国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

垂直流人工濕地凈化處理水產(chǎn)養(yǎng)殖廢水

2015-05-26 06:33紀(jì)榮平
關(guān)鍵詞:硝化水力氨氮

趙 思,江 云,紀(jì)榮平

(揚(yáng)州大學(xué)環(huán)境科學(xué)與工程學(xué)院,江蘇 揚(yáng)州 225127)

垂直流人工濕地凈化處理水產(chǎn)養(yǎng)殖廢水

趙 思,江 云,紀(jì)榮平*

(揚(yáng)州大學(xué)環(huán)境科學(xué)與工程學(xué)院,江蘇 揚(yáng)州 225127)

采用垂直流人工濕地工藝對(duì)模擬的水產(chǎn)養(yǎng)殖廢水進(jìn)行脫氮除磷等處理,并分析探討該工藝的除污效率.結(jié)果表明:當(dāng)預(yù)先在進(jìn)水箱中進(jìn)行曝氣且氣水體積比為1∶1、水力負(fù)荷為0.15 m3·(m2·d)-1、進(jìn)水溫度為10~20℃時(shí),垂直流人工濕地對(duì)化學(xué)需氧量(chemical oxygen demand,COD)、氨氮、總氮和總磷的去除效果較好,去除率分別達(dá)到82.75%,83.68%,88.85%,84.72%,能夠有效地處理水產(chǎn)養(yǎng)殖廢水.

垂直流人工濕地;水產(chǎn)養(yǎng)殖;廢水處理

近年來(lái),我國(guó)水產(chǎn)養(yǎng)殖的規(guī)模不斷擴(kuò)大,養(yǎng)殖過(guò)程中投加的飼料、化學(xué)殘留物以及水產(chǎn)品的排泄物長(zhǎng)期積聚在水體和底泥中,不利于養(yǎng)殖對(duì)象的健康生長(zhǎng)[1].廢水若不經(jīng)處理直接排放至河流或湖泊,易導(dǎo)致水體富營(yíng)養(yǎng)化而影響周邊的生態(tài)環(huán)境,故水產(chǎn)養(yǎng)殖廢水的凈化處理備受關(guān)注[2-3].傳統(tǒng)的水產(chǎn)養(yǎng)殖廢水處理技術(shù)主要有過(guò)濾[4]、吸附[5]和絮凝沉降[6]等,但這些方法只能去除水體中的懸浮固體,而對(duì)溶解的有機(jī)物、氮、磷的降解效果較差,且易形成二次污染.目前,生物膜法[7]、微生物固定技術(shù)[8]和人工濕地[9-10]等生物技術(shù)已逐步被應(yīng)用于水產(chǎn)養(yǎng)殖廢水的處理,且均取得較理想的除污效果.其中,人工濕地技術(shù)[11-12]不僅具有良好的脫氮除磷能力,而且能夠根據(jù)周圍地形因地制宜,運(yùn)行方便,適宜在養(yǎng)殖區(qū)域附近搭建.然而,現(xiàn)有的關(guān)于垂直流人工濕地法處理水產(chǎn)養(yǎng)殖廢水中運(yùn)行參數(shù)的研究甚少,因此本文選擇垂直流人工濕地廢水處理工藝,研究水產(chǎn)養(yǎng)殖廢水中有機(jī)物、氨氮、總氮和總磷的去除效率,并確定最佳運(yùn)行參數(shù),以期為該工藝在工程中的實(shí)際應(yīng)用提供參考.

1 試驗(yàn)材料與裝置

1.1 試驗(yàn)裝置

采用如圖1所示的裝置處理水產(chǎn)養(yǎng)殖廢水.廢水由提升泵進(jìn)入人工濕地表層,自上而下經(jīng)各層處理后從濕地底部流出.人工濕地的長(zhǎng)度和寬度均為0.6 m,高度為1 m,自下而上分別為礫石層(高20 cm,粒徑為10~30 mm)、沙礫層(高30 cm,粒徑約為2 mm)、粗沙層(高20 cm,粒徑約為0.5 mm)和土壤層(高20 cm),曝氣頭布設(shè)于距濕地底部50 cm處.濕地植物為美人蕉,密植栽培.

1.2 試驗(yàn)水質(zhì)

向100 L自來(lái)水中投加0.73 g氯化銨和19.6 g某魚飼料,配制試驗(yàn)用水.進(jìn)水的高錳酸鹽指數(shù)為10 mg·L-1,氨氮質(zhì)量濃度為2.4 mg·L-1,總氮質(zhì)量濃度為6.2 mg·L-1,總磷質(zhì)量濃度為1.7 mg·L-1.

1.3 試驗(yàn)方法

設(shè)定試驗(yàn)氣溫為7~36℃,進(jìn)水溫度為10~25℃,首先選擇未曝氣方式,分別調(diào)節(jié)水力負(fù)荷為0.15,0.31,0.35 m3·(m2·d)-1,在各水力負(fù)荷下運(yùn)行10 d,測(cè)定COD(高錳酸鉀法)、氨氮、總氮和總磷的去除效果;然后改變曝氣方式,分別選擇在裝置內(nèi)部曝氣和在進(jìn)水箱中預(yù)曝氣的方式下各運(yùn)行10 d,其中曝氣時(shí)的氣水體積比均為1∶1.

2 結(jié)果與討論

2.1 水力負(fù)荷對(duì)污染物去除率的影響

設(shè)定試驗(yàn)環(huán)境溫度為15~30℃,進(jìn)水溫度為10~20℃,體系未曝氣,在水力負(fù)荷分別為0.15,0.31,0.35 m3·(m2·d)-1下穩(wěn)定運(yùn)行10 d,各污染物的去除率如圖2所示.

圖1 人工溫地結(jié)構(gòu)示意圖Fig.1 Schematic diagram of constructed wetland

圖2 水力負(fù)荷對(duì)污染物去除率的影響Fig.2 Impact on pollutant removal efficiency of hydraulic loading

由圖2可知:1)隨著水力負(fù)荷的增加,人工濕地法對(duì)各污染物的去除率整體呈現(xiàn)下降趨勢(shì).其原因是:① 當(dāng)增加水力負(fù)荷時(shí),由于裝置的體積不變,廢水在體系內(nèi)的停留時(shí)間減少,與濕地內(nèi)生物膜接觸時(shí)間縮短,不利于污染物的去除;② 水力負(fù)荷的增加使得水流剪切力增大,原本附著在填料和植物根部的生物膜被沖刷脫落,生物量減少,導(dǎo)致污染物的去除率下降.

2)當(dāng)增大水力負(fù)荷時(shí),氨氮和總氮去除率的下降趨勢(shì)較相似且下降幅度較大.這是由于氨氮和總氮的去除主要受硝化菌和反硝化菌的作用,增加水力負(fù)荷會(huì)使得硝化菌和反硝化菌的數(shù)量驟減,從而顯著影響氨氮和總氮的去除率.

3)隨著水力負(fù)荷的提高,COD去除率的下降趨勢(shì)稍緩.這是因?yàn)橛袡C(jī)物的去除主要通過(guò)厭氧反硝化區(qū)反硝化菌的作用以及生物吸附2種途徑實(shí)現(xiàn),雖然提高水力負(fù)荷會(huì)使反硝化區(qū)生物量減少,但是仍有部分生物吸附作用發(fā)生,減緩了去除率的下降.

4)總磷的去除率隨著水力負(fù)荷的提高而略有下降.這是因?yàn)榱姿猁}的去除是因微生物代謝和基質(zhì)顆粒對(duì)磷的吸收所致,且以基質(zhì)吸收作用為主,雖然水力負(fù)荷的增加會(huì)使微生物的新陳代謝減弱,但因微生物自身新陳代謝消耗的磷較少,故對(duì)磷的去除效果影響甚微.

2.2 曝氣方式對(duì)污染物去除率的影響

設(shè)定試驗(yàn)環(huán)境溫度為7~25℃,進(jìn)水溫度為10~20℃,水力負(fù)荷為0.15 m3·(m2·d)-1,體系分別在未曝氣、裝置內(nèi)部曝氣和進(jìn)水箱中預(yù)曝氣等3種曝氣方式下穩(wěn)定運(yùn)行10 d,各污染物的去除率如圖3所示.

圖3 曝氣方式對(duì)污染物去除率的影響Fig.3 Impact on pollutant removal efficiency of aeration

由圖3可知:1)改變曝氣方式對(duì)體系除污效果的影響較大,這是因?yàn)楦淖兤貧夥绞綍?huì)使裝置中溶解氧的質(zhì)量濃度發(fā)生變化,從而影響污染物的去除率.

2)COD、氨氮、總氮的去除率在預(yù)曝氣方式下最高,內(nèi)部曝氣時(shí)次之,未曝氣時(shí)最低.這是因?yàn)槲雌貧鈺r(shí)裝置內(nèi)溶解氧的質(zhì)量濃度最低,不利于微生物生長(zhǎng),所以污染物的去除率下降.雖然裝置內(nèi)部曝氣時(shí)的溶解氧質(zhì)量濃度比預(yù)曝氣時(shí)高,但是預(yù)曝氣下進(jìn)水中的溶解氧質(zhì)量濃度原本較高,且從濕地表層即可開始有效降解污染物,而內(nèi)部曝氣需要在廢水流入裝置內(nèi)部時(shí)才能與上升的氣泡接觸后經(jīng)傳質(zhì)作用而進(jìn)行降解,故預(yù)曝氣方式對(duì)氧的利用率比較高,從而去除率最好.

3 結(jié)論

本文采用垂直流人工濕地工藝在預(yù)曝氣(氣水體積比為1∶1)、水力負(fù)荷為0.15 m3·(m2·d)-1的條件下處理模擬的水產(chǎn)養(yǎng)殖廢水,COD、氨氮、總氮和總磷的平均去除率分別為82.75%,83.68%,88.85%,84.72%,出水水質(zhì)可達(dá)GB3838—2002《地表水環(huán)境質(zhì)量標(biāo)準(zhǔn)》中Ⅲ類標(biāo)準(zhǔn).

[1]FRANCES J,NOWAK B F,ALLAN G L.Effects of ammonia on silver perch[J].Aquaculture,2000,183:95-103.

[2]KONNERUP D,TRANG N T D,BRIX H.Treatment of fishpond water by recirculating horizontal and vertical flow constructed wetlands in the tropics[J].Aquaculture,2011,313(1/4):57-64.

[3]VYMAZAL J.The use of hybrid constructed wetlands for wastewater treatment with special attention to nitrogen removal:a review of a recent development[J].Water Res,2013,47:4795-4811.

[4]TURCIOS A E,PAPENBROCK J.Sustainable treatment of aquaculture effluents:what can we learn from the past for the future[J].Sustainability,2014,6(2):836-856.

[5]CASTINE S A,MCKINNON A D,PAUL N A,et al.Wastewater treatment for land-based aquaculture:improvements and value-adding alternatives in model systems from Austrilia[J].Aquacult Environ Interact,2013,4(3):285-300.

[6]GUERDAT T C,LOSORDO T M,DELONG D P.An evaluation of solid waste capture from recirculating aquaculture systems using a geotextile bag system with a flocculant-aid[J].Aquacult Eng,2013,54:1-8.

[7]ADRADOS B,SANCHEZ O,ARIAS C A,et al.Microbial communities from different types of natural wastewater treatment systems:vertical and horizontal flow constructed wetlands and biofilters[J].Water Res,2014,55:304-312.

[8]TURKER O C,VYMAZAL J,TURE C.Constructed wetlands for boron removal:a review [J].Ecol Eng,2014,64:350-359.

[9]AVILA C,MATAMOROS V,REYES-CONTRERAS C,et al.Attenuation of emerging organic contaminants in a hybrid constructed wetland system under different hydraulic loading rates and their associated toxicological effects in wastewater[J].Sci Total Environ,2014,470/471:1272-1280.

[10]VERLICCHI P,ZAMBELLO E.How efficient are constructed wetlands in removing pharmaceuticals from untreated and treated urban wastewaters?A review[J].Sci Total Environ,2014,470/471:1281-1306.

[11]MOLLE P.French vertical flow constructed wetlands:a need of a better understanding of the role of the deposit layer[J].Water Sci Technol,2014,69(1):106-112.

[12]MARTIN M,GARGALLO S,HERMANDEZ-CRESPO C,et al.Phosphorus and nitrogen removal from tertiary treated urban wastewaters by a vertical flow constructed wetland[J].Ecol Eng,2013,61:34-42.

The effect of purifying aquaculture wastewater by vertical flow constructed wetland

ZHAO Si,JIANG Yun,JI Rongping*

(Sch of Envir Sci &Engin,Yangzhou Univ,Yangzhou 225127,China)

In order to achieve better nitrogen and phosphorus removal,vertical flow constructed wetland is used to treat aquaculture wastewater,and the decontamination efficiency is investi gated.Under the operating conditions(pre aeration(the ratio of air to water is 1∶1),hydraulic load is 0.15 m3·(m2·d)-1,water temperature is 15℃),the removal efficiencies of COD,NH4+-N,TN and TP are 82.75%,83.68%,88.85%and 84.72%respectively.This indicates that vertical flow constructed wetland can be applicable for the treatment of aquaculture.

vertical flow constructed wetland;aquaculture wastewater;removal performance

X 703

A

1007-824X(2015)04-0079-04

2014-05-02.* 聯(lián)系人,E-mail:rpji@yzu.edu.cn.

“十二五”國(guó)家科技支撐計(jì)劃項(xiàng)目(2012BAJ24B06-02).

趙思,江云,紀(jì)榮平.垂直流人工濕地凈化處理水產(chǎn)養(yǎng)殖廢水 [J].揚(yáng)州大學(xué)學(xué)報(bào)(自然科學(xué)版),2015,18(4):79-82.

(責(zé)任編輯 林 子)

猜你喜歡
硝化水力氨氮
氨氮降解菌株的篩選及降解性能研究
蒲石河抽水蓄能電站1號(hào)機(jī)轉(zhuǎn)輪改造水力穩(wěn)定性研究與實(shí)踐
弗羅里硅土處理低質(zhì)量濃度氨氮廢水研究
污水處理廠反硝化深床濾池工藝應(yīng)用分析
供熱一級(jí)管網(wǎng)水力計(jì)算及分析
高差影響下的城鎮(zhèn)燃?xì)夤艿浪τ?jì)算簡(jiǎn)化公式
氨氮對(duì)魚類的毒性效應(yīng)研究進(jìn)展
水產(chǎn)養(yǎng)殖中氨氮處理方法
提高同時(shí)硝化反硝化曝氣生物濾池(NDN)硝化及單級(jí)生物脫氮效率的研究
淺談污水中脫氮的途徑
宁远县| 丹棱县| 双牌县| 平果县| 巩义市| 朝阳县| 康保县| 定结县| 鹰潭市| 新沂市| 衡阳县| 衡水市| 陈巴尔虎旗| 石渠县| 鸡泽县| 建昌县| 前郭尔| 惠东县| 九龙县| 长沙市| 巫溪县| 南召县| 万荣县| 楚雄市| 平顶山市| 宜阳县| 瓦房店市| 灵台县| 抚远县| 乌苏市| 舒城县| 新兴县| 台南县| 河津市| 舞阳县| 元谋县| 阿克| 英超| 大厂| 乡城县| 仙居县|