国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

水體中雙氯芬酸的分布與生態(tài)效應(yīng)研究

2015-08-22 05:37:14張正華陸光華丁劍楠
四川環(huán)境 2015年1期
關(guān)鍵詞:芬酸雙氯處理廠

張正華,陸光華,丁劍楠

(淺水湖泊綜合治理與資源開發(fā)教育部重點實驗室,河海大學(xué)環(huán)境學(xué)院,南京 210098)

· 綜述 ·

水體中雙氯芬酸的分布與生態(tài)效應(yīng)研究

張正華,陸光華,丁劍楠

(淺水湖泊綜合治理與資源開發(fā)教育部重點實驗室,河海大學(xué)環(huán)境學(xué)院,南京210098)

雙氯芬酸作為消炎類藥物,在國內(nèi)外被廣泛使用。作為新興污染物,雙氯芬酸在水體環(huán)境中經(jīng)常被檢出,對生態(tài)安全及人類健康存在潛在威脅。本文總結(jié)了雙氯芬酸的水體分布、在水生生物體內(nèi)的富集效應(yīng)及代謝,并闡述了雙氯芬酸的生物毒理效應(yīng)。在綜述雙氯芬酸現(xiàn)有研究成果基礎(chǔ)上,提出了雙氯芬酸的主要研究方向。

雙氯芬酸;生物富集;代謝;生態(tài)毒理效應(yīng)

由于藥物在環(huán)境中不斷被檢出,已成為一類主要的新興污染物。大量文獻報道記載了藥物活性化合物在水環(huán)境中的發(fā)生情況[1~4],并且其在自然水體中檢出率很高。雙氯芬酸的通過抑制環(huán)氧化酶活性,從而阻斷花生四烯酸轉(zhuǎn)化前列腺素,抑制前列腺素的合成,前列腺素不僅是疼痛感應(yīng)介質(zhì)也可以抑制血液凝固、調(diào)節(jié)血管通透性與血管擴張[5, 6],因此抑制前列腺素合成可以起到消炎止痛作用。

雙氯芬酸經(jīng)生物體吸收、代謝后排出進入環(huán)境中。研究表明大部分雙氯芬酸以原型或以代謝產(chǎn)物的形式排放到環(huán)境中,雙氯芬酸代謝產(chǎn)物易在污水處理廠中裂解回原形排放到環(huán)境水體中[7]。很多水生生物體內(nèi)存在與人體中相似的藥物靶分子[8],因此雙氯芬酸暴露下會對生物產(chǎn)生毒性。雖然雙氯芬酸在水環(huán)境中濃度不高,一般為ng/L水平,但是因其親脂性,在水環(huán)境中易于生物富集,因此,水環(huán)境中較低濃度的雙氯芬酸也可能對水生生物產(chǎn)生毒性作用[9, 10]。

1 雙氯芬酸在水環(huán)境中的分布

雙氯芬酸在污水處理廠中的去除效率在0%~80%之間,大部分集中在21%~40%之間[4]。由于在污水處理廠中雙氯芬酸的降解并不完全,許多國家在污水、地表水甚至地下水中都發(fā)現(xiàn)了雙氯芬酸的存在。

1.1在污水廠尾水中的分布

在市政污水廠尾水中,雙氯芬酸是最常檢測到的藥物之一,已有文獻報道了雙氯芬酸在市政污水處理廠尾水的濃度水平, 范圍涵蓋了歐洲、北美、非洲和亞洲部分國家。Letzel等[11]在德國美茵河9個污水處理廠尾水采集到的60個樣品中都檢測出雙氯芬酸,檢測的最低濃度為120 ng/L,最高濃度達2200 ng/L。在英國,Roberts等[12]對泰恩河污水處理廠尾水中的雙氯芬酸進行了分析研究,結(jié)果發(fā)現(xiàn)雙氯芬酸殘留濃度范圍為36~300 ng/L。Sim等[13]通過對韓國的12個污水處理廠中的藥物進行檢測,在市政污水處理廠、家畜污水處理廠、醫(yī)院污水處理廠以及藥物制造污水處理廠的尾水中分別檢測到雙氯芬酸的殘留,檢出頻率最高的是市政污水處理廠,但藥物制造污水處理廠尾水中檢測濃度最高,達到19.2 μg/L,市政污水處理廠中檢出頻率高與家庭中消炎止痛藥物的大量使用有關(guān)。在國內(nèi),Sui等[14]檢測了北京兩個污水處理廠尾水中雙氯芬酸的殘留情況,最高濃度為0.46 μg/L,最低為0.035 μg/L。

1.2在地表水中的分布

與污水廠尾水中雙氯芬酸檢測到的濃度相比,地表水中雙氯芬酸濃度相對較低,但作為受納水體,雙氯芬酸廣泛存在于地表水中。Togola等[15]采集法國塞納河口不同月份、不同地點的水樣,檢測到雙氯芬酸的的最高濃度為172.5 ng/L,最低濃度為7.1 ng/L,檢測濃度隨地點以及河流水量的不同而變化。Matamoros等[16]調(diào)查了丹麥河流以及恢復(fù)濕地中的17種新型污染物,其中雙氯芬酸的濃度最高,在布拉布蘭湖出口濃度達到156 ng/L,雙氯芬酸的濃度因豐水期河水流量大而得到稀釋,濃度下降,這一變化規(guī)律與Togola等[15]的研究結(jié)果一致。

國內(nèi)對藥物的研究起步較晚,Wang等[17]在調(diào)查黃河、海河及遼河中的酸性藥物殘留時發(fā)現(xiàn)雙氯芬酸有較高的檢出率,最高濃度達到717 ng/L。Zhao等[18]在珠江流溪河、石井河以及珠江河段的地表水中檢測出雙氯芬酸,最高濃度為150 ng/L。關(guān)于雙氯芬酸在我國各大流域殘留水平的報道不多,但資料顯示中國存在大量的風(fēng)濕性關(guān)節(jié)炎和骨關(guān)節(jié)炎的患者,對消炎止痛藥物的使用量較大,因此,需要加強這方面的分析檢測[19]。

1.3在地下水及飲用水中的分布

由于土壤層的凈化作用以及飲用水凈水廠的進一步處理,飲用水以及地下水中雙氯芬酸濃度很低或者低于檢測限,但在一些雙氯芬酸使用量大的國家,仍能檢測到雙氯芬酸的存在。Rabiet等[20]在地中海飲用水源中檢測到雙氯芬酸的濃度為2 ng/L。Heberer等[21]在希臘與柏林調(diào)查不同水體中藥物的殘留時,在飲用水中檢測到了雙氯芬酸的存在。表1列舉了雙氯芬酸在部分水體環(huán)境中的殘留情況。

表1 水體環(huán)境中雙氯芬酸的殘留水平

2 雙氯芬酸的富集與代謝

2.1雙氯芬酸的生物富集

雖然雙氯芬酸在水體中殘留的濃度不高,但其親脂性較強,容易被水生生物吸收并富集,長期暴露使雙氯芬酸在水生生物體內(nèi)的含量升高。

目前對雙氯芬酸的富集研究比較少,主要集中在魚類富集研究。Schwaiger等[6]在實驗條件下得到虹鱒魚 (Oncorhynchusmykiss) 在不同濃度的雙氯芬酸暴露28 d的生物富集因子,結(jié)果顯示雙氯芬酸在魚肝臟中最易富集,生物富集因子范圍為12~2732。Mehinto等[9]研究了虹鱒魚對雙氯芬酸的生物富集,0.5 μg /L、5 μg /L和25 μg /L的雙氯芬酸暴露21 d在膽汁中的生物富集因子分別為657、 534和509,上述研究結(jié)果表明了雙氯芬酸在不同魚組織中產(chǎn)生生物富集效應(yīng)。而Memmert[29]通過雙氯芬酸不同濃度的暴露實驗得到虹鱒魚的穩(wěn)態(tài)、動態(tài)以及脂質(zhì)規(guī)范化等3種生物富集因子,范圍在2~9之間,生物富集效應(yīng)不明顯。來自不同實驗室的生物富集數(shù)據(jù)存在較大差異,需要進一步開展影響因素分析。

圖 雙氯芬酸主要代謝途徑及代謝產(chǎn)物[35~37]Fig. The major metabolic pathways and metabolites of diclofenac

Ericson等[30]測定雙氯芬酸對海洋底棲生物藍貽貝 (Bluemussels) 的生態(tài)效應(yīng),不同濃度暴露時,雙氯芬酸均在藍貝體內(nèi)較高濃度殘留,生物富集因子在10到180之間,表明雙氯芬酸在底棲生物體內(nèi)也存在生物富集現(xiàn)象。

2.2雙氯芬酸的代謝轉(zhuǎn)化

雙氯芬酸在生物體內(nèi)經(jīng)代謝酶的作用發(fā)生代謝反應(yīng),通過對人體及生物的研究,雙氯芬酸主要的代謝產(chǎn)物是羥基化、硫酸鹽化以及葡萄苷酸化的雙氯芬酸。研究表明,哺乳動物、植物以及微生物雙氯芬酸的Ⅰ相代謝產(chǎn)物是4’-羥基雙氯芬酸和5-羥基雙氯芬酸,主要的Ⅱ相代謝產(chǎn)物是?;咸衍账峄漠a(chǎn)物[31,32]。

雙氯芬酸的代謝產(chǎn)物主要通過排尿排出生物體,且經(jīng)常在污水處理廠以及自然水體被檢測到[33]。Mueller等[34]通過體外實驗測定得到雙氯芬酸在人體肝臟中的8種代謝產(chǎn)物,羥基化雙氯芬酸是主要的Ⅰ相代謝產(chǎn)物,酰基葡萄苷酸化與葡萄苷酸化雙氯芬酸是主要的Ⅱ相代謝產(chǎn)物。Kosjek等[35]對活性污泥生物反應(yīng)器中雙氯芬酸的代謝產(chǎn)物進行了分析,測出多種雙氯芬酸代謝產(chǎn)物,并測出雙氯芬酸酰胺化的Ⅱ相產(chǎn)物。Lahti等[36]在魚膽汁中檢測到9種雙氯芬酸代謝產(chǎn)物,包括兩種Ⅰ相代謝產(chǎn)物與7種Ⅱ相代謝產(chǎn)物。其中,Ⅰ相代謝產(chǎn)物羥基雙氯芬酸的酰基葡萄苷酸化產(chǎn)物是雙氯芬酸主要的Ⅱ相代謝產(chǎn)物,這與Mueller等[34]報道的結(jié)果一致。上圖顯示了雙氯芬酸的主要代謝途徑及代謝產(chǎn)物,m/z為質(zhì)核比。

3 雙氯芬酸對水生生物的毒性

雙氯芬酸的毒性影響最早引起關(guān)注是由于巴基斯坦禿鷹數(shù)量的急劇下降,研究結(jié)果表明,禿鷹吃了喂食了雙氯芬酸的牲畜尸體,因而引起腎臟疾病導(dǎo)致禿鷹死亡[38]。雙氯芬酸對生物體的毒性取決于受試生物、暴露時間以及響應(yīng)終端。環(huán)境中雙氯芬酸濃度很低,不易引起急性毒性,但由于長期存在于環(huán)境中,它對非靶生物可能存在慢性毒性。研究表明,長期暴露于雙氯芬酸會造成生物的組織病理學(xué)毒性、細胞毒性以及基因毒性等[10, 39~41]。

表2總結(jié)了雙氯芬酸暴露對不同生物標志物的毒性影響。Ferrari等測定了幾種非甾類藥物對月牙藻 (Pseudokirchneriellasubcapitata) 的慢性毒性,得到雙氯芬酸對月牙藻生長率的最低可見效應(yīng)濃度 (Lowest observed effect concentration) 為20 mg/L,并計算得出了預(yù)測無效應(yīng)濃度為116 μg/L,比檢測到的環(huán)境中雙氯芬酸濃度高1000倍[42]。Cleuvers等[43]研究抗生素對藻類的毒性時發(fā)現(xiàn)隨著雙氯芬酸濃度的增加,海藻的生長率遞減,半數(shù)效應(yīng)濃度EC50(median effective concentration)為71.9 mg/L,表現(xiàn)為對海藻具有輕微毒性。

表2 雙氯芬酸對不同生物的毒性影響

注:LOEC(Lowest observed effect concentration)—最低效應(yīng)濃度。

Lee等[44]測定雙氯芬酸對兩種水蚤的毒性實驗時發(fā)現(xiàn),雙氯芬酸對大型蚤(Daphniamagna) 以及刺裸腹蚤 (Moinamacrocopa) 的首次繁殖時間、子代個數(shù)以及死亡率均有明顯抑制作用,并表現(xiàn)出濃度差異,兩種水蚤的子代個數(shù)都呈現(xiàn)隨濃度增加而減少的趨勢。Ferrari等[42]研究雙氯芬酸對浮游動物的急性毒性時發(fā)現(xiàn)雙氯芬酸對大型蚤和網(wǎng)紋水蚤 (Ceriodaphniadubia) 的活動能力也有一定影響。

除了對浮游生物的毒性研究,Schmidt等[45]將海洋貽貝 (Mytilusspp.) 暴露于1 μg/L及1000 μg/L雙氯芬酸中,96 h后谷胱甘肽-S轉(zhuǎn)移酶活性明顯增加,脂質(zhì)過氧化水平作用表達顯著上升,表明貽貝出現(xiàn)組織損傷以及氧化應(yīng)激反應(yīng),暴露于1000 μg/L的雙氯芬酸96 h后出現(xiàn)DNA損傷。

關(guān)于雙氯芬酸對魚類的毒性研究較多,主要為對低濃度暴露下的分子、細胞及組織水平的生物標志物研究。Schwaiger等[6]評價了雙氯芬酸引起的虹鱒魚的組織病理學(xué)病變,結(jié)果顯示暴露濃度為1 μg/L時魚的肝細胞與腎臟細胞受到損傷,同時魚鰓中出現(xiàn)柱狀細胞壞死現(xiàn)象。Feito等[46]測定了雙氯芬酸對斑馬魚胚胎的氧化性損傷,結(jié)果表明當(dāng)雙氯芬酸濃度為0.03 μg/L時,脂質(zhì)過氧化作用明顯下降,表明低劑量的雙氯芬酸對水生生物產(chǎn)生了氧化損傷。

Islas-Flores等[47]研究發(fā)現(xiàn)雙氯芬酸會引起鯉魚 (Cyprinuscarpio) 的肝、鰓、血液等產(chǎn)生氧化應(yīng)激反應(yīng),暴露后的肝與鰓中的脂質(zhì)過氧化酶的活性與對照組相比明顯上升,血液中以及組織中的脂質(zhì)過氧化酶和超氧化物歧化酶活性均產(chǎn)生變化,文獻表明生物體內(nèi)酶活性變化與其對外源性物質(zhì)的代謝、毒物的降解及抗氧化作用有關(guān)。

Saravanan等[48]將印度大鯉魚 (Cirrhinusmrigala) 暴露于1、10及100 μg/L的雙氯芬酸96 h,發(fā)現(xiàn)血漿葡萄糖與血鈉離子的水平明顯升高,而血漿蛋白與血氯離子的水平下降;在35 d長期暴露時,血鈉與血氯離子的水平在所有暴露濃度下均明顯上升,而血糖與血蛋白隨暴露濃度的不同呈現(xiàn)升高或降低的兩向趨勢。血漿中離子濃度變化可能由于藥物作用導(dǎo)致細胞膜受損因而使血漿離子濃度變化,或是藥物毒性引起滲透調(diào)節(jié)的不平衡,產(chǎn)生代償效應(yīng);而血糖含量變化則是由于雙氯芬酸毒性引起能量的需求變化導(dǎo)致[49]。雙氯芬酸對魚類肝、腎的毒性以及由此引起的蛋白質(zhì)含量變化則與組織損傷及解毒機制有關(guān),肝臟作為外源性污染物質(zhì)作用的靶器官,容易導(dǎo)致病理改變,使得肝臟損傷,影響蛋白質(zhì)的合成[50, 51]。

4 結(jié) 論

4.1在外源性有機污染物質(zhì)的生物富集研究中,來自不同實驗室的生物富集因子數(shù)據(jù)差異較大,實驗條件如水溫、pH值、水體流速等參數(shù)可能是污染物富集水平差異產(chǎn)生的原因,因此,對雙氯芬酸生物富集的影響因素研究有待加強。

4.2目前針對雙氯芬酸的研究主要在實驗室開展,而真實水體環(huán)境復(fù)雜多變,環(huán)境中雙氯芬酸的遷移轉(zhuǎn)化過程和機制是未來研究的主要方向。

4.3雙氯芬酸在食物鏈及食物網(wǎng)中的累積放大效應(yīng)還未開展,因此,以后也需要重點研究其在食物鏈和食物網(wǎng)中的累積放大效應(yīng),并對其潛在的生態(tài)風(fēng)險和人類健康風(fēng)險進行評估。

[1]Boyd G R, et al.Pharmaceuticals and personal care products (PPCPs) in surface and treated waters of Louisiana, USA and Ontario, Canada[J]. Science of The Total Environment, 2003,311(1-3):135-149.

[2]Gracia-Lor E, et al.Multi-class determination of personal care products and pharmaceuticals in environmental and wastewater samples by ultra-high performance liquid-chromatography-tandem mass spectrometry[J]. Talanta, 2012,99:1011-1023.

[3]Weigel S, Kuhlmann J, and Hühnerfuss H.Drugs and personal care products as ubiquitous pollutants: occurrence and distribution of clofibric acid, caffeine and DEET in the North Sea[J]. Science of The Total Environment, 2002,295(1-3):131-141.

[4]Zhang Y, S U Geiβen, and Gal C.Carbamazepine and diclofenac: Removal in wastewater treatment plants and occurrence in water bodies[J]. Chemosphere, 2008,73(8):1151-1161.

[5]Cuklev F, et al.Diclofenac in fish: blood plasma levels similar to human therapeutic levels affect global hepatic gene expression[J]. Environ Toxicol Chem, 2011,30(9):2126-2134.

[6]Schwaiger J, et al.Toxic effects of the non-steroidal anti-inflammatory drug diclofenac. Part I: histopathological alterations and bioaccumulation in rainbow trout[J]. Aquat Toxicol, 2004,68(2):141-150.

[7]Heberer T.Occurrence, fate, and removal of pharmaceutical residues in the aquatic environment: a review of recent research data[J]. Toxicology Letters, 2002,131(1-2):5-17.

[8]Fick J, et al.Therapeutic Levels of Levonorgestrel Detected in Blood Plasma of Fish: Results from Screening Rainbow Trout Exposed to Treated Sewage Effluents[J]. Environmental Science & Technology, 2010,44(7):2661-2666.

[9]Mehinto A C, Hill E M, and Tyler C R.Uptake and Biological Effects of Environmentally Relevant Concentrations of the Nonsteroidal Anti-inflammatory Pharmaceutical Diclofenac in Rainbow Trout (Oncorhynchusmykiss)[J]. Environmental Science & Technology, 2010,44(6):2176-2182.

[10]Triebskorn R, et al.Ultrastructural effects of pharmaceuticals (carbamazepine, clofibric acid, metoprolol, diclofenac) in rainbow trout (Oncorhynchusmykiss) and common carp (Cyprinuscarpio)[J]. Anal Bioanal Chem, 2007,387(4):1405-1416.

[11]Letzel M, Metzner G, and Letzel T.Exposure assessment of the pharmaceutical diclofenac based on long-term measurements of the aquatic input[J]. Environ Int, 2009,35(2):363-368.

[12]Roberts P H and Thomas K V.The occurrence of selected pharmaceuticals in wastewater effluent and surface waters of the lower Tyne catchment[J]. Sci Total Environ, 2006,356(1-3):143-153.

[13]Sim W J, et al.Occurrence and distribution of pharmaceuticals in wastewater from households, livestock farms, hospitals and pharmaceutical manufactures[J]. Chemosphere, 2011,82(2):179-186.

[14]Sui Q, et al.Seasonal variation in the occurrence and removal of pharmaceuticals and personal care products in different biological wastewater treatment processes[J]. Environ Sci Technol, 2011,45(8):3341-3348.

[15]Togola A. and H Budzinski.Analytical development for analysis of pharmaceuticals in water samples by SPE and GC-MS[J]. Analytical and Bioanalytical Chemistry, 2007,388(3):627-635.

[16]Matamoros V, et al.Occurrence and behavior of emerging contaminants in surface water and a restored wetland[J]. Chemosphere, 2012,88(9):1083-1089.

[17]Wang L, et al.Occurrence and risk assessment of acidic pharmaceuticals in the Yellow River, Hai River and Liao River of north China[J]. Sci Total Environ, 2010,408(16):3139-3147.

[18]Zhao J L, et al.Occurrence and a screening-level risk assessment of human pharmaceuticals in the Pearl River system, South China[J]. Environmental Toxicology and Chemistry, 2010,29(6):1377-1384.

[19]劉宇.雙氯芬酸烷醇胺鹽制備及其經(jīng)皮吸收貼劑的研究[D].沈陽:沈陽藥科大學(xué), 2006.

[20]Rabiet M, et al.Consequences of Treated Water Recycling as Regards Pharmaceuticals and Drugs in Surface and Ground Waters of a Medium-sized Mediterranean Catchment[J]. Environmental Science & Technology, 2006,40(17):5282-5288.

[21]Heberer T, et al.Occurrence of Pharmaceutical Residues in Sewage, River, Ground, and Drinking Water in Greece and Berlin (Germany), in Pharmaceuticals and Care Products in the Environment[J]. American Chemical Society,2001,791:70-83.

[22]Togola A and H Budzinski.Multi-residue analysis of pharmaceutical compounds in aqueous samples[J]. J Chromatogr A, 2008,1177(1):150-158.

[23]Ginebreda A, et al.Environmental risk assessment of pharmaceuticals in rivers: relationships between hazard indexes and aquatic macroinvertebrate diversity indexes in the Llobregat River (NE Spain)[J]. Environ Int, 2010,36(2):153-162.

[24]Brozinski J M, et al.The anti-inflammatory drugs diclofenac, naproxen and ibuprofen are found in the bile of wild fish caught downstream of a wastewater treatment plant[J]. Environmental Science & Technology, 2013,47(1):342-348.

[25]Tixier C, et al.Occurrence and Fate of Carbamazepine, Clofibric Acid, Diclofenac, Ibuprofen, Ketoprofen, and Naproxen in Surface Waters[J]. Environmental Science & Technology, 2003,37(6):1061-1068.

[26]Heberer T.Tracking persistent pharmaceutical residues from municipal sewage to drinking water[J]. Journal of Hydrology, 2002,266(3-4):175-189.

[27]Migowska N, et al.Simultaneous analysis of non-steroidal anti-inflammatory drugs and estrogenic hormones in water and wastewater samples using gas chromatography-mass spectrometry and gas chromatography with electron capture detection[J]. Science of The Total Environment, 2012,441:77-88.

[28]Heberer T, et al.Field Studies on the Fate and Transport of Pharmaceutical Residues in Bank Filtration[J]. Ground Water Monitoring & Remediation, 2004,24(2):70-77.

[29]Memmert U, et al.Diclofenac: New data on chronic toxicity and bioconcentration in fish[J]. Environ Toxicol Chem, 2013,32(2):442-452.

[30]Ericson H, G Thorsen, and L Kumblad.Physiological effects of diclofenac, ibuprofen and propranolol on Baltic Sea blue mussels[J]. Aquat Toxicol, 2010,99(2):223-231.

[31]Shen S,et al.Metabolic activation of diclofenac by human cytochrome P450 3A4: role of 5-hydroxydiclofenac[J]. Chemical research in toxicology, 1999, 12(2): 214-222.

[32]Osorio-Lozada A, Surapaneni S, Skiles G L, et al.Biosynthesis of drug metabolites using microbes in hollow fiber cartridge reactors: case study of diclofenac metabolism by Actinoplanes species[J]. Drug Metabolism and Disposition, 2008, 36(2): 234-240.

[33]Stülten D, et al.Occurrence of diclofenac and selected metabolites in sewage effluents[J]. Science of The Total Environment, 2008,405(1-3):310-316.

[34]Mueller D, et al.Biotransformation of diclofenac and effects on the metabolome of primary human hepatocytes upon repeated dose exposure[J]. Eur J Pharm Sci, 2012,45(5):716-724.

[35]Kosjek T, et al.Metabolism studies of diclofenac and clofibric acid in activated sludge bioreactors using liquid chromatography with quadrupole-time-of-flight mass spectrometry[J]. Journal of Hydrology, 2009,372(1-4):109-117.

[36]Lahti M, et al.Uptake from water, biotransformation, and biliary excretion of pharmaceuticals by rainbow trout[J]. Environ Toxicol Chem, 2011,30(6):1403-1411.

[37]Kallio J M, et al.Metabolites of the Aquatic Pollutant Diclofenac in Fish Bile[J]. Environmental Science & Technology, 2010,44(19):7213-7219.

[38]Oaks J L, et al.Diclofenac residues as the cause of vulture population decline in Pakistan[J]. Nature, 2004,427(6975):630-633.

[39]Parolini M, A Binelli, and A Provini.Assessment of the Potential Cyto-Genotoxicity of the Nonsteroidal Anti-Inflammatory Drug (NSAID) Diclofenac on the Zebra Mussel (Dreissenapolymorpha)[J]. Water, Air, & Soil Pollution, 2010,217(1-4):589-601.

[40]Triebskorn R, et al.Toxic effects of the non-steroidal anti-inflammatory drug diclofenac. Part II: cytological effects in liver, kidney, gills and intestine of rainbow trout (Oncorhynchusmykiss)[J]. Aquat Toxicol, 2004,68(2):151-166.

[41]Liu X, et al.Potentials and mechanisms of genotoxicity of six pharmaceuticals frequently detected in freshwater environment[J]. Toxicology Letters, 2012,211(1):70-76.

[42]Ferrari B T, et al.Ecotoxicological impact of pharmaceuticals found in treated wastewaters: study of carbamazepine, clofibric acid[J]. and diclofenac. Ecotoxicology and Environmental Safety, 2003,55(3):359-370.

[43]Cleuvers M.Mixture toxicity of the anti-inflammatory drugs diclofenac, ibuprofen, naproxen, and acetylsalicylic acid[J]. Ecotoxicology and Environmental Safety, 2004,59(3):309-315.

[44]Lee J, et al.Chronic exposure to diclofenac on two freshwater cladocerans and Japanese medaka[J]. Ecotoxicol Environ Saf, 2011,74(5):1216-1225.

[45]Schmidt W, et al.Effects of the pharmaceuticals gemfibrozil and diclofenac on the marine mussel (Mytilusspp.) and their comparison with standardized toxicity tests. Mar Pollut Bull, 2011,62(7):1389-1395.

[46]Feito R, Y Valcarcel, and M Catala.Biomarker assessment of toxicity with miniaturised bioassays: diclofenac as a case study[J]. Ecotoxicology, 2012,21(1):289-296.

[47]Islas-Flores H, et al.Diclofenac-induced oxidative stress in brain, liver, gill and blood of common carp (Cyprinuscarpio)[J]. Ecotoxicol Environ Saf, 2013,92:32-38.

[48]Saravanan M, and M Ramesh.Short and long-term effects of clofibric acid and diclofenac on certain biochemical and ionoregulatory responses in an Indian major carp, Cirrhinus mrigala[J]. Chemosphere, 2013,93(2):388-396.

[49]Saravanan M, et al.Effects of Ibuprofen on hematological, biochemical and enzymological parameters of blood in an Indian major carp,Cirrhinusmrigala[J]. Environmental Toxicology and Pharmacology, 2012,34(1):14-22.

[50]Kavitha C, et al.Toxicological effects of arsenate exposure on hematological, biochemical and liver transaminases activity in an Indian major carp, Catla catla[J]. Food Chem Toxicol, 2010,48(10):2848-2854.

[51]Saravanan M, K Prabhu Kumar, and M Ramesh.Haematological and biochemical responses of freshwater teleost fish Cyprinus carpio (Actinopterygii:Cypriniformes) during acute and chronic sublethal exposure to lindane[J]. Pesticide Biochemistry and Physiology, 2011,100(3):206-211.

[52]Triebskorn R, et al.Toxic effects of the non-steroidal anti-inflammatory drug diclofenac: Part II. Cytological effects in liver, kidney, gills and intestine of rainbow trout (Oncorhynchusmykiss)[J]. Aquatic Toxicology, 2004,68(2):151-166.

[53]Quinn B, et al.Effects of the pharmaceuticals gemfibrozil and diclofenac on biomarker expression in the zebra mussel (Dreissenapolymorpha) and their comparison with standardised toxicity tests[J]. Chemosphere, 2011,84(5):657-663.

Distribution and Ecological Effects of Diclofenac in Water

ZHANG Zheng-hua, LU Guang-hua, DING Jian-nan

(KeyLaboratoryofIntegratedRegulation&ResourcesDevelopmentofShallowLakesofMinistryofEducation,CollegeofEnvironment,HohaiUniversity,Nanjing210098,China)

Diclofenac (DCF) is a common anti-inflammatory pharmaceutical which is widely used at home and abroad. DCF as an emerging contaminant is often detected in aquatic environments which raise a potential threat to the ecological safety and human health. This paper summarized the distribution of DCF in the water, introduced the bio-accumulation effect and metabolism in aquatic organisms, and elaborated the bio-toxicological effect of DCF. Based on the current research progress, the further research direction on DCF is proposed.

Diclofenac; bio-accumulation; metabolism; bio-toxicological effects

2014-07-16

國家自然科學(xué)基金(51279061)。

張正華(1990-),男,江西鷹潭人,河海大學(xué)環(huán)境科學(xué)與工程專業(yè)2012級在讀碩士研究生,主要從事環(huán)境毒理學(xué)研究。

X703

A

1001-3644(2015)01-0120-07

猜你喜歡
芬酸雙氯處理廠
污水處理廠低碳節(jié)能的探討與研究
基于正交試驗優(yōu)選醋氯芬酸分散片制備工藝
人體的“廢料處理廠”
Ti4O7電極電催化氧化去除水中雙氯芬酸
雙氯芬酸聯(lián)合順鉑通過熱療抑制肺腺癌A549細胞株的協(xié)同作用
城市污水處理廠占地研究
智能城市(2018年8期)2018-07-06 01:11:10
污水處理廠沉淀池剖析——以烏魯木齊某污水處理廠為例
雙氯芬酸二乙胺乳膠劑的含量測定
光氣法合成二乙二醇雙氯甲酸酯
河南科技(2014年12期)2014-02-27 14:10:32
醋氯芬酸栓的制備及質(zhì)量控制
中國藥房(2011年9期)2011-09-30 03:02:32
梓潼县| 阳西县| 孝义市| 房产| 黑山县| 台湾省| 六枝特区| 邓州市| 扶余县| 江华| 南川市| 靖宇县| 上蔡县| 疏勒县| 舒兰市| 昌乐县| 边坝县| 兴安县| 泽库县| 大庆市| 镇沅| 铁岭县| 泰州市| 漳州市| 云霄县| 海兴县| 雷山县| 宜州市| 佳木斯市| 沽源县| 神木县| 平阳县| 华坪县| 邵阳市| 宁强县| 恩平市| 讷河市| 繁昌县| 霍山县| 平定县| 依安县|