陸沛青,李根生,黃中偉,田守嶒,沈忠厚,李小江
(中國(guó)石油大學(xué)油氣資源與探測(cè)國(guó)家重點(diǎn)實(shí)驗(yàn)室,北京 102249)
脈動(dòng)水力壓裂過(guò)程中煤層應(yīng)力擾動(dòng)特征的數(shù)值模擬分析
陸沛青,李根生,黃中偉,田守嶒,沈忠厚,李小江
(中國(guó)石油大學(xué)油氣資源與探測(cè)國(guó)家重點(diǎn)實(shí)驗(yàn)室,北京 102249)
煤層脈動(dòng)水力壓裂是在煤層常規(guī)水力壓裂與脈動(dòng)注水基礎(chǔ)上提出的一項(xiàng)新技術(shù),但目前針對(duì)脈動(dòng)壓裂過(guò)程中地應(yīng)力擾動(dòng)特點(diǎn)的研究尚不充分。基于連續(xù)介質(zhì)力學(xué),采用交錯(cuò)網(wǎng)格有限差分,建立了脈動(dòng)載荷下地應(yīng)力響應(yīng)數(shù)值模型,研究了脈動(dòng)壓裂過(guò)程中地層擾動(dòng)應(yīng)力的分布、有效擾動(dòng)范圍及不同地層力學(xué)參數(shù)對(duì)應(yīng)力擾動(dòng)的影響,發(fā)現(xiàn)脈動(dòng)水力壓裂引起的應(yīng)力擾動(dòng)具有以下特征:波及范圍廣、區(qū)域性應(yīng)力集中,可產(chǎn)生會(huì)聚效應(yīng);可引起切應(yīng)力使煤層產(chǎn)生拉伸損傷,形成遠(yuǎn)大于準(zhǔn)靜態(tài)壓裂的有效應(yīng)力擾動(dòng)區(qū);可利用煤巖的強(qiáng)壓縮性產(chǎn)生更大范圍的應(yīng)力擾動(dòng)與損傷區(qū),提升壓裂效果。該成果可望為煤層脈動(dòng)水力壓裂增產(chǎn)機(jī)理研究提供參考和依據(jù)。
煤巖;脈動(dòng)水力壓裂;交錯(cuò)網(wǎng)格有限差分;應(yīng)力響應(yīng)模型;應(yīng)力擾動(dòng)特征
水力壓裂技術(shù)是中國(guó)煤層氣增產(chǎn)的主要手段,但受限于煤巖低楊氏模量、高泊松比的特點(diǎn),有效主裂縫長(zhǎng)度很難超過(guò)60 m[1],加之煤巖天然裂隙發(fā)育、非均質(zhì)性強(qiáng),易出現(xiàn)多裂縫或曲折裂縫,井筒影響范圍進(jìn)一步受限。因此,在傳統(tǒng)水力壓裂的基礎(chǔ)上,以動(dòng)態(tài)載荷破壞煤巖,在井筒周?chē)a(chǎn)生更多的微裂紋及高滲帶[2-4]成為一種可供選擇的、新的煤層壓裂技術(shù)思路。
目前,通過(guò)壓裂液對(duì)煤層動(dòng)態(tài)加載的方法主要有兩種:一種為液電脈沖壓裂法(Electrohydraulic discharge,PAED),即在目標(biāo)層位下入脈沖電極,通過(guò)電極釋放的電能激發(fā)沖擊波使煤巖產(chǎn)生密集微裂紋[5-6];一種為泵注式脈動(dòng)壓裂法(Pulsating Hydro-Fracturing,PHF),即在地面通過(guò)液壓泵將壓裂液以一定頻率的脈動(dòng)形式泵入煤層,使煤巖在交變載荷下不斷產(chǎn)生微裂縫并逐漸貫穿、溝通天然裂縫。本文以泵注式脈動(dòng)水力壓裂法作為研究對(duì)象。
林柏泉等[7-10]進(jìn)行了一系列室內(nèi)與現(xiàn)場(chǎng)試驗(yàn),證明脈動(dòng)壓裂引起的“壓縮-膨脹-壓縮”作用將誘使煤巖發(fā)生疲勞破裂,促進(jìn)煤巖內(nèi)部裂隙貫通,顯著提高煤巖滲透率,脈動(dòng)壓裂前后滲透率增加了245.5%。李賢忠等[11]通過(guò)理論分析認(rèn)為脈動(dòng)應(yīng)力波的反射、疊加與能量積聚是脈動(dòng)壓裂增透的關(guān)鍵,可以較小脈動(dòng)壓力產(chǎn)生比常規(guī)壓裂更好的壓裂效果;李全貴等[12-13]研究了不同頻率組合下裂隙發(fā)育特點(diǎn),認(rèn)為高頻使裂縫快速擴(kuò)展、低頻使微裂縫充分發(fā)育,在此基礎(chǔ)上,提出了“雙頻-雙壓”壓裂工藝。以上工作為脈動(dòng)水力壓裂技術(shù)的推廣與應(yīng)用奠定了堅(jiān)實(shí)的基礎(chǔ)。
但是,目前的研究集中于用實(shí)驗(yàn)方法探究脈動(dòng)壓裂工藝參數(shù)(振幅、頻率)對(duì)煤巖破壞的影響,針對(duì)脈動(dòng)壓裂過(guò)程中,煤層應(yīng)力擾動(dòng)特征的分析研究較少,而應(yīng)力擾動(dòng)對(duì)于煤巖裂縫的起裂與延伸均有重要影響,不能忽視。
因此,本文利用交錯(cuò)網(wǎng)格高階有限差分建立了含圍壓、無(wú)限大地層在脈動(dòng)載荷下的應(yīng)力響應(yīng)數(shù)值模型,研究了脈動(dòng)水力壓裂過(guò)程中地層擾動(dòng)應(yīng)力的分布、有效作用范圍以及不同地層力學(xué)參數(shù)對(duì)應(yīng)力擾動(dòng)的影響。
1.1 基本假設(shè)
數(shù)值模型基于以下基本假設(shè):
(1)煤巖視為各向同性介質(zhì),雖然煤巖中存在大量割理結(jié)構(gòu),但寬度遠(yuǎn)小于脈動(dòng)壓裂引起的應(yīng)力波長(zhǎng),應(yīng)力波傳至微裂縫時(shí)將發(fā)生衍射,整體應(yīng)力分布不會(huì)發(fā)生嚴(yán)重改變,因此可近似為各向同性介質(zhì)。
(2)煤巖視為彈性介質(zhì),本文所采用的脈動(dòng)壓裂頻率在0~50 Hz內(nèi),屬于低頻應(yīng)力波,其在地層中的能量損耗很小,可近似為彈性介質(zhì)。
(3)沿重力方向位移不隨方位改變而變化,即應(yīng)力為平面應(yīng)變狀態(tài)。
(4)線震源,煤層孔眼直徑及由射孔產(chǎn)生的預(yù)置裂縫相對(duì)于幾十至上百米的計(jì)算域尺寸很小,且沿程的應(yīng)力差異可忽略,因此可簡(jiǎn)化為相位相同的線震源。
1.2 數(shù)值實(shí)現(xiàn)方法
采用交錯(cuò)網(wǎng)格有限差分法[14-15]模擬脈動(dòng)壓裂過(guò)程中引起的應(yīng)力擾動(dòng)。此方法是將速度分量V和應(yīng)力分量σ分別定義于兩套時(shí)間相差Δt/2、空間相差Δl/2的交錯(cuò)網(wǎng)格系統(tǒng)上,而后依據(jù)速度和應(yīng)力的一階波動(dòng)方程組[16](見(jiàn)式1)計(jì)算出任意時(shí)刻的地層應(yīng)力分布。為了提高差分精度,減小網(wǎng)格彌散,本文采取空間4階、時(shí)間2階差分精度的離散格式(見(jiàn)附錄A)。
模型外邊界采用完全匹配層法(PML)[17-18]模擬無(wú)限大地層,同時(shí)采用準(zhǔn)靜態(tài)加載法模擬地層圍壓(由0 MPa逐漸加載至圍壓),再利用彈性力學(xué)疊加原理,將兩種外邊界條件下的地層應(yīng)力狀態(tài)疊加,即得到含圍壓無(wú)限大地層的應(yīng)力分布。模型內(nèi)邊界采用線震源函數(shù),取σ=σm+Δσsin(2πft),式中σm為平均應(yīng)力,Δσ為振幅,f為頻率,T為準(zhǔn)靜態(tài)加載時(shí)間,其具體波形如圖1。關(guān)于本模型的正確性驗(yàn)證見(jiàn)文獻(xiàn)[19]。
圖1 準(zhǔn)靜態(tài)與脈動(dòng)水力壓裂震源函數(shù)示意圖Fig.1 Schematic of the source functions of pulsating and quasi-static hydro-fracturing
1.3 模型參數(shù)設(shè)置
模型計(jì)算域尺寸為40 m×40 m,中心區(qū)域人造裂縫(震源)長(zhǎng)度4 m(單翼長(zhǎng)度2 m),其垂直于最小主應(yīng)力方向并沿最大主應(yīng)力方向展布,見(jiàn)圖2。煤層物性參數(shù)和地應(yīng)力取值主要參考中國(guó)地區(qū)煤巖力學(xué)參數(shù)和地應(yīng)力測(cè)試數(shù)據(jù)[20-22],具體取值見(jiàn)表1。
表1 數(shù)值模型力學(xué)參數(shù)Tab.1 Themechanics parameters of numericalmodel
圖2 數(shù)值模型示意圖Fig.2 The numericalmodel schematic
2.1 脈動(dòng)壓裂過(guò)程中的應(yīng)力分布特征
圖3對(duì)比了準(zhǔn)靜態(tài)壓裂與脈動(dòng)壓裂過(guò)程中的正應(yīng)力與切應(yīng)力分布。由圖3(a)~(c)可知,準(zhǔn)靜態(tài)壓裂(峰值壓力35 MPa)在人造裂縫端部產(chǎn)生了較高的應(yīng)力集中,但應(yīng)力擾動(dòng)范圍有限,遠(yuǎn)端應(yīng)力近似于原地應(yīng)力。這樣的應(yīng)力分布易使裂縫快速擴(kuò)展,而不易在煤層形成大范圍的卸壓、增透。由圖3(d)~(f)可知,脈動(dòng)壓裂(峰值壓力35 MPa、頻率40 Hz)雖在人造裂縫端部產(chǎn)生的應(yīng)力較小,但形成了大范圍的應(yīng)力擾動(dòng),在遠(yuǎn)端甚至形成了區(qū)域性的應(yīng)力集中現(xiàn)象。由圖3(g)~圖3(i)可知,當(dāng)脈動(dòng)壓裂頻率由40 Hz提升至50 Hz后,地層應(yīng)力呈現(xiàn)出區(qū)塊狀分布特征,應(yīng)力集中現(xiàn)象更明顯,應(yīng)力擾動(dòng)波及整個(gè)地層。
圖3 準(zhǔn)靜態(tài)壓裂與脈動(dòng)壓裂地層應(yīng)力分布對(duì)比圖Fig.3 Comparison of the stress distributions associated with quasi-static fracturingand PHF
以上現(xiàn)象可用應(yīng)力波的干涉效應(yīng)解釋。脈動(dòng)壓裂產(chǎn)生的應(yīng)力場(chǎng)可以看作是一系列點(diǎn)震源產(chǎn)生的波場(chǎng)的疊加,頻率相同的子波造成干涉作用,形成應(yīng)力集中現(xiàn)象。以正應(yīng)力為例,某點(diǎn)子波疊加后的應(yīng)力為:
式中,A0,Bm,f,c,ψ,x分別為半周期正弦波的振幅、平均壓力、頻率、介質(zhì)波速、初始相位和求解點(diǎn)距震源距離。
顯然,頻率越高,子波波長(zhǎng)越小,干涉效應(yīng)越明顯,應(yīng)力集中效應(yīng)越顯著。這種應(yīng)力集中現(xiàn)象還被稱(chēng)為會(huì)聚效應(yīng)[23-24],其將使煤巖在機(jī)械強(qiáng)度較低處形成微裂縫,而不破壞整個(gè)煤層的結(jié)構(gòu),李賢忠等[11]通過(guò)室內(nèi)實(shí)驗(yàn)也發(fā)現(xiàn)了由這種應(yīng)力集中引起的破壞現(xiàn)象:脈動(dòng)壓裂以較小的壓力形成了多條網(wǎng)狀裂縫。需要注意的是,實(shí)際煤層富含天然裂隙,壓力波在傳播過(guò)程中會(huì)產(chǎn)生次反射、疊加等多種現(xiàn)象,應(yīng)力會(huì)在大裂隙周?chē)匦路植迹w的應(yīng)力分布趨勢(shì)仍應(yīng)呈現(xiàn)出這種強(qiáng)弱分布、區(qū)域性應(yīng)力集中的現(xiàn)象。
2.2 脈動(dòng)壓裂過(guò)程中的有效應(yīng)力擾動(dòng)范圍
脈動(dòng)壓裂產(chǎn)生的應(yīng)力擾動(dòng)可以波及整個(gè)地層,但由應(yīng)力擾動(dòng)引起的煤巖損傷區(qū)有限。鑒于煤巖抗拉強(qiáng)度(0.25~5 MPa)遠(yuǎn)小于抗壓強(qiáng)度(5~50 MPa),采用最大拉應(yīng)力強(qiáng)度準(zhǔn)則,認(rèn)為當(dāng)煤巖所受主拉應(yīng)力超過(guò)煤巖抗拉強(qiáng)度時(shí)(本文假設(shè)2 MPa,見(jiàn)式(3),將產(chǎn)生強(qiáng)應(yīng)力擾動(dòng)區(qū)。此區(qū)域內(nèi)會(huì)形成密集的微裂紋和較高的滲透率,定義其為“有效應(yīng)力擾動(dòng)范圍”。鑒于有限差分法以節(jié)點(diǎn)為計(jì)算單元的特點(diǎn),進(jìn)一步以應(yīng)力超過(guò)抗拉強(qiáng)度的節(jié)點(diǎn)數(shù)占總節(jié)點(diǎn)數(shù)的比例-“有效應(yīng)力擾動(dòng)節(jié)點(diǎn)比”表征“有效應(yīng)力擾動(dòng)范圍”,本文采用其區(qū)域大小作為衡量脈動(dòng)壓裂效果的判別標(biāo)準(zhǔn)。
圖4對(duì)比了準(zhǔn)靜態(tài)壓裂與脈動(dòng)壓裂的有效應(yīng)力擾動(dòng)范圍。由圖可知,準(zhǔn)靜態(tài)壓裂的有效應(yīng)力擾動(dòng)范圍較?。?.35%),且集中于裂縫兩端;脈動(dòng)壓裂的有效應(yīng)力擾動(dòng)范圍較大(40 Hz:1.15%,50 Hz:1.32%),且從縫端開(kāi)始有向裂縫中部擴(kuò)展的趨勢(shì)。數(shù)值模擬結(jié)果表明脈動(dòng)壓裂產(chǎn)生了遠(yuǎn)大于準(zhǔn)靜態(tài)壓裂的有效應(yīng)力擾動(dòng)、卸壓范圍,李波等[9]通過(guò)現(xiàn)場(chǎng)試驗(yàn)也證明了這一現(xiàn)象。
圖4 準(zhǔn)靜態(tài)壓裂與脈動(dòng)壓裂有效應(yīng)力擾動(dòng)范圍對(duì)比圖Fig.4 Comparison of the effective stress disturbance zones associated with quasi-static fracturingand PHF
2.3 不同彈性參數(shù)下脈動(dòng)壓裂應(yīng)力擾動(dòng)特征
煤巖彈性參數(shù)直接反映了煤層的彈性力學(xué)性質(zhì)及應(yīng)力波速度,對(duì)脈動(dòng)壓裂過(guò)程中應(yīng)力的傳播、擾動(dòng)都有重要影響。本節(jié)以楊氏模量E與泊松比v為參變量,研究有效應(yīng)力擾動(dòng)范圍(有效應(yīng)力擾動(dòng)節(jié)點(diǎn)比)在不同楊氏模量與泊松比條件下的變化規(guī)律。
圖5反映了典型脈動(dòng)壓裂模式下,有效應(yīng)力擾動(dòng)范圍隨不同楊氏模量的變化規(guī)律,曲線呈現(xiàn)了明顯的負(fù)相關(guān)性,即楊氏模量越低,有效應(yīng)力擾動(dòng)范圍越大。造成這種現(xiàn)象的原因在于:楊氏模量決定了煤巖在單位應(yīng)力作用下抵抗變形的能力,模量越小,煤巖變形程度越大、越易壓縮。因此,在內(nèi)邊界(人造裂縫)輸出相同的壓力條件下,楊氏模量較低的煤巖易產(chǎn)生較大的應(yīng)變變化和質(zhì)點(diǎn)錯(cuò)動(dòng),從而產(chǎn)生更大的剪切應(yīng)力,如圖7(a),則越容易形成有效應(yīng)力擾動(dòng)區(qū)。
圖5 有效擾動(dòng)范圍隨楊氏模量變化曲線Fig.5 Variation in the percentage of the effective stress disturbance zone as a function of Youngmodulus
圖6反映了典型脈動(dòng)壓裂模式下,有效應(yīng)力擾動(dòng)范圍隨不同泊松比的變化規(guī)律,曲線呈現(xiàn)了明顯的正相關(guān)性,即泊松比越大,有效應(yīng)力擾動(dòng)范圍越大。造成這種現(xiàn)象的原因在于:泊松比v越高,相同縱向應(yīng)變條件下,質(zhì)點(diǎn)的橫向應(yīng)變?cè)酱?,更易產(chǎn)生較大的切向應(yīng)變和切應(yīng)力,如圖7(b)。
事實(shí)上,低楊氏模量與高泊松比表明煤巖具有較強(qiáng)的可壓縮性,由此可知,脈動(dòng)壓裂在強(qiáng)壓縮性的煤層產(chǎn)生了更大范圍的有效應(yīng)力擾動(dòng)區(qū),達(dá)到了更好的體積壓裂效果。
圖6 有效擾動(dòng)區(qū)隨泊松比變化曲線Fig.6 Variation in the percentage of the effective stress disturbance zone as a function of Poisson ratio
圖7 彈性參量對(duì)剪切應(yīng)力影響機(jī)理示意圖Fig.7 The schematic of impactmechanics of Elastic modulus on magnitude of shear stress
采用交錯(cuò)網(wǎng)格數(shù)高階有限差分值法,結(jié)合完全匹配層和準(zhǔn)靜態(tài)圍壓加載兩種邊界條件,建立了地層在脈動(dòng)載荷下的動(dòng)靜態(tài)力學(xué)響應(yīng)數(shù)值模型,并利用該模型研究了脈動(dòng)水力壓裂過(guò)程中煤層的應(yīng)力擾動(dòng)行為,發(fā)現(xiàn)其具有以下特征:
(1)脈動(dòng)水力壓裂引起的應(yīng)力擾動(dòng)具有波及范圍廣、區(qū)域性應(yīng)力集中的特點(diǎn),由此產(chǎn)生的會(huì)聚效應(yīng)可在煤層遠(yuǎn)端機(jī)械強(qiáng)度較低處形成微裂縫。
(2)脈動(dòng)水力壓裂引起的切應(yīng)力可使煤層產(chǎn)生拉伸損傷,從而形成以縫端為起點(diǎn)、遠(yuǎn)大于準(zhǔn)靜態(tài)壓裂的應(yīng)力擾動(dòng)區(qū)。
(3)脈動(dòng)水力壓裂引起的有效應(yīng)力擾動(dòng)區(qū)范圍與楊氏模量成負(fù)相關(guān),與泊松比成正相關(guān),由此可利用煤巖的強(qiáng)壓縮性(低楊氏模量與高泊松比),克服準(zhǔn)靜態(tài)壓裂影響范圍小的局限,產(chǎn)生大范圍的應(yīng)力擾動(dòng)與損傷,提升壓裂效果。
本文基于連續(xù)介質(zhì)彈性理論,并未考慮巖石承受交變應(yīng)力引起的強(qiáng)度降低以及實(shí)際地層可能出現(xiàn)的黏彈性特征,這些因素都將影響應(yīng)力波的傳播與分布。因此,在本文數(shù)值模型的基礎(chǔ)上,還需要引入更復(fù)雜的地質(zhì)、巖石特性并開(kāi)展實(shí)驗(yàn)研究,進(jìn)一步分析脈動(dòng)壓裂的應(yīng)力擾動(dòng)特征。
[1]Olsen T N,Brenize G,F(xiàn)renzel T.Improvement processes for coalbed natural gas completion and stimulation[C]//SPE 84122,2003.
[2]Cao J,Chung D D L.Defect dynamics and damage of concrete under repeated compression,studied by electrical resistancemeasurement[J].Cement and Concrete Research,2001,31:1639-1642.
[3]Cao J,Chung D D L.Minor damage of cementmortar during cyclic compression,monitored by electrical resistivity measurement[J].Cement and Concrete Research,2001,32:1656-1662.
[4]Denoual C,Hild F.Dynamic fragmentation of brittle solids:a mult-scale model[J].European Journal of Mechanics-A/Solids,2002,21:105-120.
[5]Maurel O,Reess T,Matallash M,et al.Electrohydraulic shock wave generatio as a means to increase intrinsic permeability ofmortar[J].Cement and Concrete Research,2010,40:1631-1638.
[6]Wen C,Maurel O,Reess T,et al.Experimental study on an alternative oil stimulation technique for tight gas reservoirs based on dynamic shock waves generated by Pulsed Arc Electrohydraulic Discharges[J].Journal of Petroleum Science and Engineering,2012,88/89:67-74.
[7]林柏泉,李子成,翟成,等.高壓脈動(dòng)水力壓裂卸壓增透技術(shù)及應(yīng)用[J].采礦與安全學(xué)報(bào),2011,28(3):452-455.
LIN Bai-quan,LI Zi-cheng,ZHAI Cheng,et al.Pressure relief and permeability-increasing technology based on high pressure pulsating hydraulic fracturing and its application [J].Journal of Mining&Safety Engineering,2011,28(3):452-455.
[8]翟成,李賢忠,李全貴.煤層脈動(dòng)水力壓裂卸壓增透技術(shù)研究與應(yīng)用[J].煤炭學(xué)報(bào),2011,36(12):1996-2001.
ZHAICheng,LI Zhong-xian,LI Quan-gui.Research and application of coal seam pulse hydraulic fracturing technology [J].Journal of China Coal Society,2011,36(12):1996 -2001.
[9]李波,張景松,姚宏章,等.高壓脈動(dòng)水力錘擊煤層注水技術(shù)研究[J].礦業(yè)安全與環(huán)保,2011,38(2):14-16.
LIBo,ZHANG Jing-song,YAO Hong-zhang,et al.Study of high pressure pulsation hydraulic hammer on coal seam affusion[J].Mining Safety&Environmental Protection,2011,38(2):14-16.
[10]趙振保.變頻脈沖式煤層注水技術(shù)研究[J].采礦與安全學(xué)報(bào),2008,25(4):486-489.
ZHAO Zhen-bao.Study of technology of variable-frequency pulse water[J].Journal of Mining&Safety Engineering,2008,25(4):486-489.
[11]李賢忠,林伯泉,翟成,等.單一低透煤層脈動(dòng)水力壓裂脈動(dòng)波破巖機(jī)理[J].煤炭學(xué)報(bào),2013,38(6):918-923.
LI Xian-zhong,LIN Bo-quan,ZHAI Cheng,et al.2013.The mechanism of breaking coal and rock by pulsating pressure wave in single low permeability seam[J].Journal of China Coal Society,2013,38(6):918-923.
[12]李全貴,林伯泉,翟成,等.煤層脈動(dòng)水力壓裂脈動(dòng)參量作用特性的實(shí)驗(yàn)研究[J].煤炭學(xué)報(bào),2013,38(7):1185-1190.
LI Quan-gui,LIN Bo-quan,ZHAI Cheng,et al.Experimental study on action characteristic of pulsating parameters in coal seam pulse hydraulic fracturing[J].Journal of China Coal Society,2013,38(7):1185-1190.
[13]LiQ G,Lin BQ,Zhai C,etal.Variable frequency of pulse hydraulic fracturing for improving permeability in coal seam [J].International Journal of Mining Science and Technology,2013,23:847-853.
[14]Graves R W.Simulating seismic wave propagation in 3d elastic media using staggered-grid finite difference[J].Bulletin of the Seismological Society of America,1996,86:1091-1106.
[15]Levander A R.Fourth-order finite-difference P-SV seismograms[J].Geophysics.,1998,52(11):1425-1436.
[16]Virieux.P-SV wave propagation in heterogeneous media.Velocity-stress finite-difference method[J].Geophysics,1986,51:889-901.
[17]Peng C,Toksoz M N.Optimal absorbing boundary conditions for finite-difference modeling of acoustic and elastic wave propagation[J].The Journal of the Acoustical Society of America,1994,95(114):733-745.
[18]Collino F,Tsohka C.Application of the perfectly matched layermodel to the linear elastodynamic problem in anisotropic heterogeneousmedia[J].Geophysics,2001,66:294-307.
[19]陸沛青,李根生,黃中偉,等.煤層脈動(dòng)水力壓裂動(dòng)靜態(tài)響應(yīng)數(shù)值模型及求解[J].巖土力學(xué),2015,36(5):1471-1480.
LU Pei-qing,LI Gen-sheng,HUANG Zhong-wei,et al.Establishment and solution of dynamic and static response numerical model of pulsating hydro-fracturing in coal-rock [J].Rock and Soil Mechanics,forthcoming,2015,36(5):1471-1480.
[20]葉建平,史保生,張春才.中國(guó)煤儲(chǔ)層滲透性及其主要影響因素[J].煤炭學(xué)報(bào),1999,24(2):118-122.
YE Jian-ping,SHI Bao-sheng,ZHANG Chun-cai.Coal reservoir permeability and its controlled factors in China[J].Journal of China Coal Society,1999,24(2):118-122.
[21]申衛(wèi)兵,張保平.不同煤階煤巖力學(xué)參數(shù)測(cè)試[J].巖石力學(xué)與工程學(xué)報(bào),2000,19(增刊):860-862.SHEN Wei-bing,ZHANG Bao-ping.Testing study on mechanical parameters of coal[J].Chinese Journal of Rock Mechanics and Engineering,2000,19(Sup):860-862.
[22]韓軍,張宏偉,宋衛(wèi)華,等.煤與瓦斯突出礦區(qū)地應(yīng)力場(chǎng)研究[J].巖石力學(xué)與工程學(xué)報(bào),2008,27(增刊2):3852-3859.
HAN Jun,ZHANG Hong-wei,SONGWei-hua,etal.In-situ stress field of coal and gas outburstmining area[J].Chinese Journal of Rock Mechanics and Engineering,2008,27 (Sup2):3852-3859.
[23]聶百勝,何學(xué)秋,王恩元.功率聲波影響煤層甲烷儲(chǔ)運(yùn)的初步探討[J].煤田地質(zhì)勘探,2004,32(6):23-26.
NIE Bai-sheng,HE Xue-qiu,WANG En-yuan.The effect of power sound wave on storage and motion of coalbed methane [J].Coal Geology&Exploration,2004,32(6):23-26.
[24]寧靖,寧書(shū)年,石雅镠,等.利用雙波干涉法對(duì)油井遠(yuǎn)井地帶造縫及增滲的研究[J].石油學(xué)報(bào),2004,25(3):79-83.
NING Jing,NING Shu-nian,SHI Ya-liu,et al.Some methods for making fractures and increasing permeability of porous media by means of two shockwave interference technique[J].Acta Per Rolei Sinica,2004,25(3):79 -83.
[25]董良國(guó),馬在田,曹景忠,等.一階彈性波方程交錯(cuò)網(wǎng)格高階差分解法[J].地球物理學(xué)報(bào),2000,43(3):411-419.
DONG Liang-guo,MA Zai-tian,CAO Jing-zhong,et al.A staggered-grid high-orderd difference method of one-order elastic wave equation[J].Chinese Journal of Geophysics,2000,43(3):411-419.
附錄A
交錯(cuò)網(wǎng)格高階差分方程
為了提高差分精度,減小網(wǎng)格彌散,本文將采取空間4階,時(shí)間2階差分精度的離散格式進(jìn)行計(jì)算,其差分權(quán)系數(shù)的選擇詳見(jiàn)文獻(xiàn)[25],具體差分格式如下:
式中,t表示時(shí)間離散的網(wǎng)格指標(biāo)、Δt表示時(shí)間步長(zhǎng),i,j表示空間離散的網(wǎng)格指標(biāo),Δx、Δy表示空間步長(zhǎng),P表示σxx,Q表示σyy,S表示τxy,U表示vx,V表示vy,λ和μ為拉梅常數(shù)。
Numerical simulation for stress disturbance features of coal beds during pulsating hydro-fracturing
LU Pei-qing,LIGen-sheng,HUANG Zhong-wei,TIAN Shou-ceng,SHEN Zhong-hou,LIXiao-jiang
(State Key Laboratory of Petroleum Resources and Prospecting,China Petroleum University(Beijing),Beijing 102249,China)
The pulsating hydro-fracturing(PHF)of coal beds is a new technology based on the conventional hydraulic fracturing and pulsatingwater injection.Currently,the study on stress disturbance features caused by PHF is not sufficient.Based on the continuum mechanics,a stress-response numerical model was presented here to simulate the formation of disturbance stress during PHF by applying the schemes of staggered-grid finite difference.The disturbance stress distribution,the effective stress disturbance area,and the influences of different formationmechanical parameters on stress distribution during PHF were investigated.The results showed that the stress disturbance caused by PHF has an extensively affecting area and a regional stress concentration,they generate the focusing effect;the shear stress generated causes a tensile damage of coal rock during PHF to form amuch larger effective stress disturbance zone than that for the quasi-static fracturing;the strong compressibility of coal beds can be used to cause amuch bigger stress disturbance and damage zone,which will improve the PHF effect.The results provided a guidance for studying the stimulationmechanism of PHF in coal beds.
coal beds;pulsating hydro-fracturing(PHF);staggered-grid finite difference;stress-response numericalmodel;stress disturbance features
TE357.11
A
10.13465/j.cnki.jvs.2015.21.037
國(guó)家自然科學(xué)基金創(chuàng)新研究群體科學(xué)基金(51221003);國(guó)家科技重大專(zhuān)項(xiàng)基金資助項(xiàng)目(2011ZX05037001)
2014-07-14 修改稿收到日期:2014-10-17
陸沛青男,博士,1988年生
李根生男,教授,博士生導(dǎo)師,1961年生