG Zhonggang,TU Guangchi.Geological Evolution and Diagenic and Metallogenetic Regularity in Northern Xinjiang[M].Beijing: Science Press,1997: 36-62.
胡靄琴,張國新,張前鋒,等.天山造山帶基底時代和地殼增生的Nd 同位素制約[J].中國科學(xué)(D 輯), 1999,29(3):104-112.
HU Aiqin,ZHANG Guoxin,ZHANG Qianfeng,et al. Constraints on the age of basement and crustal growth in Tianshan Orogen by Nd isotopic conposition[J].Sci China(D):1999,29(3):104-112.
胡藹琴,郝杰,張國新,等.新疆東昆侖地區(qū)新元古代蛇綠巖Sm-N d 全巖-礦物等時線定年及其地質(zhì)意義[J].巖石學(xué)報,2004,20(3):457-462.
HU Aiqin,HAO Jie,ZHANG Guoxin,et al.Whole-rock and minerals Sm-Nd isochron age of early Neoproterozoic ophiolites and its geological significance in the eastern Kunlun area,Xinjiang,China[J]. Acta Petrologica Sinica,2004,20(3):457-462.
胡藹琴,韋剛健,江博明,等. 天山0.9Ga新元古代花崗巖SHRIMP鋯石U-Pb年齡及其地質(zhì)意義[J].地球科學(xué),2010,39(3):197-212.
HU Aiqin,WEI Gangjian,JIANG Boming,et al. Formation of the 0.9 Ga Neoproterozoic granitoids in the Tianshan Orogen,NW China:Constraints from the SHRIMP zircon age determination and its tectonic significance[J]. Geochimica,2010:39(3):197-212.
黃汲清,任紀(jì)舜,姜春發(fā),等. 中國大地構(gòu)造及其演化[M]. 北京: 科學(xué)出版社, 1980: 1-124.
HUANG Jiqing,REN Jishun,JIANG Chunfa,et al. Geotectonic Evolution of China[M]. Beijing:Science Press,1980: 1-124.
李錦軼,王克倬,李亞萍,等.天山山脈地貌特征、地殼組成與地質(zhì)演化[J].地質(zhì)通報,2006,25(8):895-915.
LI Jinyi,WANG Kezhuo,LI Yaping,et al. Geomorphological features,crustal composition and geological evolution of the Tianshan Mountains[J]. Geological bulletin of China,2006,25(8):895-915.
李武顯,李獻華.蛇綠巖中的花崗質(zhì)巖石成因類型與構(gòu)造意義[J].地球化學(xué)進展,2003,18(3):392-397.
LI Wuxian、LI Xianhua. Rock types and tectonic significance of the Granitoids rocks within ophiolites[J]. Advance in Earth Sciences,2003,18(3):392-397.
李獻華.華南晉寧期造山運動-地質(zhì)年代學(xué)和地球化學(xué)制約[J].地球物理學(xué)報, 1998,41(增刊):184-194.
LI Xianhua. The Jinning Orogeny in southeast China:Geochronological and Geochemical constraints[J]. Chinese Journal of Geophysics,1998,41:184-194.
李獻華,梁細榮,韋剛健,等.鋯石Hf同位素組成的LAM-MC-ICPMS精確測定[J].地球化學(xué),2003, 32(1):86-90.
LI Xianhua,LIANG Xirong,WEI Gangjiang,et al. Precise analysis of zircon Hf isotopes by LAM-MC-ICPMS[J]. Geochimica,2003,32(1):86-90.
李獻華,祁昌實,劉穎,等.揚子塊體西緣新元古代雙峰式火山巖成因:Hf同位素和Fe/Mn新制約[J].科學(xué)通報, 2005,50(19):369-374.
LI, Xianhua,QI Changshi,LIU Ying,et al.Petrogenesis of the Neoproterozoic bimodal volcanic rock salong the
western margin of the Yangtze block:new constraints from Hf isotopes and Fe/Mn ratios [J] .Chinese Sci Bull,2005,50 ( 19):369-374.
李獻華,王選策,李武顯,等.華南新元古代玄武質(zhì)巖石成因與構(gòu)造意義:從造山運動到陸內(nèi)裂谷[J]. 地球化學(xué),2008,37(4):382-398.
LI Xianhua,WANG Xuance,LI Wuxian,et al. Petrogenesis and tectonic significance of Neoproterozoic basaltic rocks in South China from orogenesis to intracontinental rifting[J]. Geochimica,2008,37(4):382-398.
李獻華,李武顯,何斌,等.華南陸塊的形成與Rodinia超大陸聚合-裂解-觀察、解釋與檢驗[J]. 礦物巖石地球化學(xué)通報,2012,31(6):543-559.
LI Xianhua,LI Wuxian,HE Bin,et al. Building of the South China Block and its relevance to assembly and breakup of Rodinia supercontinent:Observations, interpretations and tests[J].Bull of Min,Petrology and Geochemistry,2012,31(6):543-559.
劉偉,徐永波,衡星,等.賽里木地塊北緣古元古界變質(zhì)雜巖地質(zhì)特征及構(gòu)造意義[J].新疆地質(zhì),2009,27(3):201-206.
LIU Wei,XU Yongbo,HENG Xing,et al. Geotectonic features of metamorphic complexes from the northern side of the sayram in Xinjiang. Xinjiang Geology[J].2009,27(3):201-206.
龍靈利,高俊,熊賢明,等.新疆中天山南緣比開(地區(qū))花崗巖地球化學(xué)特征及年代學(xué)研究[J].巖石學(xué)報,2007,23(4):719-732.
LONG Lingli,GAO Jun,XIONG Xianming,et al. Geochemistry and geochronology of granitoids in Bikai region,southern Central-Tianshan mountains,Xinjiang[J]. Acta Petrologica Sinica,2007,23(4):719-732.
陸松年.新元古時期Rodinia超大陸研究進展述評[J]. 地質(zhì)論評,1998,44(5):489-495.
LU Songnian.A Review of Advance in the Research on the Neoproterozoic Rodinia Supercontinent[J]. Geological Review,1998,44(5):489-495.
覃小鋒,夏斌,黎春泉,等.阿爾金構(gòu)造帶西段前寒武紀(jì)花崗質(zhì)片麻巖的地球化學(xué)特征及其構(gòu)造背景[J]. 現(xiàn)代地質(zhì),2008,22(1):34-44.
QIN Xiaofeng,XIA Bin,LI Chunquan,et al.Geochemical characteristics and tectonic setting of Precambrian granitic gneiss in the western segment of Altyn Tagh tectonic belt[J].Geoscience,2008,22(1):34-44.
王博,舒良樹,DominiqueC,等.伊犁北部博羅霍努巖體年代學(xué)和地球化學(xué)研究及其大地構(gòu)造意義[J].巖石學(xué)報,2007,23(8):1885-1900.
WANG Bo,SHU Liangshu,DOMINIQUE C,et al. Geochronological and geochemical studies on the Borohoro plutons,north of Yili,NW Tianshan and their Tectonic implication[J]. Acta Petrologica Sinica, 2007,23(8):1885-1900.
王超,劉良,車自成,等.阿爾金南緣榴輝巖帶中花崗片麻巖的時代及構(gòu)造環(huán)境探討[J].高校地質(zhì)學(xué)報,2006,12(1):74-82.
WANG Chao,LIU Liang,CHE Zicheng,et al. U-Pb Geochronology and Tectonic Setting of the Granitic Gneiss in Jianggaleisayi Eclogite Belt,the Southern Edge of Altyn Tagh[J]. Geological Journal of China Universities,2006,12(1):74-82.
王洪亮,徐學(xué)義,何世平,等.中國天山及鄰區(qū)地質(zhì)圖及說明書[M]. 北京:中國地質(zhì)出版社,2008.
WANG Hongliang,XU Xueyi,HE Shiping,et al . 1:100M Geological Map of Tianshan and Adjacent Area[M] . Beijing:Geological Publishing House.2008.
吳福元,李獻華,楊進輝,等.花崗巖成因研究的若干問題[J].巖石學(xué)報,2007,23(06):1217-1238.
WU Fuyuan,LI Xianhua,YANG Jinhui,et al.Discussions on the petrogenesis of granites[J]. Acta Petrologica Sinica,2007,23(06):1217-1238.
吳元保,鄭永飛,龔冰,等.北淮陽廬鎮(zhèn)關(guān)巖漿巖鋯石U-Pb年齡和氧同位素組成[J].巖石學(xué)報,2004,20(05):1007-1024.
WU Yuanbao,ZHENG Yongfei,GONG Bing,et al. Zircon U-Pb ages and oxygen isotope compositions of the Luzhenguan magmatic complex in the Beihuaiyang zone[J]. Acta Petrologica Sinica,2004,20(05):1007-1024.
夏林圻,夏祖春,李向民,等.華南新元古代中期裂谷火山巖系:Rodinia 超大陸裂谷化-裂解的地質(zhì)紀(jì)錄[J].西北地質(zhì):2009, 42(1):1-33.
XIA Linqi,XIA Zuchun,LI Xiangming,et al. Mid-Neoproterozo ic Rift-related Volcan ic Rocks in South China:Geological Records of Rif ting and Break-up of the Supercon tinent Rodinia[J]. Northwestern Geology,2009,42(1):1-33.
夏祖春,徐學(xué)義,夏林圻,等.天山石炭-二疊紀(jì)后碰撞花崗質(zhì)巖石地球化學(xué)研究[J].西北地質(zhì),2005,38(1):1-14.
XIA Zuchun,XU Xueyi,XIA Linqi,et al. Geochemistry of the Carboniferous-Permian postcollisional granitic rocks from Tianshan [J].Northwestern Geology,2005,38 (1):1-14.
新疆維吾爾自治區(qū)地質(zhì)礦產(chǎn)局.新疆巖石地層[M]. 中國地質(zhì)大學(xué)出版社,1999.
Xinjiang Bureau of Geology and Mineral Resource Exploration. lithostratigraphic of Xinjiang Provience[M]. China University of Geosciences Publishing.1999.
徐學(xué)義,馬中平,夏祖春,等.天山石炭-二疊紀(jì)后碰撞花崗巖的Nd、Sr、Pb 同位素源區(qū)示蹤[J]. 西北地質(zhì),2005,38(2):1-18.
XU Xueyi,MA Zhong ping,XIA Zuchun,et al. Discussion of the sources and charact eristics on Sr,Nd,Pb isotopes of the Carboniferous to Permian postcollisional granites from Tianshan [J] . Northwesern Geology,2005,38 (2) :1-18.
徐學(xué)義,馬中平,夏祖春,等.天山中西段古生代花崗巖TIMS法鋯石U-Pb同位素定年及巖石地球化學(xué)特征研究[J]. 西北地質(zhì),2006,39(1):51-75.
XU Xueyi,MA Zhongping,XIA Zuchun,et al. TIMS U-Pb Isotopic Dating and Geochemical Characteristics of Paleozoic Granitic Rocks from the Middle-Western Section of Tianshan[J]. Northwestern Geology,2006,39(1):51-75.
徐學(xué)義,王洪亮,馬國林,等.西天山那拉提地區(qū)古生代花崗巖的年代學(xué)和鋯石Hf同位素研究[J]. 巖石礦物學(xué)雜志,2010,29(6):691-706.
XU Xueyi,WANG Hongliang,MA Guolin,et al. Geochronology and Hf isotope characteristics of the Paleozoic granite in Nalati area,West Tianshan Mountains[J]. Acta Petrologica et Mineralogica,2010,29(6):691-706.
楊經(jīng)綏,徐向珍,李天福,等.新疆中天山南緣庫米什地區(qū)蛇綠巖的鋯石U-Pb同位素定年早古生代洋盆的證據(jù)[J].巖石學(xué)報,2011,27(1):77-95.
YANG Jingsui,XU Xinagzhen,LI Tianfu,et al.U-Pb ages of zircons from ophiolite and related rocks in the Kumishi region at the southern margin of Middle Tianshan,Xinjiang:Evidence of Early Paleozoic oceanic basin[J]. Acta Geologica Sinica,2011,27(1):77-95.
于海峰,陸松年,梅華林,等.中國西部新元古代榴輝巖-花崗巖帶和深層次韌性剪切帶特征及其大陸再造意義[J].巖石學(xué)報,1999,15(4):532-538.
YU Haifeng,LU Songnian,MEI Hualin,et al. Characteristics of Neoproterozoic eclogite-granite zones and deep level ductile shear zone in western China and their significance for continental reconstruction[J]. Acta Geologica Sinica,1999,15(4):532-538.
于海峰,陸松年,修群業(yè),等.甘肅北山西部新元古代陸塊匯聚與裂解事件的巖石記錄[J]. 前寒武紀(jì)研究進展,2000,23(2):98-102.
YU Haifeng,LU Songnian,XIU Qunye,et al. Assembly and Crack Events of Neoproterozoic Continental Blocks in Western Beishan Mountain,Gansu Province,China[J]. Progress in Precambrian Research,2000,23(2):98-102.
于海峰,王福君,潘明臣,等.西天山古元古代木扎爾特巖群地質(zhì)特征及時代厘定[J].新疆地質(zhì),2011,29(1):20-25.
YU Haifeng,WANG Fujun,PAN Mingchen,et al. Geological characteristics and ages assurance of the muzhaerte group comples of palaeoproterozoic in western Tianshan mountains[J].Xinjiang Geology,2011,29(1):20-25.
袁洪林,吳福元,高山,等.東北地區(qū)新生代侵入體的鋯石激光探針U-Pb年齡測定與稀土元素成分分析[J].科學(xué)通報,2003,48(14):1511-1520.
YUAN H L,WU F Y,GAO S,et al. Determination of U-Pb age and rare earth element concentration of zircons from Cenozoic intrusions in northeastern China by laser ablation ICP-MS[J]. Chinese Science Bulletin,2003,48(22):2411-2421.
張傳林,陸松年,于海鋒,等.青藏高原北緣西昆侖造山帶構(gòu)造演化:來自鋯石SHRIMP 及LA-ICP-MS 測年的證據(jù)[J].中國科學(xué)(D 輯),2007,37 (2):145-154.
張旗,王焰,李承東,等.花崗巖的Sr-Yb分類及其地質(zhì)意義[J].巖石學(xué)報,2006,22(09):2249-2269.
ZHANG Qi,WANG Yan,LI Chengdong,et al.Granite classification on the basis of Sr and Yb contents and its implications[J]. Acta Petrologica Sinica,2006,22(09):2249-2269.
張旗,金惟俊,李承東,等.再論花崗巖按照Sr-Yb的分類:標(biāo)志[J].巖石學(xué)報,2010a,26(04):0985-1015.
ZHANG Qi,JIN Weijun,LI Chengdong,et al. Revisiting the new classification of granitic rocks based on whole-rock Sr-Yb contents:Insex[J].Acta Petrologica Sinica,2010a,26(4):985-1015.
張旗,金惟俊,李承東,等.三論花崗巖按照Sr-Yb的分類:應(yīng)用[J].巖石學(xué)報,2010b,26(12):3431-3455.
ZHANG Qi,JIN Weijun,LI Chengdong,et al.On the classification of granitic rocks based on whole-rock Sr and Yb concentrations III:Practice[J].Acta Petrologica Sinica,2010b,26( 12):3431- 3455.
張志誠,郭召杰,馮志碩,等.阿爾金索爾庫里地區(qū)元古代流紋巖鋯石SHRIMP U-Pb定年及其地質(zhì)意義[J]. 巖石學(xué)報,2010,26(02):597-606.
ZHANG Zhicheng,GUO Zhaojie,F(xiàn)ENG Zhishuo,et al. SHRIMP U-Pb age of zircons from Suoerkuli rhyolite in the Altyn Taghmountains and its geological significations[J]. Acta Petrologica Sinica,2010,26(02):597-606.
張遵忠,顧連興,楊浩,等.東天山平頂山巨眼球狀片麻狀花崗巖特征及成因[J]. 巖石學(xué)報,2005,21(3):889-908.
ZHANG Zunzhong,GU Lianxing,YANG Hao,et al. Characteristics and genesis of the Pingdingshan megaaugen gneissic granite in the eastern Tianshan Mountain areas[J].Acta Pstrologica Sinica,2005,21(3):889-908.
朱永峰,周晶,宋彪,等. 新疆“大哈拉軍山組”火山巖的形成時代問題及其解體方案[J].中國地質(zhì),2006,33( 3):487 -497.
ZHU Yongfeng,ZHOU Jing,SONG Biao,et al.Age of the “Dahalajunshan” Formation in Xinjiang and its disintegration[J]. Geology in China,2006,33( 3):487 -497.
左國朝,張作衡,王志良,等.新疆西天山地區(qū)構(gòu)造單元劃分、地層系統(tǒng)及其構(gòu)造演化[J]. 地質(zhì)論評,2008,54(6):731-750.
ZUO Guochao,ZHANG Zuoheng,WANG Zhiliang,et al.Tectonic Division,Stratigraphical Stystem and the Evolution of Western Tianshan Mountains,Xinjiang[J]. Geological Review,2008,54(6):731-750.
BALLARD J R,PALINn JM,WILLIAMS I S,et al .Two ages of porphyry intrusion resolved for the super-giant Chuquicamata copperdeposit of northern Chile by LA-ICP-MS and SHRIMP[J].Geology,2001,29:383-386.
BLICHERT-TOFT J et al.The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system:Earth Planet[J].Sci.Lett.,1997,148:243-258.
CHAPPELL BW and WHITE AJR.I- and S- type granites in the Lachlan Fold Belt.Transactions of the Royal Society of Ed inburgh[J]. Ea th Sci,1992,83:1-26.
GAO J,LI MS,XIAO XC,et al. Paleozoic tectonic evolution of the Tianshan Orogen,northwestern China[J]. Tectonophysics,1998,287:213-231.
GAO J and KLEMD R. Formation of HP-LT rocks and their tectonic implications in the western Tianshan Orogen,NW China:geochemical and age constraints[J]. Lithos 2003,66:1-22.
GEHRELS G E,YIN A,WANG X F. Magm at ic h ist ory of the Northeast ern Tibet an Plat eau [J] . J Geophys Res,2003,108(B9):2423,doi:101 1029/ 2002 JB001876.
GRIFFIN WL,PERSON NJ,BELOUSOVA E, et al. The Hf isotope composition of cratonic mantle:LAM-MC-ICPMS analysis of zircon megacrysts in limberlites[J]. Geochim. Cosmochim. Acta,2002,64:133-147.
HOFFMAN,P.F.,Did the breakout of Laurentia turn Gondwanaland insideout[J]? Science 1991,252,1409-1412.
KING PL,CHAPPELL BW,ALLEN CM, et al. Are A- type granites the high- tem perature felsic granites ? Evidence from fractionated granites of the W angrah Suite[J]. Aust J Earth Sci, 2001,48:501- 514.
KING PL,White AJR and Chappell BW. Characterization and orig in o faluminous A type granites of the Lachlan Fold Belt,sou theastern Australia[J]. J Petrol,1997,36:371 -391.
LI Zhengxiang,BOGDANOVA SV,COLLINS AS,et al. A ssembly,configuration,and breakup history of Rodinia:a synthesis [J]. Precambrian Res,2008,168(1-2) : 179-210.
LIZUKA T and HIRATA T. Improvements of precision and accuracy in situ Hf isotope microanalysis using the laser ablation-MC-ICPMS technique[J]. Chen. Geol., 2005,220:121-137
LU Songnian,LI Huaikun,ZHANG Chuanlin,et al. Geological and geochronological evidence for the Precambrian evolution of the Tarim Craton and surrounding continental fragments [J]. Precamb Res,2008,160 (1/2) :94-107.
Mc Menamin,M.A.S.,Mc Menamin,D.L.S., The Emergence of Animals: The Cambrian Breakthrough,p. 1990,217.
PECCERILLO A and TAYLOR SR. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey[J]. Contributions to Mineralogy and Petrology,1976,58:68-81.
RAPP R P,WATSON E b. Dehydration melting of metabasalt at 8-32kbar:Implications for continental growth and crust-mantle recycling[J]. Journal of Petrology,1995,36:891-931.
RUDNICK R.L. and GAO S. Composition of the continental crust. p.1-64. In The Crust (ed. R.L. Rudnick) Vol. 3 Treatise on Geochemistry(eds. H.D. Holland and K.K. Turekian) [J]. Elsevier-Pergamon,Oxford. 2003.
SCHERER E,MUNKER C and MEZGER K. Calibration of the Luterium-hafniium clock[J]. 2001,293:683-687.
SUN SS and McDoungh. Chemical and isotopicsystematic of oceanic basalts: Implications for mantle composition and processes. Saunders AD and Norry M J. Magmatism in the Ocean Basins[J].Gelo.Soc. Spec. Pub.,London, 1989,42:313-345
VERVOORT J D and PATCHETT P J. Behavior of hafnium and neodymium isotopes in the crust:Consteaints from Precambriar crustally derived granite[J]. Geochim Cosmochim Acta,1996,60:3717-3733.
WATSON E B, HARRISON T M.Zircon saturation revisited:Temperature and composition effects in a variety of crustal magma types[J].Earth and Planetary Science Letters,1983,64:295-304.
WHALEN J B,CURRIE K L, CHAPPELL B W. A-type granites:geochemical characteristics,dirimination and petrogenesis[J]. Contrib. Mineral. Petrol., 1987,95:407-419.
WINDLEY B F,ALLEN M B,ZHANG C,et al. Paleozoic accretion and Cenozoic redeformation of the ChineseTien Shan Range,central Asia[J]. Geology,1990,18:128-131.
XIAO W J,ZHANG L C,QIN K Z,et al. Paleozoic accretionary and collisional tectonics of the eastern Tianshan (CHINA):implications for the continental growth of Central Asia[J]. American Journal of Science,2004,304:370-395.
XIONG X L,ADAM J, GREEN T H. Rutile stability and rutile/melt HFSE partitioning during partial melting of hydrous basale:Implications for TTG genesis[J]. Chemical Geology,2005,218:339-359.
XU Xueyi,WANG Hongliang,LI Ping,et al. Geochemistry and geochronology of Paleozoic intrusions in the Nalati (Narati) area in western Tianshan,Xinjiang,China:Implications for Paleozoic tectonic evolution[J].Journal of Asian Earth Sciences,2013,72:33-62.
Geochronology, Geochemistry of Dagenbieli Neoproterozoic Granites in the Yili Block, and Its Geological Implications
LI Ting, LI Zhipei, BAI Jianke, LI Xiaoying
(Xi’an Center of Geological Survey, CGS, Xi’an 710054, Shaanxi, China)
Geochemical studies indicate that the Dagenbieli granitic intrusion in the northern margin of the Yili Block is a high calc-alkaline and weak peraluminous granite with high content of SiO2(76.22%-76.86%), ALK (7.07-7.93) and low content of CaO(0.95%-1.21%) and MgO(0.10%-0.20%). This intrusion has moderate REE concentrations and strong negative Eu anomalies(δEu=0.06-0.19). They are enriched in Rb, Th, Sm, Ga, Nb and depleted in Ba, Ti, Sr. Characterized by average zircon saturation temperature of 759 ℃, consolidation index of 1.07-2.14, differentiation index of 89.98-92.11, the Dagenbieli intrusion is the highly fractionated S-type granites. U-Pb zircon analysis suggests that the intrusions were formed at 942.5±2.6 Ma. The Nb/Ta ratios were close to ratios of the upper crust, Mg# value is 4.52-7.33, and the εHf (t) values of zircon range from -0.41 to +4.34, which indicates that the source rocks were ancient crustal materials with new crustal materials addition. The zircon of intrusion have two-stage Hf model ages of 1.41-1.66 Ga, which means that the Yili Block may be underlain by Middle Proterozoic(>1.7 Ga) crystalline basement. Combined with Neoproterozoic magmatic events in the Tianshan and Tarim area, we suggest that the formation of the Dagenbieli intrusion relate to the Rodinia. This study provides further and important geochemical and age data to support the presence of Precambrian basement in Western Tianshan area and records on the convergence of Rodinia supercontinent.
Neoproterozoic granites; zircon LA-ICP-MS U-Pb age and Hf isotope; geochemistry; western Tianshan; Yili Block
2015-03-31;
2015-05-05
中國地質(zhì)調(diào)查局項目“西北基礎(chǔ)地質(zhì)綜合調(diào)查與片區(qū)總結(jié)”(1212011121137)、“天山成礦帶基礎(chǔ)地質(zhì)綜合研究”(1212010010200)、國家自然科學(xué)青年基金“西天山伊犁地塊早石炭典型沉積序列及對天山古代洋陸轉(zhuǎn)換時限的制約”(41202077)
李婷(1984-),女,碩士,研究實習(xí)員,礦物學(xué)、巖石學(xué)、礦床學(xué)專業(yè)。E-mail:liting_xacgs@163.com
P597
A
1009-6248(2015)03-0096-16