国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

水稻最佳作物管理技術(shù)的增產(chǎn)增效作用

2015-06-12 12:37范明生張福鎖
關(guān)鍵詞:氮肥作物物質(zhì)

安 寧, 范明生, 張福鎖

(中國農(nóng)業(yè)大學(xué)資源與環(huán)境學(xué)院,北京 100193)

水稻最佳作物管理技術(shù)的增產(chǎn)增效作用

安 寧, 范明生*, 張福鎖

(中國農(nóng)業(yè)大學(xué)資源與環(huán)境學(xué)院,北京 100193)

最佳作物管理技術(shù); 產(chǎn)量; 氮肥利用率; 干物質(zhì)積累; 產(chǎn)量構(gòu)成

隨著我國人口的不斷增長,對稻谷的需求也日益增加。按照目前我國稻米的年消費量預(yù)測, 到2030年我國的水稻需求量需增加30%以上[16]。為了滿足未來水稻生產(chǎn)需求,必須通過在現(xiàn)有甚至減少的種植面積的條件下大幅度提高單產(chǎn),同時應(yīng)提高養(yǎng)分資源,尤其是氮肥的利用效率,從而減少對環(huán)境的影響[3]。目前我國水稻產(chǎn)量徘徊不前的主要原因可能是: 1)農(nóng)民傳統(tǒng)生產(chǎn)方式下的水稻平均產(chǎn)量已經(jīng)達(dá)到可實現(xiàn)產(chǎn)量的70%以上[17],進(jìn)一步提高產(chǎn)量需要更加精細(xì)的管理技術(shù),但這往往在經(jīng)濟(jì)和實踐中的可行性低; 2)目前農(nóng)戶不合理的管理措施仍然是增產(chǎn)和增效的限制因子,如水稻栽插密度低、 水分管理不合理 (大多數(shù)農(nóng)民采用淹水—中期烤田—淹水的灌溉方式)、 養(yǎng)分管理不合理等,如氮肥投入量過大,農(nóng)民一般分兩次施用(基肥和蘗肥)且基肥施用多,這樣會造成更大的氮的損失,同時不能滿足高產(chǎn)水稻的需求。而最近的研究表明,水稻的吸氮高峰期出現(xiàn)在幼穗分化期,而在水稻生長后期光照更加充足的年份,增加粒肥能促進(jìn)籽粒灌漿和增產(chǎn),因此,增加中后期的施用比例(穗肥和粒肥)是水稻高產(chǎn)和氮肥高效利用的基礎(chǔ)[18-20]。

本研究在我國水稻主產(chǎn)區(qū)403個農(nóng)民田塊的試驗示范基礎(chǔ)上,利用試驗示范數(shù)據(jù),比較了最佳作物管理技術(shù)和農(nóng)民傳統(tǒng)方式兩種管理模式下的水稻產(chǎn)量、施氮量、氮肥利用率以及生長動態(tài) (作物吸氮量和干物質(zhì)積累) 的差異,在現(xiàn)有品種條件下,針對水稻生產(chǎn)的主要限制因子,通過管理技術(shù)的優(yōu)化,明確增產(chǎn)與增效的實現(xiàn)程度,旨在為我國水稻生產(chǎn)實踐提供理論與技術(shù)支撐。

1 材料與方法

1.1 試驗設(shè)計

表1 田間試驗中農(nóng)民傳統(tǒng)處理和最佳作物管理技術(shù)處理的管理信息Table 1 Detailed information in management for farmer’s practices and best crop management practices in 403 on-farm trials

1.2 測定項目與方法

1.2.2 水稻吸氮量和干物質(zhì)積累量 在12個試驗點(其中包括南方雙季早稻、雙季晚稻和單季稻),分別于分蘗期、穗分化期、抽穗期和成熟期取植株樣品。每個點在各地塊取 0.5 m2的植株樣,于105℃烘箱殺青30 min,80℃烘72 h后稱重,并折算成每公頃干重。樣品經(jīng)粉碎過篩,采用H2S04-H202消化,以半微量凱氏定氮法測定植株氮含量。

1.3 計算方法和數(shù)據(jù)處理

氮肥利用率的計算公式為[23]:

氮肥偏生產(chǎn)力 (PFP,kg/kg) =施氮小區(qū)水稻籽粒產(chǎn)量(kg/hm2)/施氮量(N kg/hm2)

氮肥農(nóng)學(xué)利用率 (AE,kg/kg) =[施氮小區(qū)水稻籽粒產(chǎn)量(kg/hm2)-空白小區(qū)水稻籽粒產(chǎn)量(kg/hm2)]/施氮量(N kg/hm2)

氮肥回收利用率 (RE,%)=[施氮小區(qū)水稻吸氮量(N kg/hm2)-空白小區(qū)水稻吸氮量(N kg/hm2)]/施氮量(N kg/hm2) ×100

試驗數(shù)據(jù)采用EXCEL、SPSS軟件進(jìn)行處理與分析。

2 結(jié)果與分析

2.1 施氮量、產(chǎn)量和氮肥利用率

表2顯示,最佳作物管理技術(shù)表現(xiàn)出良好的減氮、增產(chǎn)和增效潛力。農(nóng)民傳統(tǒng)處理的平均施氮量為204.1 kg/hm2,最佳作物管理技術(shù)處理氮肥用量減少了20.3%;氮肥的減少并沒有使水稻的產(chǎn)量下降,反而表現(xiàn)出較大的增產(chǎn)效應(yīng)。農(nóng)民傳統(tǒng)處理的平均產(chǎn)量為7226.4 kg/hm2,最佳作物管理技術(shù)處理的平均產(chǎn)量為7917.0 kg/hm2,增長率為9.6%;由于氮肥施用量的減少和產(chǎn)量的增加,最佳作物管理技術(shù)處理的氮肥利用率大幅度增加,顯著高于農(nóng)民傳統(tǒng)處理,農(nóng)民傳統(tǒng)處理和最佳作物管理技術(shù)處理的氮肥偏生產(chǎn)力(PFP)、農(nóng)學(xué)利用率(AE)和氮肥回收率(RE)分別為37.3 kg/kg和50.8 kg/kg,8.5 kg/kg和14.9 kg/kg,28.7%和42.3%,增長率分別為36.2%、75.3%和13.6個百分點,AE的增長幅度最大,其次為PFP和RE。

表2 農(nóng)民傳統(tǒng)處理和最佳作物管理技術(shù)處理的施氮量、產(chǎn)量、氮肥效率和減氮、增產(chǎn)、增效的百分比Table 2 N rate, yield, nitrogen use efficiency under farmer’s practices(FPs) and best crop management practices(BCMPs)

注(Note): FPs—Farmer’s practices; BCMPs—Best crop management practices; PFP—Partial factor productivity; AE—Agronomic efficiency; RE—Recovery efficiency. 同列數(shù)據(jù)后不同字母表示處理間差異達(dá)5%顯著水平 Values followed by different letters in a column are significantly different among treatments at the 5% level.

2.2 水稻的氮素吸收動態(tài)

農(nóng)民傳統(tǒng)和最佳作物管理技術(shù)處理的氮素吸收在水稻整個生長期表現(xiàn)出相似的規(guī)律,齊穗期之前氮素迅速累積,到齊穗期之后氮素的吸收速率下降,但具體在各個時期的累積吸氮量和階段吸氮量不同,從圖1可以看出,農(nóng)民傳統(tǒng)和最佳作物管理技術(shù)處理的累積吸氮量,在分蘗期分別為39.8 kg/hm2和40.2 kg/hm2,占作物收獲期吸氮量的26.2%和24.2%;在穗分化期分別為88.2 kg/hm2和81.6 kg/hm2,占作物收獲期吸氮量的58.1%和49.2%;在齊穗期分別為134.9 kg/hm2和147.7 kg/hm2,占作物收獲期吸氮量的88.9%和89.0%;在成熟期分別為151.7 kg/hm2和165.9 kg/hm2。兩種管理措施下,水稻的階段氮素吸收量也存在差異:從分蘗期到穗分化期,農(nóng)民傳統(tǒng)和最佳作物管理技術(shù)處理的階段吸氮量分別為48.4 kg/hm2和41.4 kg/hm2,占作物收獲期吸氮量的31.9%和24.9%;穗分化期到齊穗期,階段吸氮量分別為46.7 kg/hm2和66.1 kg/hm2,占作物收獲期吸氮量的30.8%和39.8%;齊穗期到成熟期,階段吸氮量分別為16.8 kg/hm2和18.2 kg/hm2,占作物收獲期吸氮量的11.1%和11.0%。農(nóng)民傳統(tǒng)處理在生育前期表現(xiàn)出較大的氮吸收能力,但從齊穗期開始,最佳作物管理技術(shù)處理的氮吸收能力要大于農(nóng)民傳統(tǒng)處理。由于試驗點分布在不同的水稻種植地區(qū),土壤供氮能力不同,不同地區(qū)的水稻累積吸氮量和階段吸氮量也有一定差異,雖然沒有達(dá)到差異顯著水平,但總體趨勢明顯。

圖1 農(nóng)民傳統(tǒng)處理(FPs)和最佳作物管理技術(shù) 處理(BCMPs)水稻不同生育期的吸氮量Fig.1 Nitrogen uptake of farmer’s practices (FPs) and best crop management practices (BCMPs) at different rice growth stages

2.3 水稻的干物質(zhì)累積動態(tài)

農(nóng)民傳統(tǒng)和最佳作物管理技術(shù)處理水稻的干物質(zhì)累積與氮素吸收的趨勢類似。穗分化期之前干物質(zhì)累積相對緩慢,到穗分化期之后干物質(zhì)的積累開始迅速上升,但在各個時期的干物質(zhì)積累的絕對值不同。圖2顯示,農(nóng)民傳統(tǒng)和最佳作物管理技術(shù)處理的干物質(zhì)累積量,在分蘗期分別為1399.9 kg/hm2和1524.0 kg/hm2,占作物收獲期干物質(zhì)累積量的10.8%和11.0%;在穗分化期分別為3875.0 kg/hm2和3856.4 kg/hm2,占作物收獲期干物質(zhì)累積量的30.0%和28.0%;在齊穗期分別為8869.0 kg/hm2和9141.6 kg/hm2,占作物收獲期干物質(zhì)累積量的68.7%和66.3%;成熟期時別為12914.2 kg/hm2和13796.1 kg/hm2,在收獲期,干物質(zhì)的累積量表現(xiàn)出顯著差異 (P<0.05)。同時,農(nóng)民傳統(tǒng)和最佳作物管理技術(shù)處理的花后干物質(zhì)積累量分別為4045.2 kg/hm2和4654.5 kg/hm2,二者差異顯著(P<0.05)。

圖2 農(nóng)民傳統(tǒng)處理(FPs)和最佳作物管理技術(shù)處理 (BCMPs) 水稻不同生育期干物質(zhì)累積量Fig.2 Dry matter accumulation of farmer’s practices (FPs) and best crop management practices (BCMPs) at different rice growth stages

2.4 產(chǎn)量構(gòu)成

不同管理措施對水稻的產(chǎn)量構(gòu)成因素有明顯影響,從表3可以看出,最佳作物管理技術(shù)處理的每平方米平均穗數(shù)為243.2,顯著大于農(nóng)民傳統(tǒng)處理的231.7 (P<0.05);最佳作物管理技術(shù)處理的平均穗粒數(shù)為154.2,顯著大于農(nóng)民傳統(tǒng)處理的150.0 (P<0.05);同時,最佳作物管理技術(shù)處理的平均千粒重為26.9 g,顯著大于農(nóng)民傳統(tǒng)處理的26.6 g (P<0.05)。

表3 農(nóng)民傳統(tǒng)處理和最佳作物管理技術(shù)處理的產(chǎn)量構(gòu)成Table 3 Yield components of farmer’s practices (FPs) and best crop management practices (BCMPs)

注(Note): 同列數(shù)據(jù)后不同字母表示處理間差異達(dá)5%顯著水平 Values followed by different letters in a column are significantly different among treatments at the 5% level.

3 討論與結(jié)論

盡管我國水稻種植歷史悠久,種植技術(shù)相對成熟,農(nóng)民的水稻平均產(chǎn)量達(dá)到可實現(xiàn)產(chǎn)量的70%以上[17],但是,不合理的水肥以及作物管理仍然是水稻高產(chǎn)高效的限制因子。目前的研究表明,我國的水稻仍然能夠通過優(yōu)化水肥以及作物管理技術(shù)實現(xiàn)增產(chǎn)10%,增產(chǎn)的原因可能是:1)氮肥施用量和時期匹配高產(chǎn)水稻的生理需求,減少早衰,促進(jìn)干物質(zhì)累積,尤其是后期干物質(zhì)的累積,促進(jìn)了氮素吸收和千粒重的增加[18, 24-25]。增加生物產(chǎn)量是獲得高產(chǎn)的物質(zhì)基礎(chǔ),且經(jīng)濟(jì)產(chǎn)量主要決定于齊穗后群體的光合生產(chǎn)量,即花后期的干物質(zhì)積累量[26-27]。在本研究條件下,最佳作物管理技術(shù)的水稻花后干物質(zhì)積累量為4655 kg/hm2,占總干物質(zhì)積累的34%; 2)增加鉀肥的施用,尤其是增加抽穗期鉀肥的施用,這可能增加水稻根系的活力,促進(jìn)對養(yǎng)分的吸收,有利于形成高產(chǎn)群體[28-29]; 3)個別點(n=43)施用硅肥或微量元素,可能也有一定的增產(chǎn)效果;4)增加栽插密度,保障了合理的群體數(shù)量和穗數(shù);5)后期的干濕交替灌溉,促進(jìn)了弱勢粒灌漿,增加每穗粒數(shù)[30]。同時,本研究也表明,最佳作物管理技術(shù)可以實現(xiàn)在增產(chǎn)的基礎(chǔ)上同時減少氮肥施用量,即與農(nóng)民傳統(tǒng)的管理方式相比,氮肥用量節(jié)省20%,氮肥偏生產(chǎn)力、農(nóng)學(xué)利用率和氮肥回收利用率分別增加36.2%、75%和13.6個百分點。由此可見,我國的水稻生產(chǎn)系統(tǒng)有更大的節(jié)氮和增效的潛力。

[1] Frolking S, Qiu J J, Boles Setal. Combining remote sensing and ground census data to develop new maps of the distribution of rice agriculture in China[J]. Global Biogeochemical Cycles, 2002, 16: 1091-1101.

[2] FAO. http://faostat.fao.org. 2010.

[3] Fan M S, Shen J B, Yuan L Xetal. Improving crop productivity and resource use efficiency to ensure food security and environmental quality in China[J]. Journal of Experimental Botany, 2012, 63(1): 13-24.

[4] Heffer P. Assessment of fertilizer use by crop at the global level: 2006/07-2007/08[R]. Pairs, France: International Fertilizer Industry Association, 2009.

[5] Roelcke M, Han Y, Schleef K Hetal. Recent trends and recommendations for nitrogen fertilization in intensive agriculture in eastern China[J]. Pedosphere, 2004, 14: 449-460.

[6] Peng S B, Buresh R J, Huang J Letal. Improving nitrogen fertilization in rice by site-specific N management. A review[J]. Agronomy for Sustainable Development, 2010, 30: 649-656.

[7] 彭少兵, 黃見良, 鐘旭華, 等. 提高中國稻田氮肥利用率的研究策略[J]. 中國農(nóng)業(yè)科學(xué), 2002, 35(9): 1095-1103. Peng S B, Huang J L, Zhong X Hetal. Research strategy in improving fertilizer nitrogen use efficiency of irrigated rice in China[J]. Scientia Agricultura Sinica, 2002, 35(9): 1095-1103.

[8] 林葆. 提高作物產(chǎn)量, 增加施肥效應(yīng)[A]. 中國土壤學(xué)會. 中國土壤科學(xué)的現(xiàn)狀與前景[M]. 江蘇: 江蘇科學(xué)技術(shù)出版社,1991. 29-36. Lin B. Make the most efficient use of fertilizers in increasing crop production [A]. Soil science society of China. Soil Science in China. Present and future[M]. Jiangsu: Jiangsu Science and Technology Press, 1991. 29-36.

[9] 李慶逵. 中國農(nóng)業(yè)持續(xù)發(fā)展中的肥料問題[M]. 南昌: 江西科學(xué)技術(shù)出版社, 1997. Li Q K. Fertilizer issues in the sustainable development of China agriculture[M]. Nanchang: Jiangxi Science and Technology Press, 1997.

[10] Cassman K G, Gines H C, Dizon M Aetal. Nitrogen-use efficiency in tropical lowland rice systems: contributions from indigenous and applied nitrogen[J]. Field Crops Research, 1996, 47: 1-12.

[11] Cassman K G, Dobermann A R, Walters D T. Agroecosystems, nitrogen-use efficiency, and nitrogen management[J]. AMBIO: A Journal of the Human Environment, 2002, 3(2): 132-140.

[12] Vitousek P M, Aber J D, Howarth R Wetal. Human alteration of the global nitrogen cycle: sources and consequences[J]. Ecological Application, 1997, 7: 737-750.

[13] Zhu Z L, Xiong Z Q, Xing G X. Impacts of population growth and economic development on the nitrogen cycle in Asia[J]. Science in China (Series C: Life Science), 2005, 48: 729-737.

[14] Guo J H, Liu X J, Zhang Yetal. Significant acidification in major Chinese croplands[J]. Science, 2010, 327: 1008-1010.

[15] Zheng X H, Han S H, Huang Yetal. Re-quantifying the emission factors based on field measurements and estimating the direct N2O emission from Chinese croplands[J]. Global Biogeochemical Cycles, 2004, 18: GB2018, doi: 10.1029/2003GB002167.

[16] Shen J B, Cui Z L, Miao Y Xetal. Transforming agriculture in China: From solely high yield to both high yield and high resource use efficiency[J]. Global Food Security, 2013, 2(1): 1-8.

[17] Wart J V, Christian Kersebaum K, Peng S Betal. Estimating crop yield potential at regional to national scales[J]. Field Crops Research, 2013, 143: 34-43.

[18] Fan M S, Lü S H, Jiang R Fetal. Triangular transplanting pattern and split nitrogen fertilizer application increase rice yield and nitrogen fertilizer recovery[J]. Agronomy Journal, 2009, 101(6): 1421-1425.

[19] 張福鎖, 范明生. 主要糧食作物高產(chǎn)栽培與資源高效利用的基礎(chǔ)研究[M]. 北京: 中國農(nóng)業(yè)出版社, 2013. 199-204. Zhang F S, Fan M S. The basic research of high yield and high resources use efficiency of the main food crops[M]. Beijing: China Agriculture Press, 2013. 199-204.

[20] 申建波, 張福鎖. 水稻養(yǎng)分資源綜合管理理論與實踐[M]. 北京: 中國農(nóng)業(yè)出版社, 2006. 37-43. Shen J B, Zhang F S. Theory and practice of rice nutrient integrated management[M]. Beijing: China Agriculture Press, 2006. 37-43.

[21] Zhang H, Chen T T, Wang Z Qetal. Involvement of cytokinins in the grain filling of rice under alternate wetting and drying irrigation[J]. Journal of Experimental Botany, 2010, 61: 3719-3733.

[22] Doberman A, Fairhurst T H. Rice: Nutrient disorders and nutrient management[M]. Singapore: Potash and Phosphate Institute, and Manila, IRRI, 2000.

[23] Cassman K G, Peng S B, Olk D Cetal. Opportunities for increased nitrogen-use efficiency from improved resource management in irrigated rice systems[J]. Field Crops Research, 1998, 56: 7-39.

[24] 肖恕賢, 覃步生, 陳盛球. 等. 雜交早稻需肥特性和施肥技術(shù)研究[J]. 作物學(xué)報, 1982, 8(1): 23-32. Xiao S X, Qin B S, Chen S Qetal. Studies on the characteristics of fertilizer requirement of hybrid rice and the application technique[J]. Acta Agronomica Sinica, 1982, 8(1): 23-32.

[25] 石慶華, 潘曉華, 鐘旭華. 等. 雜交早稻的吸氮特性與產(chǎn)量形成的初步研究[J]. 江西農(nóng)業(yè)大學(xué)學(xué)報, 1989, 11(l): 18-24. Shi Q H, Pan X H, Zhong X Hetal. Studies on the characteristics of nitrogen absorption and the yield formation in early hybrid rice[J]. Acta Agriculturae Universitatis Jiangxiensis, 1989, 11(l): 18-24.

[26] 陳溫福, 徐正進(jìn), 張文忠, 等. 水稻新株型創(chuàng)造與超高產(chǎn)育種[J]. 作物學(xué)報, 2001, 27(5): 665-672. Chen W F, Xu Z J, Zhang W Zetal. Creation of new plant type and breeding rice for super high yield[J]. Acta Agronomica Sinica, 2001, 27(5): 665-672.

[27] 凌啟鴻. 作物群體質(zhì)量[M]. 上海: 上??茖W(xué)技術(shù)出版社, 2001. 16-42. Lin Q H. Crop population quality[M]. Shanghai: Shanghai Scientific and Technical Publishers, 2001. 16-42.

[28] 何電源, 呂龍石, 李桂花, 等. 中國南方土壤肥力與栽培植物施肥[M]. 北京: 科學(xué)出版社, 1994. He D Y, Lü L S, Li G Hetal. Soil fertility and fertilization of cultivated plant in South China[M]. Beijing: Science Press, 1994.

[29] 胡泓, 王光火. 鉀肥對雜交水稻養(yǎng)分積累以及生理效率的影響[J]. 植物營養(yǎng)與肥料學(xué)報, 2003, 9(2): 184-189. Hu H, Wang G H. Influence of potassium fertilizer on nutrient accumulation and physiological efficiency of hybrid rice[J]. Plant Nutrition and Fertilizer Science, 2003, 9(2): 184-189.

[30] 楊建昌.水稻弱勢粒灌漿機(jī)理與調(diào)控途徑[J]. 作物學(xué)報, 2010, 36(12): 2011-2019. Yang J C. Mechanism and regulation in the filling of inferior spikelets of rice[J]. Acta Agronomica Sinica, 2010, 36(12): 2011-2019.

[31] 吳良泉, 蔡國學(xué), 石孝均, 等. 水稻配方肥與機(jī)插秧集成技術(shù)應(yīng)用效果研究[J]. 中國農(nóng)技推廣, 2013, 29 (1): 35-36. Wu L Q, Cai G X, Shi X Jetal. The agronomical effects of formulated fertilizer and mechanical transplanting of rice[J]. China Agricultural Technology Extension, 2013, 29 (1): 35-36.

[32] Zhang F S, Fan M S, Zhao B Qetal. Fertilizer use, soil fertility and integrated nutrient management in China [A]. Zhang F S, Fan M S. Improving plant nutrient management for better farmer livelihoods[C]. Beijing: Food Security and Environmental Sustainability Proceeding of a Regional Workshop, 2005.

[33] 許迪, 康紹忠. 現(xiàn)代節(jié)水農(nóng)業(yè)技術(shù)研究進(jìn)展與發(fā)展趨勢[J]. 高技術(shù)通訊, 2002, 12: 103-108. Xu D, Kang S Z. Research progress and development trend on modernized agriculture water-saving technology[J]. High Technology Letters, 2002, 12: 103-108.

[34] Zou J W, Huang Y, Qin Y Metal. Changes in fertilizer-induced direct N2O emissions from paddy fields during rice-growing season in China between 1950s and 1990s[J]. Global Change Biology, 2009, 15: 229-242.

[35] 石生偉, 李玉娥, 劉運通, 等. 中國稻田CH4和N2O排放及減排整合分析[J]. 中國農(nóng)業(yè)科學(xué), 2010, 43(14): 2923-2936. Shi S W, Li Y E, Liu Y Tetal. CH4and N2O emission from rice field and mitigation options based on field measurements in China: An integration analysis[J]. Scientia Agricultura Sinica, 2010, 43(14): 2923-2936.

[36] Fan M S, Lal R, Cao Jetal. Plant-based assessment of soil productivity and contributions to China’s cereal crop yield increase since 1980[J]. Plos One, 2013, 8 (9): e74617. doi: 10.1371/journal.pone.0074617.

Best crop management practices increase rice yield and nitrogen use efficiency

AN Ning, FAN Ming-sheng*, ZHANG Fu-suo

(CollegeofResourcesandEnvironmentalScience,ChinaAgriculturalUniversity,Beijing100193,China)

【Objectives】Rice is one of the main staple crops in China. In order to meet the increasing demand of rice production for growing population with even reduced rice cultivation area, rice farming systems must be managed to achieve the goal of high rice productivity and primary resources (e.g. nitrogen and water) use efficiency while without further degradating environmental integrity. 【Methods】 Based on 403 on-farm trails conducted in China’s major rice producing provinces (Including Hunan, Hubei, Guangdong, Anhui, Jiangsu and the Great Chongqing Area) from 2008 to 2011, nitrogen application rate, rice yield, nitrogen use efficiency (partial factor productivity, agronomic efficiency and recovery efficiency), nitrogen uptake and dry matter accumulation dynamics of rice plant during the main period of rice growth (tillering stage, panicle initiation stage, full heading stage and mature stage) were compared between treatments of conventional farmers’ practices (FPs) and the best crop management practices (BCMPs). The main technology of best crop management practices was optimum nitrogen management with side dressing while control the total amount of application, customized application rate of phosphorus and potassium by monitoring available phosphorus and potassium in the soil, increased transplanting density and optimized water management through controled dry and irrigation cycles after midseason drainage. 【Results】 Compared with FPs, the yield of BCMPs was 7917.0 kg/hm2and increased significantly by 690.6 kg/hm2(9.6%) (P<0.05) while nitrogen fertilizer application was significantly reduced by N 41.4 kg/hm2(20.3%) (P<0.05). The nitrogen partial factor productivity, agronomic efficiency and recovery efficiency of BCMPs were significantly higher than those of FPs by 36.2%, 75.3% and 13.6 percentage points,respectively (P<0.05). Nitrogen uptake and dry matter accumulation of rice plant under FPs were greater than those of BCMPs during earlier stage. After full heading stage, nitrogen uptake and dry matter accumulation of rice plant under treatment of BCMPs were greater than those of FPs. During mature stage, the nitrogen uptake of rice plant under treatment of FPs and BCMPs were 151.7 kg/hm2and 165.9 kg/hm2, and dry matter accumulation were 12914.2 kg/hm2and 13796.1 kg/hm2, respectively (P<0.05). The dry matter accumulation after flowering was significantly different between FPs and BCMPs, which was 4045.2 kg/hm2and 4654.5 kg/hm2, respectively (P<0.05). Panicles number per square meter, spikelet number per panicle and 1000-grain weight of BCMPs were 243.2, 154.2 and 26.9 g respectively, which were significantly greater than those of FPs (P<0.05). 【Conclusions】 Improved crop management practices as BCMPs could increase yield by 9.6% while reduce nitrogen and water use. These best crop management techniques are convenient and easily adopted practices that may be applied widely in rice cropping systems. This study provides the guide for sustainable rice-based cropping systems.

best crop management practices;yield;nitrogen use efficiency;dry matter accumulation;yield components

2014-04-13 接受日期: 2014-06-04 網(wǎng)絡(luò)出版日期: 2015-05-06

農(nóng)業(yè)部公益型行業(yè)專項 “最佳養(yǎng)分管理技術(shù)”項目(201103003)資助。

安寧(1985—),女,內(nèi)蒙古巴彥淖爾市人,博士研究生,主要從事養(yǎng)分資源管理方面的研究工作。E-mail: anning1011@163.com * 通信作者 Tel: 010-62731661, E-mail: fanms@cau.edu.cn

S511.06

A

1008-505X(2015)04-0846-07

猜你喜歡
氮肥作物物質(zhì)
喝茶養(yǎng)生這些物質(zhì)在起作用
中國化肥信息(2022年9期)2022-11-23
喝茶養(yǎng)生這些物質(zhì)在起作用
第3講 物質(zhì)的化學(xué)變化
第3講 物質(zhì)的化學(xué)變化
作物遭受霜凍該如何補(bǔ)救
四種作物 北方種植有前景
內(nèi)生微生物和其在作物管理中的潛在應(yīng)用
江淮小氮肥 耕耘六十年——紀(jì)念安徽小氮肥誕生六十周年
抓住機(jī)遇 主動作為 努力推進(jìn)我國氮肥市場穩(wěn)步前行
米泉市| 资阳市| 江安县| 揭东县| 高阳县| 华容县| 新乐市| 洪泽县| 理塘县| 称多县| 襄汾县| 巴彦淖尔市| 九龙城区| 盖州市| 乌兰察布市| 张家港市| 古田县| 陵川县| 高雄县| 麦盖提县| 大竹县| 即墨市| 芮城县| 荥经县| 广昌县| 比如县| 福州市| 永德县| 南皮县| 广饶县| 堆龙德庆县| 武冈市| 赞皇县| 新沂市| 监利县| 平乐县| 丘北县| 台中县| 拉萨市| 冕宁县| 平舆县|