徐蘊(yùn)如 李玥瑩 逄洪波 張雨欣 劉羽蓮
(沈陽師范大學(xué)化學(xué)與生命科學(xué)學(xué)院,沈陽 110034)
CYC類基因在被子植物花發(fā)育中的研究進(jìn)展
徐蘊(yùn)如 李玥瑩 逄洪波 張雨欣 劉羽蓮
(沈陽師范大學(xué)化學(xué)與生命科學(xué)學(xué)院,沈陽 110034)
CYCLOIDEA(CYC)類基因?qū)儆赥CP基因家族成員,在花發(fā)育過程中具有重要作用。CYC類基因在被子植物進(jìn)化過程中發(fā)生基因復(fù)制事件,形成CYC1、CYC2和CYC3三大分支,其中CYC2分支成員在花對(duì)稱性形成方面具有主要調(diào)控作用。CYC1和CYC3分支成員開展研究較少。綜述了國內(nèi)外CYC類基因的研究現(xiàn)狀及其存在問題,并對(duì)CYC類基因的研究前景做了展望。
CYC類基因;花對(duì)稱性;TCP基因家族;進(jìn)化
被子植物中存在著豐富多彩、形態(tài)各異的花。由于花是被子植物最精密、復(fù)雜的繁殖器官,這一直吸引著大批的生物學(xué)家,特別是進(jìn)化發(fā)育生物學(xué)方面學(xué)者的注意力。研究表明,花發(fā)育的過程是由一個(gè)高度精密的調(diào)控網(wǎng)絡(luò)所決定的[1-3]。在花發(fā)育的過程中,轉(zhuǎn)錄因子發(fā)揮著重要作用,它們時(shí)空表達(dá)的差異通常與花的形態(tài)變化密切相關(guān)[4,5]。在這些轉(zhuǎn)錄因子中,TCP家族轉(zhuǎn)錄因子由于在很多物種中具有調(diào)控細(xì)胞分裂和花對(duì)稱性的作用而備受矚目[6-12]。
TCP屬于植物特有的一類轉(zhuǎn)錄因子,它是以玉米中的TEOSINTE BRANCHED1基因(TB1)[13]、金魚草中的CYCLOIDEA基因(CYC)[6,7]和水稻中的PROLIFERATING CELL FACTORS 1 和2 基因(PCF1和PCF2)的首字母命名的[14]。TCP家族的蛋白包含一個(gè)高度保守的TCP結(jié)構(gòu)域,即堿性螺旋-環(huán)-螺旋(bHLH)結(jié)構(gòu),此結(jié)構(gòu)與DNA結(jié)合和蛋白的二聚化相關(guān)。其中,TB1在玉米的馴化過程中對(duì)于抑制側(cè)芽的生長和雄花的形成具有決定作用[13];CYC在金魚草中控制花的背部器官特征[6];PCF1和PCF2能夠與水稻的PROLIFERATING CELL NUCLEAR ANTIGEN(PCNA)基因的啟動(dòng)子結(jié)合,而PCNA基因?qū)τ贒NA的復(fù)制與修復(fù)、染色質(zhì)的結(jié)構(gòu)維持、染色體隔離及細(xì)胞周期循環(huán)都有重要作用[14]。
根據(jù)結(jié)構(gòu)域的不同,TCP家族轉(zhuǎn)錄因子的成員可以分成兩種類型:即TCP-P型和TCP-C型。而TCP-C型可以進(jìn)一步分成ECE和CINCINNATA(CIN)兩個(gè)分支[15,16]。其中,位于ECE分支中的TCP轉(zhuǎn)錄因子是被子植物特有的。CYC類基因?qū)儆赥CP-C型中ECE分支上的成員,它除了具有TCP結(jié)構(gòu)域、R結(jié)構(gòu)域外,還含有核心真雙子葉植物所特有的谷氨酸-半胱氨酸-谷氨酸的基序(ECE motif)[16-19](圖1)。
圖1 TCP轉(zhuǎn)錄因子分類及CYC-類基因在被子植物中發(fā)生的代表性基因復(fù)制事件[6-63](圖片根據(jù)文獻(xiàn)[10]修改)
在植物的進(jìn)化過程中,基因復(fù)制事件具有重要作用[20]。由于類群分化時(shí)間長短不同,各自經(jīng)歷了不同次數(shù)的基因復(fù)制事件,導(dǎo)致不同類群中含有的基因家族成員數(shù)目各不相同。在藻類的鼓藻(Cosmarium)、苔蘚類的小立碗蘚(Physcomitrella patens)和蕨類的卷柏(Selaginella)中,TCP僅含有5-6個(gè)家族成員[21],但在種子植物中,TCP家族成員多達(dá)十幾個(gè)至幾十個(gè)。基因復(fù)制事件的頻繁發(fā)生能夠產(chǎn)生很多重復(fù)基因,復(fù)制的重復(fù)基因或者丟失、或者在選擇的作用下產(chǎn)生功能冗余、或者新功能化[22-27]。系統(tǒng)發(fā)育分析結(jié)果表明,被子植物中的CYC類基因發(fā)生過兩次大的基因復(fù)制事件,形成CYC1、CYC2和CYC3三大分支[19],在不同類群中,每一分支又分別發(fā)生了次數(shù)不等的基因復(fù)制事件,最終形成不同拷貝[28-33](圖1)。本文綜述了國內(nèi)外關(guān)于CYC類基因在被子植物中的研究現(xiàn)狀及其存在問題,并對(duì)CYC類基因的研究前景進(jìn)行了展望。
被子植物的花型,根據(jù)其對(duì)稱面的有無,可以分為3種:輻射對(duì)稱花(actinomophy),具有多個(gè)對(duì)稱面;兩側(cè)對(duì)稱花(zygomophy),只有一個(gè)對(duì)稱面;不對(duì)稱花(asymmetry),沒有對(duì)稱面[34-36]。野生型的金魚草(Antirrhinum majus)具有典型的兩側(cè)對(duì)稱花,是研究花對(duì)稱性的模式植物。目前,關(guān)于金魚草花型的分子調(diào)控機(jī)制已經(jīng)研究得比較透徹,主要是由調(diào)控花背部特性的CYC基因、DICHOTOMA(DICH)基因、RADIALIS(RAD)基因和調(diào)控腹部特性的DIVARICATA(DIV)基因決定的[6,7]。其中,CYC和DICH基因均屬于CYC2分支成員,它們起源于基因復(fù)制事件,具有冗余功能。CYC、DICH基因在金魚草兩側(cè)對(duì)稱花的發(fā)育過程中起著決定性作用,其中CYC基因起主要作用。
隨著金魚草花對(duì)稱性分子調(diào)控機(jī)制的闡明,研究人員相繼在其他類群中開展了大量的研究。如今,關(guān)于花對(duì)稱性的研究已經(jīng)取得很大進(jìn)展,研究的對(duì)象主要涉及金魚草及其近緣類群[6,7,12,37,38],菊科[31,39-42]、苦苣苔科[43-48]、豆科[9,49-51]、川續(xù)斷目的忍冬科和川續(xù)斷科[18,19,28,29]、毛茛目中的近緣類群罌粟科和紫堇科[52-54]、十字花科[55,56]、金虎尾科[57-59]等,甚至擴(kuò)展到單子葉植物禾本科[30,60]、姜科[61]、鴨跖草[62]、蘭科[63]中(圖1),這些研究結(jié)果顯示,在真雙子葉植物,甚至在親緣關(guān)系較遠(yuǎn)的基部被子植物、單子葉植物中,CYC2都是調(diào)控花對(duì)稱性的關(guān)鍵因子。在被子植物進(jìn)化過程中,CYC的同源基因被各自招募到不同類群中,參與調(diào)控兩側(cè)對(duì)稱花的形成[12,64]。
CYC2基因通過調(diào)控花瓣和雄蕊的形狀來參與花對(duì)稱性的形成。在不同的類群中,CYC同源基因?qū)ζ鞴俚陌l(fā)育可能具有某些共同的作用,都與花瓣的生長有關(guān),但功能具有物種差別,如在金魚草中,CYC基因?qū)Ρ巢炕ò甑纳L具有促進(jìn)作用[6,7,65],但是在擬南芥、苦苣苔科等其他類群,CYC同源基因?qū)τ诒巢炕ò甑纳L具有抑制作用[19,44,48]。即使在同一類群中,CYC同源基因?qū)Σ煌鞴俚淖饔靡部赡懿煌?。如金魚草的CYC基因?qū)Ρ巢炕ò甑纳L具有促進(jìn)作用,而對(duì)背部雄蕊的生長具有抑制作用[6,7]。器官的形狀不僅僅涉及到細(xì)胞的生長和分裂,還與器官的生長極性、區(qū)間生長速率及機(jī)械約束等因素有關(guān),但是關(guān)于形態(tài)和相關(guān)調(diào)控因子的具體關(guān)系了解得很少,研究人員以金魚草花為例,首次將計(jì)算數(shù)學(xué)與分子遺傳學(xué)等數(shù)據(jù)相結(jié)合,從數(shù)量方面闡明了CYC等花對(duì)稱性基因在金魚草花型中發(fā)揮的調(diào)控作用[37,38]。
CYC2基因的表達(dá)模式和表達(dá)時(shí)間決定了花的最終對(duì)稱性。從表達(dá)模式上看,兩側(cè)對(duì)稱花類群中CYC2基因都集中在花器官的背部表達(dá)[7,48,50],而輻射對(duì)稱花類群,表達(dá)模式相對(duì)比較復(fù)雜,CYC2基因的表達(dá)或是從背部擴(kuò)增到整個(gè)花器官[47,59,66],或是不表達(dá)[67],或是先表達(dá)后消失[43,59,68]。在表達(dá)時(shí)間上,擬南芥(Arabidopsis thaliana)中CYC的同源基因AtTCP1早期在花原基背部短暫的表達(dá)沒有影響輻射對(duì)稱花的形成[68],無獨(dú)有偶,五數(shù)苣苔(Bournea leiophylla)BlCYC基因在花發(fā)育早期的背部表達(dá)也沒有影響最終輻射對(duì)稱花的形成[43],最近在金虎尾科的研究中也發(fā)現(xiàn)了這一現(xiàn)象[59]。這些情況均說明了CYC2基因早期的表達(dá)模式不足以影響最終的花對(duì)稱性。而煙葉唇柱苣苔ChCYC從花發(fā)育早期到晚期、持續(xù)不斷的在背部器官的表達(dá)與兩側(cè)對(duì)稱花的形成從另一方面證實(shí)了上述的觀點(diǎn)[48],CYC2基因?qū)▽?duì)稱性形成的影響需要在整個(gè)花發(fā)育過程中持續(xù)不斷的作用。
TCP轉(zhuǎn)錄因子在植物發(fā)育過程中具有廣泛、重要的作用。因此,CYC類基因除了對(duì)花的對(duì)稱性具有重要的調(diào)控作用之外,在其他方面也應(yīng)該具有重要的作用。如參與控制葉片的生長[69]、花瓣融合[39]。在擬南芥中,CYC的同源基因AtTCP1參與了激素——油菜素內(nèi)脂的代謝通路,通過調(diào)控油菜素內(nèi)脂表達(dá)量的多少對(duì)植物發(fā)育的各個(gè)方面進(jìn)行調(diào)控[70]。復(fù)制事件產(chǎn)生的重復(fù)基因經(jīng)常發(fā)生亞功能化和新功能化,也暗示著CYC類基因功能的多樣性。金魚草中存在兩個(gè)拷貝(CYC和DICH);而擬南芥24個(gè)TCP基因中只有3個(gè)是CYC類基因[19];豆科植物百脈根(Lotus japanicus)中存在4個(gè)CYC類基因[9];菊科植物向日葵(Helianthus annuus)中CYC類基因有10個(gè)拷貝[40],而非洲菊(Gerbera hybrida)中卻只含有4個(gè)拷貝[39]。在這些重復(fù)基因中,以往的研究關(guān)注的都是CYC2分支的功能,而對(duì)于另外兩大分支CYC1和CYC3開展的功能研究很少,只在擬南芥中發(fā)現(xiàn)CYC1同源基因TB1抑制玉米側(cè)枝的形成[71],而CYC3的功能研究還未見報(bào)道。而對(duì)菊科植物向日葵、川續(xù)斷科中的研究表明,CYC1基因在類群中再次發(fā)生了基因復(fù)制事件,并且基因表達(dá)模式發(fā)生了分化[28,40],這些都暗示了CYC1基因可能參與到植物發(fā)育的更多方面。
花型是花的重要經(jīng)濟(jì)性狀之一,一直是花卉育種研究的熱點(diǎn)。目前在花型育種方面,較多采用的是傳統(tǒng)育種,主要選取一些具有好看花型的植株進(jìn)行雜交育種,關(guān)于花型的分子育種開展較少。CYC2類基因是花對(duì)稱性的關(guān)鍵調(diào)控因子,對(duì)被子植物的花型(如花瓣的大小、形狀、雄蕊的發(fā)育等)具有重要調(diào)控作用。因此,可以運(yùn)用基因工程技術(shù)將CYC2類基因引入到花卉育種中來,從而培育出更多、更好的新品種。
豆科是嚴(yán)格的自花授粉植物,很多豆科植物是人類食物的來源,傳統(tǒng)的大豆育種存在著異花傳粉難題,開展CYC2類基因的研究有望解決這一問題[72]。已經(jīng)在百脈根和豌豆中分離到調(diào)控花兩側(cè)對(duì)稱的關(guān)鍵調(diào)控基因,可以通過花型改變,使其成為輻射對(duì)稱花,增大異花授粉可能,從而提高大豆產(chǎn)量。
從目前的研究中可以發(fā)現(xiàn),盡管人們已經(jīng)對(duì)某些類群中的CYC類基因進(jìn)行了一些系統(tǒng)而細(xì)致的研究,但在CYC類基因的功能和進(jìn)化的研究中仍然存在一些問題亟待解決。
4.1 開展系統(tǒng)的功能、進(jìn)化研究
TCP轉(zhuǎn)錄因子在植物發(fā)育的過程中具有廣泛、重要的作用[8,13,14,16,17,67,68],CYC類基因?qū)儆赥CP-C型家族成員,應(yīng)該廣泛參與到植物的各種發(fā)育代謝過程中。但是目前已有的關(guān)于CYC類基因的研究幾乎全部位于CYC2分支上,主要調(diào)控花的對(duì)稱性形成,而關(guān)于CYC1和CYC3分支功能的研究很少,CYC1和CYC3分支上基因的功能仍不清楚[19]。因此,對(duì)CYC1和CYC3分支上的CYC類基因開展系統(tǒng)的功能、進(jìn)化研究將有助于人們?nèi)胬斫釩YC類基因在被子植物發(fā)展史上的重要作用。
4.2 選取更多、更具代表性的植物來研究
被子植物核心真雙子葉植物中已有的研究表明,CYC2基因的祖先表達(dá)模式是背特性,即在花器官的背部表達(dá)[48,68]。但在已有的、少數(shù)的幾個(gè)單子葉植物(姜科和鴨跖草)研究中,CYC2基因的表達(dá)模式是腹特性的,即在花器官的腹部器官表達(dá)[61,62]。說明被子植物中CYC2基因的表達(dá)模式非常復(fù)雜,這就需要進(jìn)一步加大采樣類群,選取更多、更具有代表性的植物類群進(jìn)行研究,以確定這一現(xiàn)象是否普遍,從而解釋CYC2基因何時(shí)、如何被招募到各個(gè)類群中調(diào)控花的對(duì)稱性。
4.3 增加對(duì)CYC類基因上游調(diào)控元件的研究
目前關(guān)于CYC類基因的研究主要關(guān)注的是CYC2同源基因的分離、系統(tǒng)發(fā)育分析、表達(dá)模式及功能分析,對(duì)于上游調(diào)控元件的工作開展得很少。Yang等[48]在煙葉唇柱苣苔中的研究表明ChCYC基因具有自我調(diào)控環(huán),能夠使其在花發(fā)育過程中持續(xù)表達(dá)。Carroll等的研究表明,基因表達(dá)的樣式和功能的差異主要是由調(diào)控元件造成的,而不是編碼基因[73,74]。因此推測(cè),CYC2基因在不同類群的花原基中存在著時(shí)間、空間的表達(dá)式樣多變性,以及功能多樣化,這很有可能是由于其上游調(diào)控元件發(fā)生變化導(dǎo)致的,通過對(duì)古老的發(fā)育調(diào)控網(wǎng)絡(luò)進(jìn)行修飾、改變,從而致使被子植物的花型多種多樣。所以,對(duì)代表性類群的CYC類基因的上游調(diào)控元件展開研究,特別是對(duì)CYC類基因的3個(gè)分支進(jìn)行比較分析,將對(duì)人們理解被子植物CYC類基因的進(jìn)化歷史和功能分化起到非常重要的作用。
4.4 將新方法運(yùn)用到CYC類基因的研究中
研究人員將進(jìn)化發(fā)育生物學(xué)與計(jì)算機(jī)數(shù)學(xué)相結(jié)合,研究了金魚草花的三維形態(tài)建成[37,38],揭示了關(guān)于花瓣形狀形成的內(nèi)在分子機(jī)制。在以后的研究中,可以運(yùn)用更多的新方法,如比較基因組學(xué)等方法,以不同角度看待、解決問題。
相信隨著研究的不斷深入,人們將會(huì)深入了解CYC類基因在花發(fā)育中的作用,提高對(duì)被子植物花發(fā)育的理解和認(rèn)識(shí),從而為以后研究整個(gè)被子植物的進(jìn)化和發(fā)育提供新思路。
[1]Zhao D, Yu Q, Chen C, et al. Genetic control of reproductive meristems[M]// McManus MT, Veit B, eds. Meristematic tissues in plant growth and development. Sheffield:Sheffield Academic Press, 2001:89-142.
[2]Soltis DE, Soltis PS, Albert VA, et al. Missing links:the genetic architecture of flowers and floral diversification[J]. Trends Plant Sci, 2002, 7(1):22-31.
[3]Kaufmann K, Melzer S, Theissen G. MIKC-type MADS-domain proteins:Structural modularity, protein interactions and network evolution in land plants[J]. Gene, 2005, 347(2):183-198.
[4]Doebley J. Genetics, development and plant evolution[J]. Curr Opin Genet Dev, 1993, 3(6):865-872.
[5]Doebley J, Lukens L. Transcriptional regulators and the evolution of plant form[J]. Plant Cell, 1998, 10(7):1075-1082.
[6] Luo D, Carpenter R, Vincent C, et al. Origin of floral asymmetry in Antirrhinum[J]. Nature, 1996, 383(6603):794-799.
[7]Luo D, Carpenter R, Copsey L, et al. Control of organ asymmetry in flowers of Antirrhinum[J]. Cell, 1999, 99(4):367-376.
[8]Cubas P, Lauter N, Doebley J, et al. The TCP domain:a motif found in proteins regulating plant growth and development[J]. Plant J,1999, 18(2):215-222.
[9]Feng XZ, Zhao Z, Tian ZX, et al. Control of petal shape and floral zygomorphy in Lotus japonicas[J]. Proc Natl Acad Sci USA, 2006,103(13):4970-4975.
[10] Busch A, Zachgo S. Flower symmetry evolution:towards understanding the abominable mystery of angiosperm radiation[J]. Bioessays, 2009, 31(11):1181-1190.
[11]Hileman LC, Cubas P. An expanded evolutionary role for flower symmetry genes[J]. J Biol, 2009, 8(10):90.
[12]Preston JC, Hileman LC. Developmental genetics of floral symmetry evolution[J]. Trends Plant Sci, 2009, 14(3):147-154.
[13]Doebley J, Stec A, Hubbard L. The evolution of apical dominance in maize[J]. Nature, 1997, 386(6624):485-488.
[14]Kosugi S, Ohanshi Y. PCF1 and PCF2 specifically bind to cis elements in the rice PROLIFERATING CELL NUCLEAR ANTIGEN gene[J]. Plant Cell, 1997, 9(9):1607-1619.
[15]Cubas P. Floral zygomorphy, the recurring evolution of successful trait[J]. Bioessays, 2004, 26(11):1175-1184.
[16]Martin-Trillo M, Cubas P. TCP genes:a family snapshot ten years later[J]. Trends Plant Sci, 2009, 15:31-39.
[17] Cubas P. Role of TCP genes in the evolution of morphological characters in angiosperms[M]//Hawkins JA, Cronk QCB,Bateman RM, eds. Developmental genetics and plant evolution. London, Taylor and Francis:CRC Press, 2002:247-266.
[18]Howarth DG, Donoghue MJ. Duplication in CYC-like genes from dipsacales correlates with floral form[J]. Int J Plant Sci, 2005,166(3):357-370.
[19]Howarth DG and Donoghue MJ. Phylogenetic analysis of the“ECE”(CYC/TB1)clade reveals duplications predating the core eudicots[J]. Proc Natl Acad Sci USA, 2006, 103(24):9101-9106.
[20]Lynch M, Conery JS. The evolutionary fate and consequences of duplicate genes[J]. Science, 2000, 290(5494):1151-1155.
[21]Navaud O, Dabos P, Carnus E, et al. TCP transcription factors predate the emergence of land plants[J]. J Mol Evol, 2007, 65(1):23-33.
[22]Ohta T. Time for acquiring a new gene by duplication[J]. Proc Natl Acad Sci USA, 1988, 85(10):3509-3512.
[23]Lynch M, Force A. The probability of duplicate gene preservation by subfunctionalization[J]. Genetics, 2000, 154(1):459-473.
[24]Vandenbussche M, Theissen G, Van de Peer Y, et al. Structural diversification and neo-functionalization during floral MADS-box gene evolution by C-terminal frameshift mutations[J]. Nucleic Acids Res, 2003, 31(15):4401-4409.
[25]Taylor JS, Raes J. Duplication and divergence:the evolution of new genes and old ideas[J]. Annu Rev Genet, 2004, 38:615-643.
[26]Vandenbussche M, Zethof J, Royaert S, et al. The duplicated B-class heterodimer model:whorl-specific effects and complex genetic interations in Petunia hybrid flower development[J]. Plant Cell,2004, 16(3):741-754.
[27]Moore RC, Purugganan MD. The evolutionary dynamics of plant duplicate genes[J]. Curr Opin Plant Biol, 2005, 8(2):122-128.
[28]Carlson SE, Howarth DG, Donoghue MJ. Diversification of CYCLOIDEA-like genes in Dipsacaceae(Dipsacales):implications for the evolution of capitulum inflorescences[J]. BMC Evol Biol, 2011, 11:325.
[29] Howarth DG, Martins T, Chimney E, et al. Diversification of CYCLOIDEA expression in the evolution of bilateral flower symmetry in Caprifoliaceae and Lonicera(Dipsacales)[J]. Ann Bot London, 2011, 107(9):1521-1532.
[30]Mondragon-Palomino M, Trontin C. High time for a roll call:gene duplication and phylogenetic relationships of TCP-like genes in monocots[J]. Ann Bot London, 2011, 107(9):1533-1544.
[31]T?htiharju S, Rijpkema AS, Vetterli A, et al. Evolution and diversification of the CYC/TB1 gene family in Asteraceae—a comparative study in gerbera(Mutisieae)and sunflower(Heliantheae)[J]. Mol Biol Evol, 2012, 29(4):1155-1166.
[32]Citerne H, Le Guilloux M, Sannier J, et al. Combining phylogenetic and syntenic analyses for understanding the evolution of TCP ECE genes in eudicots[J]. PLoS One, 2013, 8(9):e74803.
[33]Florian J, Guillaume C, Martine LG, et al. Specific duplication and dorsoventrally asymmetric expression patterns of cycloidea-like genes in zygomorphic species of ranunculaceae[J]. PLoS One,2014, 9(4):e95727.
[34]Endress PK. Evolution of floral symmetry[J]. Curr Opin Plant Biol, 2001, 4(1):86-91.
[35]Endress PK. The immense diversity of floral monosymmetry and asymmetry across angiosperms[J]. Botan Rev, 2012, 78:345-397.
[36] Citerne H, Jabbour F, Nadot S, et al. The evolution of floral symmetry[M]// Kader JC, Delseny M, eds. Advances in Botanical Research. United States:Academic Press Inc, 2010, 54:85-137.
[37]Green AA, Kennaway R, Hanna AI, et al. Genetic control of organ shape and tissue polarity[J]. PLoS Biol, 2010, 8(11):e1000537.
[38]Cui ML, Copsey L, Green AA et al. Quantitative control of organ shape by combinatorial gene activity[J]. PLoS Biol, 2010, 8(11):e1000538.
[39]Broholm SK, Tahtiharju S, Laitinen RA, et al. A TCP domain transcription factor controls flower type specification along the radial axis of the Gerbera(Asteraceae)inflorescence[J]. Proc Natl Acad Sci USA, 2008, 105(26):9117-9122.
[40]Chapman MA, Leebens-Mack JH, Burke JM. Positive selection and expression divergence following gene duplication in the sunflower CYCLOIDEA gene family[J]. Mol Biol Evol, 2008, 25(7):1260-1273.
[41]Kim M, Cui ML, Cubas P, et al. Regulatory genes control a key morphological and ecological trait transferred between species[J]. Science, 2008, 322(5904):1116-1119.
[42]Chapman MA, Tang SX, Draeger D, et al. Genetic analysis of floral symmetry in Van Gogh's sunflowers reveals independent recruitment of CYCLOIDEA genes in the Asteraceae[J]. PLoS Genet, 2012, 8(3):e1002628.
[43]Zhou XR, Wang YZ, Smith JF, et al. Altered expression patterns of TCP and MYB genes relating to the floral developmental transition from initial zygomorphy to actinomorphy in Bournea(Gesneriaceae)[J]. New Phytol, 2008, 178(3):532-543.
[44]Gao Q, Tao JH, Yan D et al. Expression differentiation of CYC-like floral symmetry genes correlated with their protein sequence divergence in Chirita heterotricha(Gesneriaceae)[J]. Dev Genes Evol, 2008, 218(7):341-351.
[45]Du ZY, Wang YZ. Significance of RT-PCR expression patterns of CYC-like genes in Oreocharis benthamii(Gesneriaceae)[J]. J S E,2008, 46(1):23-31.
[46]Song CF, Lin QB, Liang RH, et al. Expressions of ECE-CYC2 clade genes relating to abortion of both dorsal and ventral stamens in Opithandra(Gesneriaceae)[J]. BMC Evol Biol, 2009, 9:244.
[47]Pang HB, Sun QW, He SZ, et al. Expression pattern of CYC-like genes relating to a dorsalized actinomorphic flower in Tengia(Gesneriaceae)[J]. J S E, 2010, 48(5):309-317.
[48]Yang X, Pang HB, Liu BL, et al. Evolution of double positive autoregulatory feedback loops in CYCLOIDEA2 clade genes is associated with the origin of floral zygomorphy[J]. Plant Cell,2012, 24(5):1834-1847.
[49] Citerne HL, Luo D, Pennington RT, et al. A phylogenomic investigation of CYCLOIDEA-like TCP genes in the Leguminosae[J]. Plant Physiol, 2003, 131(3):1042-1053.
[50] Wang Z, Luo YH, Li X, et al . Genetic control of floral zygomorphy in pea(Pisum sativum L. )[J]. Proc Natl Acad Sci USA, 2008,105(30):10414-10419.
[51] Xu SL, Luo YH, Cai ZG, et al. Functional diversity of CYCLOIDEA-like TCP genes in the control of zygomorphic flower development in Lotus japonicus[J]. J Interg Plant Biol, 2013, 55(3):221-231.
[52]K?lsch A, Gleissberg S. Diversification of CYCLOIDEA-like TCP genes in the basal eudicot families Fumariaceae and Papaveraceae s. str[J]. Plant Biol, 2006, 8(5):680-687.
[53]Damerval C, Guilloux ML, Jager M, et al. Diversity and evolution of CYCLOIDEA-Like TCP genes in relation to flower development in Papaveraceae[J]. Plant Physiol, 2007, 143(2):759-772.
[54] Damerval C, Citerne H, Le Guilloux M, et al. Asymetric morphogenetic cues along the transverse plane:shift from dissymmetry to zygomorphy in the flower of Fumarioideae[J]. Am J Bot, 2013, 100(2):391-402.
[55]Busch A, Zachgo S. Control of corolla monosymmetry in the Brassicaceae Iberis amara[J]. Proc Natl Acad Sci USA, 2007,104(42):16714-16719.
[56]Busch A, Horn S, Muhlhausen A, et al. Corolla monosymmetry:evolution of a morphological novelty in the Brassicaceae family[J]. Mol Biol Evol, 2012, 29(4):1241-1254.
[57]Zhang WH, Kramer EM, Davis CC. Floral symmetry genes and the origin and maintenance of zygomorphy in a plant-pollinator mutualism[J]. Proc Natl Acad Sci USA, 2010, 107(14):6388-6393.
[58]Zhang WH, Kramer EM, Davis CC. Similar genetic mechanisms underlie the parallel evolution of floral phenoltypes[J]. PLoS ONE, 2012, 7(4):e36033.
[59]Zhang WH, Steinmann VW, Nikolov L. et al. Divergent genetic mechanisms underlie reversals to radial floral symmetry from diverse zygomorphic flowered ancestors[J]. Frontiers in Plant Science, 2013, 4(302):1-12.
[60]Yuan Z, Gao S, Xue DW. RETARDED PALEA1 controls palea development and floral zygomorphy in rice[J]. Plant Physiol,2009, 149(1):235-244.
[61]Bartlett ME, Specht CD. Changes in expression pattern of the teosinte branched1-like genes in the Zingiberales provide a mechanism for evolutionary shifts in symmetry across the order[J]. Am J Bot, 2011, 98(2):227-243.
[62]Preston JC, Hileman LC. Parallel evolution of TCP and B-class genes in Commelinaceae flower bilateral symmetry[J]. EvoDevo, 2012, 3:6.
[63]Mondragon-Palomino M, Theissen G. Why are orchid flowers so diverse? reduction of evolutionary constraints by paralogues of class B floral homeotic genes[J]. Ann Bot, 2009, 104(3):583-594.
[64]Hileman LC. Bilateral flower symmetry-how, when and why?[J]. Curr Opin Plant Biol, 2014, 17:146-152.
[65]Costa MMR, Fox S, Hanna AI, et al. Evolution of regulatory interactions controlling floral asymmetry[J]. Development, 2005,132(22):5093-5101.
[66]Citerne HL, Pennington RT, Cronk QC. An apparent reversal in floral symmetry in the Legume Cadia is a homeotic transformation[J]. Proc Natl Acad Sci USA, 2006, 103(32):12017-12020.
[67]Cubas P, Vincent C, Coen E. An epigennetic mutation responsible for natural variation in floral symmetry[J]. Nature, 1999, 401(6749):157-161.
[68]Cubas P, Coen E, Zapater JM. Ancient asymmetries in the evolution of flowers[J]. Curr Biol, 2001, 11(13):1050-1052.
[69] Koyama T, Sato F, Ohme-Takagi M. A role of TCP1 in the longitudinal elongation of leaves in Arabidopsis[J]. Biosci Biotechnol Biochem, 2010, 74(10):2145-2147.
[70] Guo Z, Fujioka S, Blancaflor EB, et al. TCP1 modulates brassinosteroid biosynthesis by regulating the expression of the key biosynthetic gene DWARF4 in Arabidopsis thaliana[J]. Plant Cell, 2010, 22(4):1161-1173.
[71]Aguilar-Martínez JA, Poza-Carrión C, Cubas P. Arabidopsis BRANCHED1 acts as an integrator of branching signals within axillary buds[J]. Plant Cell, 2007, 19:458-472.
[72]李家洋. 植物花對(duì)稱性發(fā)育研究的進(jìn)展:從理論到應(yīng)用的雙重價(jià)值[J]. 分子植物育種, 2006, 4(6):751-752.
[73] Carroll SB, Prud'Homme B, Gompel N. Regulating evolution[J]. Scientific American, 2008, 298(5):60-67.
[74] Carroll SB. Endless forms:the evolution of gene regulation and morphological diversity[J]. Cell, 2000, 101(6):577-580.
(責(zé)任編輯 狄艷紅)
Progress on Study of CYC-like Genes During the Floral Development of Angiosperm
Xu Yunru Li Yueying Pang Hongbo Zhang Yuxin Liu Yulian
(College of Chemistry and Life Science,Shenyang Normal University,Shenyang 110034)
CYCLOIDEA(CYC)-like genes are members of TCP family and play an important role during floral development. CYC-like genes underwent gene duplication deep within angiosperm phylogeny, they diversified into three major clades, CYC1, CYC2, CYC3, and CYC2 clade genes are main regulators in floral symmetry. But the studies on CYC1 and CYC3 are limited. In this paper, recent insights into CYC-like genes and the prospective of the study on CYC genes were reviewed.
CYC gene;floral symmetry;TCP gene family;evolution
10.13560/j.cnki.biotech.bull.1985.2015.04.002
2014-07-18
國家自然科學(xué)基金項(xiàng)目(31100176),沈陽師范大學(xué)生態(tài)與環(huán)境研究中心主任基金項(xiàng)目(EERC-K-201404),沈陽師范大學(xué)大學(xué)生創(chuàng)新創(chuàng)業(yè)訓(xùn)練計(jì)劃項(xiàng)目
徐蘊(yùn)如,女,E-mail:1359404266@qq.com
逄洪波,女,博士,講師,研究方向:植物進(jìn)化發(fā)育生物學(xué);E-mail:panghongbo800206@163.com