陳曦,朱蓉,趙逵
(遵義醫(yī)學(xué)院附屬醫(yī)院,貴州遵義563099)
·綜述·
Ascl2與結(jié)腸癌發(fā)生發(fā)展的關(guān)系研究進(jìn)展
陳曦,朱蓉,趙逵
(遵義醫(yī)學(xué)院附屬醫(yī)院,貴州遵義563099)
Ascl2是一個(gè)堿性/螺旋—環(huán)—螺旋轉(zhuǎn)錄因子,是Wnt信號(hào)通路的靶分子,僅表達(dá)于胎盤(pán)及小腸、大腸隱窩基底的Lgr5陽(yáng)性的腸隱窩基底柱細(xì)胞(CBC細(xì)胞)。近來(lái)研究證實(shí)Ascl2是CBC成體腸干細(xì)胞的一個(gè)重要標(biāo)記物,在維持結(jié)腸癌干/前體細(xì)胞的干細(xì)胞性方面發(fā)揮重要作用。本文對(duì)Ascl2與結(jié)腸癌的關(guān)系進(jìn)行了綜述。
干性標(biāo)志物;Ascl2;Wnt信號(hào)通路;結(jié)腸癌
據(jù)統(tǒng)計(jì),結(jié)腸癌居全球腫瘤發(fā)病率的第3位[1]。近年來(lái)隨著生活水平的提高和飲食習(xí)慣的改變,結(jié)腸癌發(fā)病率逐年升高,且趨于年輕化[2,3]。腫瘤干細(xì)胞理論的提出為治療結(jié)腸癌帶來(lái)了新希望,尋找理想的結(jié)腸癌干細(xì)胞特異性表面分子標(biāo)志物是該領(lǐng)域目前最重要的研究方向之一。新近研究發(fā)現(xiàn),Ascl2是腸隱窩基底柱細(xì)胞(CBC細(xì)胞)作為成體腸干細(xì)胞的一個(gè)重要標(biāo)記物[4],是Wnt通路的直接靶基因[5];在結(jié)腸癌發(fā)生發(fā)展的各個(gè)時(shí)期,結(jié)腸癌組織中Ascl2均表達(dá)上調(diào)[6,7]。近年來(lái)有關(guān)Ascl2與結(jié)腸癌發(fā)生發(fā)展關(guān)系的研究有較大進(jìn)展,現(xiàn)綜述如下。
Dontu等[8]首次證實(shí)腫瘤干細(xì)胞存在于乳腺癌等實(shí)體瘤中,隨后在腦腫瘤[9]、前列腺癌[10]、乳腺癌[11]、胰腺癌[12]、黑素瘤[13]及肺癌中也得到證實(shí)[14],近年來(lái)O′Brien等[15]和Ricci-Vitiani等[16]陸續(xù)發(fā)現(xiàn)結(jié)直腸癌中腫瘤干細(xì)胞的存在。腫瘤干細(xì)胞理論認(rèn)為腫瘤發(fā)生的根源是腫瘤干細(xì)胞,腫瘤干細(xì)胞是根治腫瘤的靶點(diǎn)[17]。腫瘤干細(xì)胞具有自我更新和分化為祖細(xì)胞的能力,在所有腫瘤細(xì)胞中僅占極少數(shù),其具有的不對(duì)稱(chēng)分裂和無(wú)限增殖能力導(dǎo)致惡性腫瘤難治療、易轉(zhuǎn)移和易復(fù)發(fā)[18]。Tang等[19]認(rèn)為正常干細(xì)胞和腫瘤干細(xì)胞在維持組織穩(wěn)態(tài)方面存在共性。Todaro等[20]認(rèn)為正常干細(xì)胞通過(guò)不對(duì)稱(chēng)分裂成一個(gè)新細(xì)胞,而腫瘤干細(xì)胞對(duì)稱(chēng)分裂成兩個(gè)細(xì)胞,并且只有一小部分細(xì)胞分化。除腫瘤干細(xì)胞以外,其余大部分腫瘤細(xì)胞不具有無(wú)限增殖能力,短暫的生存后即開(kāi)始凋亡,放化療時(shí)即可被殺死。傳統(tǒng)的腫瘤“隨機(jī)模型”認(rèn)為所有腫瘤細(xì)胞均具有同等增殖、轉(zhuǎn)移能力。腫瘤干細(xì)胞理論的提出顛覆了這一傳統(tǒng)認(rèn)識(shí)。腫瘤干細(xì)胞在整個(gè)腫瘤過(guò)程中起著至關(guān)重要的作用,是腫瘤發(fā)生、發(fā)展過(guò)程的起始細(xì)胞。從腫瘤干細(xì)胞角度分析結(jié)腸癌的生物學(xué)特性,可能為結(jié)腸癌提供新的治療思路[21]。
腸黏膜上皮是人體組織中更新速度最快的,正常情況下每4~5 d更新一次,不斷補(bǔ)充衰老脫落的上皮細(xì)胞,其細(xì)胞學(xué)基礎(chǔ)是黏膜干細(xì)胞的自我更新和定向分化[17]。腸隱窩干細(xì)胞是位于腸隱窩基底部的成體干細(xì)胞,一部分沿“隱窩—絨毛軸”方向分化為四種類(lèi)型細(xì)胞—杯狀細(xì)胞、潘氏細(xì)胞、腸吸收細(xì)胞、腸內(nèi)分泌細(xì)胞;另一部分細(xì)胞則向隱窩基底遷移分化為潘氏細(xì)胞,并在CBC細(xì)胞周?chē)纬蒀BC細(xì)胞的干細(xì)胞壁龕[27,28],“干細(xì)胞壁龕”通過(guò)一系列信號(hào)通路(Notch、Wnt、BMP、Hedgehog和JAK/STAT等)調(diào)控腸干細(xì)胞的命運(yùn),并提供干細(xì)胞增殖與分化必要的物質(zhì)基礎(chǔ),對(duì)細(xì)胞的增殖、分化起決定性的作用[29~32]。Zhang等[17]采用熒光標(biāo)記發(fā)現(xiàn),位于基底部腸隱窩的是活躍的腸干細(xì)胞,在+4位置的腸干細(xì)胞并不活躍。有學(xué)者通過(guò)研究小鼠的基因過(guò)表達(dá)和基因敲除模型發(fā)現(xiàn),Ascl2是控制CBC成體腸干細(xì)胞命運(yùn)非常重要的轉(zhuǎn)錄因子,是CBC成體腸干細(xì)胞的重要標(biāo)記物,小鼠腸上皮中Ascl2轉(zhuǎn)基因過(guò)表達(dá)可導(dǎo)致腸隱窩的過(guò)度增生以及腸絨毛上的異位隱窩出現(xiàn),而Ascl2基因表達(dá)缺失可導(dǎo)致Lgr5陽(yáng)性的CBC細(xì)胞消失。上述均表明Ascl2在干細(xì)胞維持中具有重要作用。
Ascl基因?qū)儆谝粋€(gè)保守的轉(zhuǎn)錄因子家族,被定義為基本的螺旋—環(huán)—螺旋結(jié)構(gòu)域[22]。Ascl2基因定位于染色體11p15.5,是一個(gè)堿性/螺旋—環(huán)—螺旋轉(zhuǎn)錄因子,負(fù)責(zé)人類(lèi)正常胎盤(pán)的滋養(yǎng)層細(xì)胞譜系的分化,其表達(dá)僅限于胎盤(pán)以及小腸、大腸隱窩基底的Lgr5陽(yáng)性CBC細(xì)胞[4]。Ascl2(Mash2/HASH2)基因與果蠅的Achaete-scute復(fù)合體基因同源[23],編碼一個(gè)堿性/螺旋—環(huán)—螺旋轉(zhuǎn)錄因子,主要表達(dá)于胚外組織,具有部位特異性[24]。Jubb等[22]通過(guò)原位雜交實(shí)驗(yàn)證實(shí)其在正常組織中僅表達(dá)于胎盤(pán)及小腸、大腸的隱窩基底部,在其他正常組織中幾乎不表達(dá)。
目前鑒別和分離出的結(jié)腸癌干/前體細(xì)胞表面標(biāo)志物有許多,例如CD133[15,16]、CD44[33]、CD24[34]、和Lgr5[35]等,但尚無(wú)公認(rèn)的非常特異的表面標(biāo)志物,Ziskin[5]等研究認(rèn)為Ascl2和Lgr5在結(jié)腸癌中的表達(dá)分別為85%和74%,二者表達(dá)呈正相關(guān);且大部分腺癌來(lái)源于Lgr5+/ Ascl2+隱窩干細(xì)胞,依賴(lài)于Wnt/β-catenin信號(hào)通路[36]。隱窩干細(xì)胞與大腸癌的形成密切相關(guān),對(duì)隱窩干細(xì)胞的生物學(xué)研究有助于深入了解大腸癌的生物學(xué)特性。因此,腸隱窩干細(xì)胞的準(zhǔn)確識(shí)別很重要[37]。Neal等[38]認(rèn)為每個(gè)隱窩通常含有約6個(gè)獨(dú)立的干細(xì)胞和活躍的腸干細(xì)胞(a-iscs)、沉默的腸干細(xì)胞(q-iscs)兩大派系,腸隱窩干細(xì)胞與損傷后的再生密切相關(guān),參與結(jié)腸癌的發(fā)生。Papailiou等[39]也認(rèn)為結(jié)腸癌干細(xì)胞可能起源于正常成體腸隱窩干細(xì)胞。結(jié)腸癌的發(fā)生、發(fā)展是一個(gè)漸進(jìn)的過(guò)程,常因數(shù)年累積的突變導(dǎo)致,正常結(jié)腸隱窩干細(xì)胞突變可導(dǎo)致腸上皮組織結(jié)構(gòu)和功能異常,造成內(nèi)環(huán)境的穩(wěn)定失調(diào),促使結(jié)腸癌發(fā)生[40]。有學(xué)者通過(guò)基因芯片篩選發(fā)現(xiàn)Ascl2可以調(diào)控Lgr5、Olfm4、Sox9、EphB3等腸干細(xì)胞相關(guān)的分子。并且,Ascl2在腸道隱窩基底僅表達(dá)在Lgr5+的CBC細(xì)胞,而Lgr5是目前被公眾認(rèn)可度較高的正常成體腸干細(xì)胞標(biāo)志物之一,因此認(rèn)為Ascl2也應(yīng)是腸隱窩干細(xì)胞標(biāo)志物[4]。Barker等[41]對(duì)小鼠小腸隱窩基底部的干細(xì)胞標(biāo)記Lgr5,證實(shí)Lgr5標(biāo)記的細(xì)胞能夠分化為上皮細(xì)胞譜系;且ascl2表達(dá)與Lgr5同步化,這提示Lgr5與Ascl2可能是腸道干細(xì)胞的標(biāo)記物。我們前期研究亦證實(shí)Ascl2與結(jié)腸癌干細(xì)胞相關(guān)[28]。
2.2 Ascl2與Wnt信號(hào)通路 目前已知的結(jié)腸癌干細(xì)胞相關(guān)信號(hào)調(diào)節(jié)通路有Wnt、Notch、BMP通路等[42]。Wnt是一個(gè)富含半胱氨酸的分泌型配體家族。Wnt信號(hào)通路對(duì)于正常腸隱窩結(jié)構(gòu)和穩(wěn)態(tài)的維持非常重要,整個(gè)腸黏膜隱窩—絨毛結(jié)構(gòu)都受到Wnt信號(hào)通路的調(diào)控;Wnt信號(hào)通路在正常細(xì)胞增殖以及干細(xì)胞的維持方面也發(fā)揮了重要作用[17]。其機(jī)制是胞質(zhì)內(nèi)游離的β-catenin積累,進(jìn)入核內(nèi)與TCF-4結(jié)合形成復(fù)合物,激活下游靶基因轉(zhuǎn)錄,啟動(dòng)腫瘤的生長(zhǎng)程序[43]。Kuhnert等[44]在在體實(shí)驗(yàn)中使用Wnt拮抗劑Dkkl抑制該信號(hào)通路,破壞了正常腸隱窩的結(jié)構(gòu)和穩(wěn)態(tài);而該信號(hào)通路的異常則與結(jié)腸癌的發(fā)生、發(fā)展有直接或間接關(guān)系。Radtke等[45]發(fā)現(xiàn),抑癌基因Apc的截短將導(dǎo)致正常腸隱窩穩(wěn)態(tài)的破壞,這與Wnt/β-catenin信號(hào)通路的表達(dá)增強(qiáng)密切相關(guān)。近來(lái)Sousa等[46]研究發(fā)現(xiàn),Wnt信號(hào)通路在結(jié)腸癌干細(xì)胞中活性明顯增高,而在已分化的結(jié)腸癌細(xì)胞中則明顯降低,說(shuō)明Wnt信號(hào)通路與結(jié)腸癌干細(xì)胞關(guān)系密切。有學(xué)者研究了在基底部表達(dá)的17個(gè)干細(xì)胞標(biāo)記物,發(fā)現(xiàn)與Wnt信號(hào)關(guān)系最緊密的是Lgr5和Ascl2。Ascl2在腸道黏膜上皮組織中的表達(dá)是Wnt通路依賴(lài)的,是Wnt信號(hào)的一個(gè)靶分子[20,47,48]。Sansom等[49]報(bào)道當(dāng)APC被截短,Ascl2的表達(dá)與對(duì)照組相比上調(diào)了22.2倍。Jubb等[6]發(fā)現(xiàn),Ascl2在人類(lèi)結(jié)直腸腫瘤組織中高表達(dá),Ascl2過(guò)度表達(dá)是早期腸腫瘤Wnt信號(hào)異常調(diào)節(jié)的一個(gè)結(jié)果,Wnt信號(hào)在正常腸道和腸道腫瘤中均調(diào)節(jié)Ascl2的轉(zhuǎn)錄。
靶向治療是目前熱門(mén)研究方向,而靶向治療CSC還處于實(shí)驗(yàn)階段[50]。Ascl2在腸道的表達(dá)僅限于隱窩基底,是維持結(jié)腸癌干細(xì)胞"干性"的重要轉(zhuǎn)錄因子,為靶向治療結(jié)腸癌帶來(lái)新的希望,但具體功能和機(jī)制尚待進(jìn)一步研究。
[1] Grizzi F, Celesti G, Basso G, et al. Tumor budding as a potential histopathological biomarker in colorectal cancer: hype or hope[J]. World J Gastroenterol, 2012,18(5):6532-6536.
[2] Markowitz SD, Bertagnolli MM.Molecular origins of cancer:Molecular basis of colorectal cancer[J]. N Engl J Med, 2009,361(25):2449-2460.
[3] Cunningham D, Atkin W, Lenz HJ, et al. Colorectal cancer[J]. Lancet, 2010,375(9719):1030-1047.
[4] Gijn ME, Hatzis PE, Cers H, et al. ription factor achaete scute-like 2 controls intestinal stem cell fate[J], Cell, 2009,136(5):903-912.
[5] Ziskin JL, Dunlap D, Yaylaoglu M, In situ validation of an intestinal stem cell signature in colorectal cancer[J]. Gut, 2013,62(7):1012-1023.
[6]Jubb AM, Hoeflich KP, Haverty PM, et al. Ascl2 and 11p15.5 amplification incolorectalcancer[J]. Gut, 201l,60(11):1606-1607.
[7] Stange DE, Engel F, Longerich T, et al. Expression of an ASCL2 related stem cell signature and IGF2 in colorectal cancer liver metastases with 11p15.5 gain[J]. Gut, 2010,59(9):1236-1244.
[8] Dontu G, Al-Hajj M, Abdallah WM, et al. Stem cells in normal breast development and breast cancer[J]. Cell Prolif, 2003,36(1):59-72.
[9] Singh SK, Hawkins C, Clarke ID, et al. Identification of human brain tumour initiating cells[J]. Nature, 2004, 432(7015):396-401.
[10] Collins AT,Berry PA,Hyde C,et al.Prospective identification of tumorigenic prostate cancer stem cells[J]. Cancer Res, 2005,65(23):10946-10951.
[12] Hermann PC, Huber SL,Herrler T,et al.Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer[J]. Cell Stem Cell, 2007,1(3):313-323.
[13] Fang D, Leishear K, Nguyen TK, et al. Defining the conditions for the generation of melanocytes from human embryonic stem cells[J].Stem Cells,2006 ,24(7):1668-1677.
[14] Kim CF, Jackson EL,Woolfenden AE,et al.Identification of bronchioalveolar stem cells in normal lung and lung cancer[J]. Cell,2005,121(6):823-835.
[15] O'Brien CA, Pollett A, Gallinger S, et al, A human colon cancer cell capable of initiating tumour growth in immunodeficient mice[J]. Nature, 2007,445(7123):106-110.
[16] Ricci-Vitiani L, Lombardi DG, Pilozzi E, et al. Identification and expansion of human colon-cancer-initiating cells[J]. Nature, 2007,445(7123):111-115.
[17] Zhang Z, Huang J. Intestinal stem cells-types and markers[J]. Cell Biol Int, 2013,37(5):406-414.
[18] Clevers H.The cancer stem cell:premises,promises and challenges[J]. Nat Med, 2011,17(3):313-319.
[19] Tang DG. Understanding cancer stem cell heterogeneity and plasticity[J]. Cell Res, 2012,22(3):457-472.
[20] Todaro M, Francipane MG,Medema JP,et al.Colon cancer stem cells: promise of targeted therapy[J].Gastroenterology,2010,138(6):2151-2162.
[21] Fujii M, Sato T. Culturing intestinal stem cells: applications for colorectal cancer research[J]. Front Genet, 2014,5(14):169.
[22] Jubb AM, Chalasani S, Frantz GD, et al. Achaete-scute like 2 (ascl2) is a target of Wnt signalling and is upregulated in intestinal neoplasia[J]. Oncogene, 2006,25(24):3445-3457.
[23] Johnson JE,Birren SJ,Anderson DJ.Two rat homologues of Drosophila achaete-scute specifically expressed in neuronal precursors[J].Nature,1990 ,346(6287):858-861.
[24] Guillemot F,Nagy A,Auerbach A,et al.Essential role of Mash一2 in extraembryonic development[J].Nature,1994,371(6495):333-336.
[25] Budak M,Korpinar MA,Kalkan T,et al.Mutation detection in the promoter region of survivin gene on N-methyl-N-nitrosourea induced colon tumor model in experiment[J].Bratisl Lek Listy, 2014,115(9):554-556.
[26] Zhu R, Yang Y, Tian Y, et al. Ascl2 knockdown results in tumor growth arrest by miRNA-302b-related inhibition of colon cancer progenitor cells[J].PLoS One, 2012,7(2):32170.
[27] Sato T, van Es JH, Snippert HJ, et al. Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts[J]. Nature, 2011,469(7330):415-418.
[28] Barker N, van Es JH, Kuipers J,et al. Identification of stem cells in small intestine and colon by marker gene Lgr5[J]. Nature, 2007,449(7165):1003-1007.
[29] Kang H, Shibata D. Direct measurements of human colon crypt stem cell niche genetic fidelity: the role of chance in non-darwinian mutation selection[J]. Front Oncol, 201,3:264.
[30] Fre S, Hannezo E, Sale S, et al. Notch lineages and activity in intestinal stem cells determined by a new set of knock-in mice[J]. PLoS One, 2011,6(10): 25785.
[31] Sato T, Vries RG, Snippert HJ, et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche[J]. Nature, 2009,459(7244):262-265.
[32] Yan KS, Chia LA, Li X,et al.The intestinal stem cell markers Bmi1 and Lgr5 identify two functionally distinct populations[J]. Proc Natl Acad Sci USA, 2012 ,109(2):466-471.
[33] Chu P, Clanton DJ, Snipas TS, et al. Characterization of a subpopulation of colon cancer cells with stem cell-like properties[J]. Int J Cancer,2009 ,124(6):1312-1321.
[34] Vermeulen L, Todaro M, de Sousa Mello F, et al. Single-cell cloning of colon cancer stem cells reveals a multi-lineage differentiation capacity[J]. Proc Natl Acad Sci USA, 2008,105(36):13427-13432.
[35] Barker N, Ridgway RA, van Es JH,et al.Crypt stem cells as the cells-of-origin of intestinal cancer[J].Nature,2009,457(7229):608-611.
[36] Cadigan KM, Waterman ML. TCF/LEFs and Wnt signaling in the nucleus[J].Cold Spring Harb Perspect Biol,2012 ,4(11):55.
[37] Zhang Z, Huang J. Intestinal stem cells- types and markers[J]. Cell Biol Int,2013,37(5):406-414.
[38] Neal MD, Richardson WM, Sodhi CP, et al. Intestinal stem cells and their roles during mucosal injury and repair[J]. J Surg Res,2011 ,167(1):1-8.
[39] Papailiou J, Bramis KJ, Gazouli M, et al. Stem cells in colon cancer. A new era in cancer theory begins[J]. Int J Colorectal Dis, 2011 ,26(1):1-11.
[40] Odoux C, Fohrer H, Hoppo T, et al. A stochastic model for cancer stem cell origin in metastatic colon cancer[J].Cancer?Res,2008 ,68(17):6932-6941.
[41] Barker?N,van Oudenaarden A,Clevers H.Identifying the stem cell of the intestinal crypt: strategies and pitfalls[J].Cell Stem Cell,2012 ,11(4):452-460.
[42] Le PN, McDermott JD, Jimeno A.Targeting the Wnt pathway in human cancers:Therapeutic targeting with a focus on OMP-54F28[J]. Pharmacol Ther, 2014 ,14:162-164.
[43] Klaus A, Birchmeier W. Wnt signalling and its impact on development and cancer[J]. Nat Rev Cancer, 2008,8(5):387-398.
[44] Kuhnert F, Davis CR, Wang HT, et al. Essential requirement for Wnt signaling in proliferation of adult small intestine and colon revealed by adenoviralexpression of Dickkopf-1[J]. Proc Natl Acad Sci U S A, 2004 ,101(1):266-271.
[45] Radtke F, Clevers H, Riccio O. From gut homeostasis to cancer.Curr Mol Med[J]. 2006,6(3):275-289.
[46] Sousa EM, Vermeulen L, Richel D, et al. Targeting Wnt signaling in colon cancer stem cells[J]. Clin Cancer Res, 2011, 17(4):647-653.
[47] Sansom OJ, Reed KR, Hayes AJ, et al. Loss of Apc in vivo immediately perturbs Wnt signaling, differentiation, and migration[J].Genes Dev,2004,18(12):1385-1390.
[48] Oving I, Haegebarth A, De Palo M, et al. The Intestinal Wnt/TCF Signature[J]. Gastroenterology, 2007,132(2):628-632.
[49] Sansom OJ, Reed KR, Hayes AJ, et al. Loss of Apc in vivo immediately perturbs Wnt signaling, differentiation,and migration[J]. Genes Dev, 2004,18(12):1385-1390.
[50] Gupta PB, Onder TT, Jiang G, et al. Identification of selective inhibitors of cancer stem cells by high-throughput screening[J]. Cell, 2009,138(4):645-659.
貴州省高層次人才科研條件特助基金資助項(xiàng)目(TZJF-2011-32)。
趙逵
10.3969/j.issn.1002-266X.2015.06.036
R735.3
A
1002-266X(2015)06-0091-04
2014-11-15)