譚 號 李英文 尹 盼 劉智皓
?
己烯雌酚抑制斑馬魚精子發(fā)生及其可能的分子機(jī)制
譚 號 李英文 尹 盼 劉智皓
(重慶師范大學(xué)生命科學(xué)學(xué)院, 重慶市高校生物活性物質(zhì)工程研究中心, 重慶市高校動物生物學(xué)重點實驗室, 重慶 401331)
為研究內(nèi)分泌干擾物己烯雌酚(DES)對魚類精巢發(fā)育和配子發(fā)生的影響, 研究用DES(0.1、1和10 μg/L, 暴露20d)對內(nèi)分泌干擾研究的經(jīng)典模式動物——斑馬魚()雄性成魚進(jìn)行了處理。組織學(xué)研究結(jié)果表明, DES嚴(yán)重影響斑馬魚精子發(fā)生。同時, 研究克隆了斑馬魚與生殖細(xì)胞發(fā)育和減數(shù)分裂相關(guān)的、1的部分cDNA, 對其組織和細(xì)胞表達(dá)模式進(jìn)行了研究。結(jié)果表明,僅表達(dá)于精巢的精原細(xì)胞、初級精母細(xì)胞和卵巢不同時期的生殖細(xì)胞; 而1則表達(dá)于精巢精母細(xì)胞和卵巢卵母細(xì)胞發(fā)育早期。半定量PCR結(jié)果表明, DES處理后的表達(dá)沒有明顯變化; 而1的表達(dá)則被明顯抑制, 且呈時間依賴性和劑量依賴性效應(yīng); 而轉(zhuǎn)錄因子1和雄激素合成關(guān)鍵酶基因450 11的表達(dá)也被顯著抑制。因此本研究推測, DES可能通過抑制1和450 11的表達(dá)誘導(dǎo)了斑馬魚生殖細(xì)胞凋亡; 并通過抑制1的表達(dá)阻礙了減數(shù)分裂。
己烯雌酚; 斑馬魚; 生殖細(xì)胞丟失; 精子發(fā)生; 減數(shù)分裂
內(nèi)分泌干擾物(Endocrine disrupting chemicals, EDCs)是指可干擾動物體內(nèi)保持自身平衡、調(diào)節(jié)發(fā)育過程的內(nèi)源激素的合成、分泌、運輸、結(jié)合和代謝等過程的外源性化學(xué)物質(zhì)[1]。EDCs廣泛存在于環(huán)境中, 主要以環(huán)境雌激素為主, 部分EDCs能通過生物富集[2], 嚴(yán)重?fù)p害雌雄性動物的性腺發(fā)育和配子發(fā)生, 引起動物產(chǎn)生明顯的雌、雄性化效應(yīng)[3—5]。由于大多數(shù)EDCs最終匯聚于水中, 對終身生活在水中的魚類其生殖、神經(jīng)和免疫等系統(tǒng)的功能影響極大, 能導(dǎo)致其生殖能力低下、配子數(shù)量減少、性腺變小, 甚至發(fā)生性反轉(zhuǎn)[ 6—8]。
據(jù)調(diào)查, 2012年在我國主要的六大江系中均不同程度存在EDCs的污染[9], 且持續(xù)惡化[10]。其中, 己烯雌酚(DES, Diethylstilbestrol), 一種醫(yī)用人工合成雌激素, 是長江水系典型的EDCs之一, 主要分布在長江中下游, 濃度高達(dá)2.07—2.52 ng/L[10]。哺乳類的研究發(fā)現(xiàn), DES可導(dǎo)致倉鼠()和大鼠()精巢發(fā)育障礙、生殖細(xì)胞凋亡[11—13]。然而, DES對魚類精巢發(fā)育和精子發(fā)生影響的研究較少, 大多研究集中在對胚胎的影響14]。
本研究用DES(0.1、1和10 μg/L)對內(nèi)分泌干擾研究的經(jīng)典模式動物——斑馬魚(rerio)雄性成魚進(jìn)行了20d處理, 通過組織學(xué)的方法研究了DES對斑馬魚精巢發(fā)育和精子發(fā)生的影響。同時, 為深入研究其可能的分子機(jī)理, 本研究采用RT-PCR的方法, 在斑馬魚克隆了與生殖細(xì)胞和減數(shù)分裂密切相關(guān)的標(biāo)記基因和1的部分cDNA, 并通過RT-PCR和原位雜交的方法, 研究了上述基因的組織、細(xì)胞表達(dá)模式及DES對上述基因表達(dá)的影響。另外, 本研究還檢測了DES對雄性性別決定基因1和魚類雄激素合成關(guān)鍵酶基因450 11表達(dá)的影響, 以期探討DES影響斑馬魚精子發(fā)生可能的分子機(jī)制。
1.1 實驗試劑和儀器
DES, 購自美國Sigma公司; 總RNA提取試劑盒(Trizol), 購于Invitrogen公司; 逆轉(zhuǎn)錄試劑盒(PrimeScript RT reagent Kit), 型號: RR047A, 購于日本TaKaRa公司。其余試劑為國產(chǎn)分析純。DM2700 M光學(xué)顯微鏡, 德國徠卡公司; PCR儀, 型號: My cycler, 美國Bio-Rad公司。
1.2 實驗材料
實驗用斑馬魚雄性成魚(AB系4月齡)為研究組自行繁殖獲得, 平均體重(0.42±0.04) g, 處理前用曝氣除氯后的自來水暫養(yǎng)于的恒溫循環(huán)水養(yǎng)殖系統(tǒng)中。
1.3 實驗設(shè)計
設(shè)置3個實驗劑量組(0.1、1和10 μg/L, 0.05‰ DMSO作為助溶劑), 對照組為0.05‰ DMSO。處理實驗在30 L的玻璃缸中進(jìn)行, 每缸隨機(jī)放入實驗魚50尾; 每天喂食3次, 持續(xù)增氧, 每天換水1次, 處理20d。水體溫度控制在(28 ± 1)℃, 光照周期為14h︰10h (光暗比)。在處理后3、6、12和20d, 每組各解剖3尾魚的精巢, 液氮速凍后, 于–80℃?zhèn)溆?。處理?0d, 每組各取3尾魚精巢, 波恩氏液固定、包埋, 常規(guī)石蠟切片。上述實驗共重復(fù)3次。
1.4 組織學(xué)研究
將斑馬魚置于冰面上, 麻醉后解剖出斑馬魚精巢, 于波恩氏液固定24h。將材料依次放入梯度乙醇和二甲苯中脫水、透明, 并在60℃包埋。隨后進(jìn)行常規(guī)組織學(xué)切片(厚度5 μm)和蘇木精/伊紅(HE)染色, 中性樹膠封片后拍照。
1.5 斑馬魚和1部分cDNA的克隆
解剖斑馬魚雌雄性腺, 用Trizol(Invitrogen)提取總RNA。測定濃度后, 取1 μg總RNA按照Prime-- Script RT reagent Kit (TaKaRa)說明書合成第一鏈cDNA。
根據(jù)GenBank (http://www.ncbi.nlm.nih.gov)上公布的斑馬魚(BC129275)1(NM_001020782) mRNA序列, 設(shè)計基因特異性引物, 并利用已合成的第一鏈cDNA在PCR擴(kuò)增儀(Bio-Rad IQ5)上擴(kuò)增部分序列。其擴(kuò)增條件為: 為94℃ 3min, 35個循環(huán)的94℃ 30s, 53℃ 30s, 72℃ 30s, 后延伸7min。擴(kuò)增片段在1% 的瓊脂糖凝膠上電泳, 溴化乙錠(EB)染色后, 在凝膠成像系統(tǒng)上分析。目的片段用膠回收試劑盒(Geneview)純化后亞克隆入pMD19-T載體(TaKaRa), 挑選陽性菌落, 提取質(zhì)粒, 測序。本實驗所用引物見表1。
表1 引物序列
1.6 斑馬魚和1mRNA在各組織中的分布
解剖斑馬魚雌雄各組織(T. 精巢、O. 卵巢、B. 腦、L. 肝臟、I. 腸、K. 腎臟、H. 心臟、M. 肌肉、Sp. 脾臟), 提取總RNA, 按照PrimeScript RT reagent Kit (TaKaRa)說明書合成第一鏈cDNA。用和1基因特異性引物研究其在斑馬魚各組織中的表達(dá)模式, 并以1作為內(nèi)參, 以質(zhì)粒和蒸餾水為模板擴(kuò)增的產(chǎn)物分別作為陽性和陰性對照。其擴(kuò)增條件為: 為94℃ 3min, 28個循環(huán)的94℃ 30s, 53℃ 30s, 72℃ 30s, 后延伸7min。PCR產(chǎn)物在1%的瓊脂糖凝膠上電泳, EB染色后在凝膠成像系統(tǒng)上進(jìn)行拍照、分析。
1.7 斑馬魚和1 mRNA在細(xì)胞中的表達(dá)
斑馬魚和1的反義鏈和正義鏈(陰性對照)cRNA探針利用線性化的質(zhì)粒, 參照地高辛標(biāo)記試劑盒(Roche, Germany)說明書進(jìn)行體外轉(zhuǎn)錄。
解剖出斑馬魚成魚雌雄性腺, 在4% PFA中, 4℃固定16h。隨后在乙醇(DEPC)和二甲苯中脫水、透明, 并在60℃包埋。石蠟組織切片經(jīng)常規(guī)二甲苯脫蠟、梯度酒精復(fù)水和0.85×PBS潤洗后, 用蛋白酶K于37℃消化12min, 隨后經(jīng)4% PFA重新固定和0.25%乙酰酐溶液乙?;? 切片在66%去離子甲酰胺/2×SSC預(yù)雜交液中60℃預(yù)雜交1h, 隨后分別加入地高辛標(biāo)記的和1探針, 于60℃雜交16h。雜交后經(jīng)SSC緩沖液洗滌, BufferⅠ (0.1 mol/L馬來酸, 0.15 mol/L NaCl, pH7.5)洗滌5min, 封閉劑Buffer Ⅱ(BufferⅠ中含1%BSA)室溫封閉30min, 加入1︰2000稀釋的堿性磷酸酶標(biāo)記的anti-DIG-AP抗體(Roche), 室溫孵育30min, Buffer I洗滌3×15min, 并用NBT和BCIP顯色, 封片、拍照。
1.8 DES對斑馬魚1、1和450 11mRNA的表達(dá)量的影響
取–80℃?zhèn)溆玫陌唏R魚精巢, 提取總RNA, 合成cDNA, 用半定量RT-PCR (Semi-quantitative RT-PCR)方法檢測斑馬魚1、1 (AF439562)和450 11(NM_001080204)mRNA的表達(dá)變化, 并以1作為內(nèi)參, 所用引物參考表1。其擴(kuò)增條件為和1: 94℃ 3min, 28個循環(huán)的94℃ 30s, 53℃ 30s, 72℃ 30s, 后延伸7min;1和450 11: 94℃ 3min, 28個循環(huán)的94℃ 30s, 60℃ 30s, 72℃ 30s, 后延伸7min。PCR產(chǎn)物在1%瓊脂糖凝膠上電泳, EB染色后, 用凝膠成像系統(tǒng)成像, 并用Quantity One(Bio-Rad)進(jìn)行光密度分析。數(shù)據(jù)用9個平行樣的平均值±標(biāo)準(zhǔn)誤(Means±SE)表示。結(jié)果用SPSS1310軟件(SPSS, Chicago, IL, USA)進(jìn)行方差分析和差異比較,<0.05, 差異顯著。柱形圖用GraphPad Prism 5(GraphPad Software, San Diego, CA)進(jìn)行繪制。
2.1 DES對斑馬魚精巢影響的組織學(xué)觀察
研究結(jié)果表明, 對照組斑馬魚精巢生精小管數(shù)量眾多, 內(nèi)有不同發(fā)育時期的生精小囊, 囊內(nèi)的生殖細(xì)胞處于同一發(fā)育時期, 而相鄰小囊內(nèi)的生殖細(xì)胞處于不同發(fā)育階段(圖1A)。不同的是, 所有劑量的DES均對斑馬魚精巢發(fā)育和精子發(fā)生造成不同程度影響。在低劑量組精巢中, 體細(xì)胞增生, 細(xì)胞膨大(圖1B); 在中劑量組精巢中, 處于精細(xì)胞時期的生精小囊數(shù)目減少, 單倍體生殖細(xì)胞(尤其是精子細(xì)胞)大量丟失, 出現(xiàn)生殖細(xì)胞丟失后產(chǎn)生的空腔(圖1C); 而在高劑量組精巢中, 單倍體生殖細(xì)胞大部分或全部丟失, 空腔化嚴(yán)重, 精母細(xì)胞數(shù)量也有所減少(圖1D)。
A. 對照組; B-D. DES處理組(0.1、1和10 μg/L); Sg. 精原細(xì)胞; PS. 初級精母細(xì)胞; SS. 次級精母細(xì)胞; SC. 支持細(xì)胞; St. 精子細(xì)胞; Sz. 精子; *. 生殖細(xì)胞丟失形成的空腔; 標(biāo)尺: 50 μm
A. Control; B-D. DES (0.1, 1 and 10 μg/L). Sg. Spermatogonium; PS. Primary Spermatocyte; SS. Secondary Spermatocyte; SC. Sertoli cell; St. Spermatid; Sz. Spermatozoa; asterisk. cavity resulting from germ cell loss. Scale bar: 50 μm
2.2 斑馬魚和1組織表達(dá)模式的研究
組織表達(dá)模式研究表明,和1僅在斑馬魚性腺(精巢和卵巢)中表達(dá), 不在其他非性腺組織中表達(dá)。其中,在精巢和卵巢中的表達(dá)水平相當(dāng),1在精巢中的表達(dá)略高于卵巢(圖2)。
2.3 斑馬魚和1細(xì)胞表達(dá)模式的研究
原位雜交結(jié)果表明,和1僅表達(dá)于斑馬魚性腺生殖細(xì)胞中。在精巢中,僅在精原細(xì)胞和初級精母細(xì)胞中表達(dá)(圖3A); 而1則表達(dá)于初級和次級精母細(xì)胞(圖3C); 在卵巢中,在所有時期生殖細(xì)胞都有表達(dá), 主要表達(dá)于卵母細(xì)胞發(fā)育早期, 發(fā)育后期卵母細(xì)胞表達(dá)豐度較低(圖3B); 而1則僅表達(dá)于卵母細(xì)胞發(fā)育早期, 而在初級生長卵母細(xì)胞中沒有表達(dá)(圖3D)。
T. 精巢、O. 卵巢、B. 腦、L. 肝臟、I. 腸、K. 腎臟、H. 心臟、M. 肌肉、Sp. 脾臟、NC. 陰性對照、PC. 陽性對照、1為內(nèi)參
T, testis; O, ovary; B, brain; L, liver; I, intestines; K, kidney; H, heart; M, muscle; Sp, spleen; NC, negative control; PC, positivecontrol;1, internal control
Testis. 精巢; Ovary. 卵巢; Sg. 精原細(xì)胞; PS. 初級精母細(xì)胞; SS. 次級精母細(xì)胞; PG. 初級生長卵母細(xì)胞; PV. 卵黃發(fā)育前期; EV. 卵黃發(fā)育早期; MV. 卵黃發(fā)育中期; 黑色箭頭, 陽性信號; 黑色三角形: 陰性信號; 插圖: 陰性對照
Sg. Spermatogonium; PS. Primary Spermatocyte; SS. Secondary Spermatocyte; PG. primary growth stage; PV. previtellogenic stage; EV. early vitellogenic stage; MV. midvitellogenic stage; Arrow. positive signal; arrowhead. negative signal; Inset. negative control
2.4 DES處理對斑馬魚中1、1和450 11mRNA水平的影響
半定量RT-PCR結(jié)果顯示, 不同劑量的DES對斑馬魚精巢中的表達(dá)影響較小。尤其是在各取材時間點,的表達(dá)在各組間沒有顯著差異(圖4A)。不同的是, DES能顯著抑制斑馬魚精巢中1、1和450 11的表達(dá)。其中處理后6d,1的表達(dá)量開始下調(diào), 且呈明顯的時間依賴性和劑量依賴性(圖4B); 處理后6d, DES(10 μg/L)顯著下調(diào)1的表達(dá), 呈明顯的時間依賴性(圖4C); 而DES下調(diào)450 11的表達(dá)則在處理后20d (圖4D)。
大寫字母, 不同時間同組結(jié)果的顯著性差異(<0.05); 小寫字母, 相同時間不同組結(jié)果的顯著性差異(<0.05)。dat, 處理后天數(shù)。=9
Uppercase letters, significant difference in the same group of different time points (<0.05); lowercase letters, significant difference in the same time point of different groups (<0.05). dat, days after treatment.=9
大量研究表明, EDCs能導(dǎo)致雄性動物生殖細(xì)胞發(fā)育障礙, 精子數(shù)量和精液量減少等問題[15—17]。作為低等脊椎動物的魚類, 由于其性腺發(fā)育和分化的可塑性, 對EDCs更為敏感。在分化早期暴露于EDCs則能產(chǎn)生間性甚至性反轉(zhuǎn)[18]; 而在性腺分化結(jié)束后暴露于EDCs中, 其可能造成性腺發(fā)育障礙, 配子發(fā)生異常[19—21]。作為典型的EDCs, DES也能造成相似的結(jié)果。青鳉()和銀鯽()的研究表明, 1 μg/L和10 μg/L劑量的DES能分別誘導(dǎo)其精巢發(fā)育障礙和生殖細(xì)胞數(shù)量減少[22, 23], 與本研究的結(jié)果極為相似。小鼠()和大鼠的研究發(fā)現(xiàn), 雌二醇(E2, Estradiol)能誘導(dǎo)其精母細(xì)胞和精子細(xì)胞發(fā)生凋亡[24—26]。另外, 1 μg/L和10 μg/L乙炔基雌二醇(EE2, 17α-Ethiny-lestradiol)也能誘導(dǎo)青鳉精巢中生殖細(xì)胞凋亡[21]。由于DES的生理效應(yīng)與E2和EE2極為相似, 其暴露后的斑馬魚精巢也產(chǎn)生了與青鳉極為相似的生理學(xué)變化, 因而推測DES誘導(dǎo)了斑馬魚精巢中生殖細(xì)胞發(fā)生凋亡。
為什么DES能誘導(dǎo)雄性斑馬魚生殖細(xì)胞凋亡呢?眾所周知, 轉(zhuǎn)錄因子dmrt1對魚類精子發(fā)生起重要作用[27]。尼羅羅非魚()的研究發(fā)現(xiàn), dmrt1缺陷能導(dǎo)致精巢畸形, 精原細(xì)胞退化, 甚至出現(xiàn)生殖細(xì)胞完全丟失的現(xiàn)象[28]。而本研究結(jié)果發(fā)現(xiàn), DES能顯著下調(diào)1的表達(dá), 與在其他魚類中的相關(guān)研究結(jié)果相似[29, 30]。DES誘導(dǎo)的斑馬魚精巢中1表達(dá)的下調(diào)可能是生殖細(xì)胞凋亡的重要原因之一。同時, 作為硬骨魚類主要的雄激素, 11-KT對魚類的精子發(fā)生也起重要作用[31, 32], 主要由P450 11β合成[33]。而大量研究表明, 雌激素能明顯下調(diào)450 11的表達(dá)[34], 與本研究的結(jié)果完全相同。與上述結(jié)果相對應(yīng)的是, DES暴露后的斑馬魚精子細(xì)胞大量丟失。因此推測, 環(huán)境雌激素DES可能通過抑制1和450 11的表達(dá)從而誘導(dǎo)了斑馬魚生殖細(xì)胞的凋亡。
由于僅表達(dá)于斑馬魚精原細(xì)胞和初級精母細(xì)胞(二倍體)中; 而DES對斑馬魚的表達(dá)量沒有顯著影響, 因此, 我們認(rèn)為DES對二倍體生殖細(xì)胞沒有顯著影響, 這也與組織學(xué)研究結(jié)果一致。不同的是, 減數(shù)分裂標(biāo)記基因1僅表達(dá)于減數(shù)分裂時期的生殖細(xì)胞——初級精母細(xì)胞(二倍體)和次級精母細(xì)胞(單倍體), 而不表達(dá)于精子細(xì)胞(單倍體)[35, 36]。與E2能顯著抑制1的表達(dá)相同[37], 本研究也發(fā)現(xiàn)DES能顯著抑制斑馬魚1的表達(dá)。由于1僅在減數(shù)分裂過程中表達(dá), 是減數(shù)分裂中重組和聯(lián)會復(fù)合體的關(guān)鍵組分[38, 39],1 基因突變或敲除會導(dǎo)致小鼠生殖細(xì)胞的同源染色體正常聯(lián)會異常, 減數(shù)分裂停滯[40, 41]。因此本研究認(rèn)為, DES暴露可能通過抑制1的表達(dá), 顯著抑制了斑馬魚減數(shù)分裂過程, 阻礙了精子細(xì)胞的產(chǎn)生。
綜上所述, 在DES處理后, 斑馬魚精巢單倍體生殖細(xì)胞數(shù)量顯著減少, 其可能的原因有: (1)DES可能通過抑制1和450 11的表達(dá), 誘導(dǎo)了斑馬魚精子細(xì)胞的凋亡; (2)DES可能通過抑制生殖細(xì)胞的減數(shù)分裂, 阻礙了新生精子細(xì)胞的產(chǎn)生。但關(guān)于DES如何通過抑制1450 11和1的表達(dá), 從而阻礙斑馬魚精子發(fā)生, 其內(nèi)在機(jī)制還有待于進(jìn)一步深入研究。
[1] Shi X J, Liu C S, Yu K,. Toxicological research on environmental endocrine disruptors [J]., 2009, 21(2/3): 340—349 [史熊杰, 劉春生, 余珂, 等.環(huán)境內(nèi)分泌干擾物毒理學(xué)研究.化學(xué)進(jìn)展, 2009, 21(2/3): 340—349]
[2] Lai K M, Scrimshaw M D, Lester J N. Prediction of the bioaccumulation factors and body burden of natural and synthetic estrogens in aquatic organisms in the river systems [J]., 2002, 289(1): 159—168
[3] Parsley L M, Wapstra E, Jones S M.exposure to the oestrogen mimic diethylstilbestrol disrupts gonadal development in a viviparous reptile [J].,, 2014, doi: 10.1071/RD13411
[4] Xu H, Yang J, Wang Y,. Exposure to 17α-ethynylestradiol impairs reproductive functions of both male and female zebrafish () [J]., 2008, 88(1): 1—8
[5] Si J, Li P, Xin Q,. Perinatal exposure to low doses of tributyltin chloride reduces sperm count and quality in mice [J]., 2013, doi: 10.1002/tox.21892
[6] Jin Y, Shu L, Huang F,. Environmental cues influence EDC-mediated endocrine disruption effects in different developmental stages of Japanese medaka () [J]., 2011, 101(1): 254—260
[7] Reyhanian Caspillo N, Volkova K, Hallgren S,. Short-term treatment of adult male zebrafish () with 17α-ethinylestradiol affects the transcription of genes involved in development and male sex differentiation [J]., 2014, 164C: 35—42
[8] Shen W Y, Zhou Z L, Li X J. Effects of long term exposure to bisphenol A and nonylphenol on the reproduction of zebrafish () [J]., 2007, 31(B09): 59—64 [沈萬赟, 周忠良, 李祥軍. 雙酚 A 和壬基酚長期暴露對斑馬魚繁殖的影響. 水產(chǎn)學(xué)報, 2007, 31(B09): 59—64]
[9] Jiang W, Yan Y, Ma M,. Assessment of source water contamination by estrogenic disrupting compounds in China [J]., 2012, 24(2): 320—328
[10] Liu J, Wang R, Huang B,. Distribution and bioaccumulation of steroidal and phenolic endocrine disrupting chemicals in wild fish species from Dianchi Lake, China [J]., 2011, 159(10): 2815—2822
[11] Hendry W J, Weaver B P, Naccarato T R,. Differential progression of neonatal diethylstilbestrol-induced disruption of the hamster testis and seminal vesicle [J]., 2006, 21(3): 225—240
[12] Qiu C H, Ohe M, Koibuchi N,. Apoptosis in the epididymalepithelium of adult male golden hamster exposed to diethylstilbestrol [J]., 2004, 52(2):187—192
[13] Nair R, Shaha C. Diethylstilbestrol induces rat spermatogenic cell apoptosis in vivo through increased expression of spermatogenic cell Fas/FasL system [J]., 2003; 278(8): 6470—6481
[14] Duan Z H, Zhu L, Gong Z Y. Bioaccumulation and toxicity test of diethylstilbestrol to zebrafish () embryo [J]., 2009, 30(2): 522—526 [端正花, 朱琳, 宮知遠(yuǎn). 己烯雌酚在斑馬魚胚胎中的生物蓄積及毒性機(jī)制研究. 環(huán)境科學(xué), 2009, 30(2): 522—526]
[15] Volle D H, Decourteix M, Garo E,. The orphan nuclear receptor small heterodimer partner mediates male infertility induced by diethylstilbestrol in mice [J]., 2009, 119(12): 3752
[16] Ma A, Yang X, Wang Z,. Adult exposure to diethylstilbestrol induces spermatogenic cell apoptosis in vivo through increased oxidative stress in male hamster [J]., 2008, 25(3): 367—373
[17] Nadzialek S, Kestemont P. 17alpha-ethinylestradiol induces an imbalance between apoptosis and cell proliferation to sex steroid disruption in a testis culture of gudgeon,[J]., 2010, 29(4): 881—886
[18] Lei B, Kang J, Yu Y,. β-estradiol 17-valerate affects embryonic development and sexual differentiation in Japanese medaka () [J]., 2013, 134: 128—134
[19] Balch G C, Mackenzie C A, Metcalfe C D. Alterations to gonadal development and reproductive success in Japanese medaka () exposed to a 17alpha- ethinylestradiol [J]., 2004, 23: 782—791
[20] Tilton S C, Foran C M, Benson W H. Relationship between ethinylestradiol-mediated changes in endocrine function and reproductive impairment in Japanese medaka () [J]., 2005, 24: 352—359
[21] Miller H D, Clark B W, Hinton D E,Anchoring ethinylestradiol induced gene expression changes with testicular morphology and reproductive function in the medaka [J]., 2012, 7(12): e52479
[22] Paul-Prasanth B, Shibata Y, Horiguchi R,. Exposure to diethylstilbestrol during embryonic and larval stages of medaka fish () leads to sex reversal in genetic males and reduced gonad weight in genetic females [J]., 2011, 152(2): 707—717
[23] Yang L, Lin L, Weng S,. Sexually disrupting effects of nonylphenol and diethylstilbestrol on male silver carp () in aquatic microcosms [J]., 2008, 71(2): 400—411
[24] Chimento A, Sirianni R, Casaburi I,. 17β-Estradiol activates GPER- and ESR1-dependent pathways inducing apoptosis in GC-2 cells, a mouse spermatocyte-derived cell line [J]., 2012, 355(1): 49—59
[25] Chimento A, Sirianni R, Zolea F,. Gper and ESRs are expressed in rat round spermatids and mediate oestrogen-dependent rapid pathways modulating expression of cyclin B1 and Bax [J].,2011, 34(5 Pt 1): 420—429
[26] Chimento A1, Sirianni R, Delalande C,. 17 beta-estradiol activates rapid signaling pathways involved in rat pachytene spermatocytes apoptosis through GPR30 and ER alpha [J]., 2010, 320(1—2): 136—144
[27] Takashima S, Hirose M, Ogonuki N,. Regulation of pluripotency in male germline stem cells by[J]., 2013, 27(18): 1949—1958
[28] Li M H, Yang H H, Li M R,. Antagonistic roles of Dmrt1 and Foxl2in sex differentiation via estrogen production in tilapia as demonstrated by TALENs [J]., 2013, 154(12): 4814—4825
[29] Lee K H, Yamaguchi A, Rashid H,. Estradiol-17beta treatment induces intersexual gonadal development in the pufferfish,[J]., 2009, 26(9): 639—645
[30] Liu Z, Wu F, Jiao B,Molecular cloning of doublesex and mab-3-related transcription factor 1, forkhead transcription factor gene 2, and two types of cytochrome P450 aromatase in Southern catfish and their possible roles in sex differentiation [J]., 2007, 194(1): 223—241
[31] Rasheeda M K, Kagawa H, Kirubagaran R,. Cloning, expression and enzyme activity analysis of testicular 11beta-hydroxysteroid dehydrogenase during seasonal cycle and after hCG induction in air-breathing catfish[J]., 2010, 120(1): 1—10
[32] Miura T, Higuchi M, Ozaki Y,. Progestin is an essential factor for theinitiation of the meiosis in spermatogenetic cells of the eel [J]., 2006, 103(19): 7333—7338
[33] Yazawa T, Uesaka M, Inaoka Y,. Cyp11b1 is induced in the murine gonad by luteinizing hormone/human chorionic gonadotropin and involved in the production of 11-ketotestosterone, a major fish androgen: conservation and evolution of the androgen metabolic pathway [J]., 2008, 149(4): 1786—1792
[34] Zhang W L, Zhou L Y, Senthilkumaran B,. Molecular cloning of two isoforms of 11beta-hydroxylase and their expressions in the Nile tilapia,[J]., 2009, 165(1): 34—41
[35] Yoshida K, Kondoh G, Matsuda Y,. The mouse RecA-like gene Dmc1 is required for homologous chromosome synapsis during meiosis [J]., 1998, (1): 707—718
[36] Ozaki Y, Miura C, Miura T. Molecular cloning and gene expression of Spo11 during spermatogenesis in the Japanese eel,[J]., 2006, 143(3): 309—314
[37] Lau E L, Lee M F, Chang C F. Conserved sex-specific timing of meiotic initiation during sex differentiation in the protandrous black porgy[J]., 2013, 88(6):150
[38] Sato S, Seki N, Hotta Y,. Expression profiles of a human gene identified as a structural homologue of meiosis-specific recA-like genes [J]., 1995, 2(4): 183—186
[39] Matsudy Y, Habu T, Hori T,. Chromosome mapping of the mouse homologue of DMC1, the yeast meiosis-specific homolo-gous recombination gene [J]., 1996, 4(3): 249—250
[40] Pittman D L, Cobb J, Schimrnti K J,. Meiotic prophase arrest with failure of chromosome synapses in mice deficient for Dmc1, a germline-specific RecA homolog [J]., 1998, 1(5): 697—705
[41] Yoshida K, Kondoh G, Matsudy Y,. The mouse RecA-like gene Dmc1 is required for homologous chromosome synapsis during meiosis [J]., 1998, 1(5): 707—718
MECHANISMS UNDERLYING DIETHYLSTILBESTROL-INDUCED INHIBITION OF SPERMATOGENESIS IN ZEBRAFISH ()
TAN Hao, LI Ying-Wen, YIN Pan and LIU Zhi-Hao
(Chongqing Engineering Research Center of Bioactive Substances, Chongqing Key Laboratory of Animal Biology,College of Life Sciences, Chongqing Normal University, Chongqing 401331, China)
Diethylstilbestrol (DES) is a typical endocrine disruptor for aquatic animals in the Yangtze River of China. Here we investigated the effects of DES on testicular development and spermatogenesis of fish. Adult male zebrafish () were used as experimental subjects and were exposed to DES (0.1, 1 and 10 μg/L) for 20 days. The histological results demonstrated that the DES exposure led to severe impacts on zebrafish spermatogenesis. To further elucidate mechanisms underlying this phenomenon, we cloned the cDNAs ofand1 and analyzed their expression patterns at the tissue and cellular levels. Our results showed thatwas exclusively expressed in spermatogonia and primary spermatocytes of testis, and that1 was specifically expressed in spermatocytes of testis. Using semi-quantitative RT-PCR we found that DES dramatically suppressed the expressions of1 in a dose- and time-dependent manner, but did not affect the expression of. Moreover, the expression of1(the male sex determining gene) and450 11(the key enzyme responsible for 11-KT synthesis) were also suppressed by DES exposure. Given that these genes play a role in meiosis and spermatogenesis, we speculated that DES might induce the male germ cell apoptosis in zebrafish by suppressing the expression of1 and P450 11, and might inhibit the expression of1which result in impeded meiosis.
Diethylstilbestrol; Zebrafish; Germ cell loss; Spermatogenesis; Meiosis
10.7541/2015.44
Q492
A
1000-3207(2015)02-0331-08
2014-05-26;
2014-08-16
重慶市科委項目(cstc2012jjA20006); 重慶市教委項目(KJ130622); 重慶師范大學(xué)校級項目(13XLZ08、12 xlb005)資助
譚號(1989—), 男, 湖北利川人; 碩士研究生; 主要從事魚類生殖生理和分子內(nèi)分泌研究。E-mail: hardytam@163.com
劉智皓; E-mail: minenut@163.com