国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

高溫液態(tài)水預(yù)處理木質(zhì)纖維素

2015-12-28 05:42:46趙孟姣李國民徐琴琴銀建中
化學(xué)與生物工程 2015年3期
關(guān)鍵詞:液態(tài)水木質(zhì)木質(zhì)素

趙孟姣,李國民,徐 剛,徐琴琴,張 昱,3,銀建中

(1.大連理工大學(xué)化工機(jī)械學(xué)院,遼寧大連116024;2.遼寧石油化工大學(xué)機(jī)械工程學(xué)院,遼寧撫順113001;3.內(nèi)蒙古工業(yè)大學(xué)化工學(xué)院,內(nèi)蒙古呼和浩特010051)

在燃料乙醇生產(chǎn)過程中可發(fā)酵糖(木糖與葡萄糖)的制取很關(guān)鍵。自然狀態(tài)下,木質(zhì)纖維素細(xì)胞壁的結(jié)構(gòu)很復(fù)雜,既含結(jié)晶聚合物又含無定型聚合物,而且半纖維素與木質(zhì)素緊緊包裹著纖維素,阻礙了酶與纖維素的接觸,糖收率低。采用預(yù)處理可增大纖維素與酶的接觸面積(可及度),提高糖收率及酶解效率。預(yù)處理方法包括化學(xué)法和物理法?;瘜W(xué)法是采用酸、堿、高溫液態(tài)水[1]以及有機(jī)溶劑等進(jìn)行預(yù)處理;物理法是采用氣爆與球磨等進(jìn)行預(yù)處理。酸、堿預(yù)處理效率高,但腐蝕設(shè)備,產(chǎn)物中含有對發(fā)酵起抑制作用的物質(zhì);有機(jī)溶劑價(jià)格昂貴,有毒。與其它預(yù)處理方法相比,高溫液態(tài)水在預(yù)處理過程中既是溶劑又是反應(yīng)劑,無需添加其它物質(zhì),且價(jià)格低,綠色環(huán)保,因此成為研究熱點(diǎn)。

作者在此總結(jié)了高溫液態(tài)水的物化性質(zhì),在此基礎(chǔ)上,從木質(zhì)纖維素預(yù)處理時(shí)的溶解情況以及半纖維素水解影響因素、機(jī)理、強(qiáng)化等方面,詳細(xì)敘述了木質(zhì)纖維素高溫液態(tài)水預(yù)處理工藝的研究進(jìn)展。

1 高溫液態(tài)水的物化性質(zhì)

高溫液態(tài)水是指溫度在180~350 ℃(Tc=374 ℃,Pc=22 MPa)、壓力高于飽和壓力的液態(tài)水。隨著溫度升高,水的物理化學(xué)性質(zhì)會(huì)發(fā)生改變,如圖1所示。

由圖1可看出,水的介電常數(shù)、黏度及密度均隨溫度的升高而降低,在近臨界點(diǎn)處迅速下降,進(jìn)入超臨界區(qū)后緩慢下降。

在25 ℃、0.1 MPa下,水的介電常數(shù)與密度分別為78.46F·m-1、1.0g·cm-3;當(dāng)溫度升至350 ℃、20 MPa時(shí),其值分別降至14.07F·m-1和0.60g·cm-3[2-3];繼續(xù)升溫至400 ℃、25 MPa時(shí),其介電常數(shù)與密度已降至5.9F·m-1和0.17g·cm-3。

較低的介電常數(shù)使高溫液態(tài)水在一定條件下表現(xiàn)出類似于極性有機(jī)溶劑的性質(zhì),能夠大量地溶解氣體和有機(jī)小分子,并且在超臨界態(tài)下還可以與某些有機(jī)物以任意比例互溶[4-5]。應(yīng)用這種溶解性質(zhì)可以從植物中提取抗氧化劑[6],去除固體中的有機(jī)污染物[7]及金屬[8]。另一方面,高溫液態(tài)水使某些鹽(如二類鹽Na2CO3、K2SO4等)的溶解性下降,致使析出的鹽造成管路堵塞[9]。高溫液態(tài)水較低的密度提高了水本身的擴(kuò)散性能,較低的黏度減小了擴(kuò)散阻力。較低的介電常數(shù)、黏度和密度共同促進(jìn)了有機(jī)物在高溫液態(tài)水中迅速、大量地溶解[4]。

高溫液態(tài)水最獨(dú)特的性質(zhì)是它的離子積(Kw)。標(biāo)準(zhǔn)狀態(tài)下水的離子積是10-14[10],溫度升高,Kw增大(圖1b)。在250 ℃時(shí),Kw達(dá)到最大值10-11,比標(biāo)準(zhǔn)狀態(tài)下水的離子積大了3 個(gè)數(shù)量級,當(dāng)溫度升至374 ℃時(shí),Kw陡降,在超臨界區(qū)域緩慢降低。高溫液態(tài)水可提供較多的H+和OH-,表現(xiàn)出酸堿催化的性能,用于催化(促進(jìn))反應(yīng)。高溫液態(tài)水既支持自由基反應(yīng)又支持離子基反應(yīng):當(dāng)Kw<10-14時(shí),以自由基反應(yīng)為主;當(dāng)Kw>10-14時(shí),以離子基反應(yīng)為主[11]。水中H+的濃度不足以促進(jìn)某些反應(yīng)時(shí),較高的溫度則進(jìn)行了彌補(bǔ)。

在上覆壩體壓力及廊道自身重力作用下,廊道出現(xiàn)豎直向下的撓曲變形,在防滲墻的帶動(dòng)下發(fā)生向下游撓曲變形。兩種變形組合后在廊道軸線方向產(chǎn)生較大的拉壓應(yīng)力,廊道兩端上游受拉,下游受壓,河床中部上游面受壓、下游面受拉。因壩基巖體的約束,基巖面處出現(xiàn)了明顯的應(yīng)力集中現(xiàn)象,左右岸1/4跨位置上游面壓應(yīng)力較大,下游面拉應(yīng)力較大。表1列出了靜力條件下廊道沿各方向的變形和正應(yīng)力極值。

高溫液態(tài)水較大的離子積與較高的溫度共同促進(jìn)有機(jī)物的水解,反應(yīng)條件較溫和;而在超臨界水中,有機(jī)物高效、快速地水解,反應(yīng)可在幾秒鐘內(nèi)完成[12]。相對于超臨界水而言,高溫液態(tài)水水解木質(zhì)纖維素所需溫度低,時(shí)間長,較容易控制。

圖1 25 MPa下,水的密度、介電常數(shù)(a)與黏度、離子積(b)隨溫度的變化曲線[9]Fig.1 Density and dielectric constant(a),viscosity and ion product(b)of water versus temperature at pressure of 25 MPa[9]

2 木質(zhì)纖維素水解反應(yīng)

木質(zhì)纖維素在一定溫度下可溶于高溫液態(tài)水,其中半纖維素、纖維素在溶解狀態(tài)下水解生成糖。它們水解的起始溫度分別為180 ℃、230 ℃[13-14]。Mok等[15]指出熱液解可作為酶解纖維素前的預(yù)處理。與爆破預(yù)處理破壞木質(zhì)纖維素細(xì)胞壁不同[16],高溫液態(tài)水預(yù)處理的實(shí)質(zhì)是利用熱量和自身酸催化能力使全部半纖維素及少量木質(zhì)素溶解并發(fā)生水解反應(yīng),重新定位大部分木質(zhì)素分布,增大纖維素與酶的接觸面積[17-18],提高酶解效率和糖收率,同時(shí)回收70%~90%半纖維素衍生糖。

2.1 半纖維素、木質(zhì)素的溶解

半纖維素在纖維素的表面通過氫鍵纖維絲交聯(lián)。半纖維素去除越多,纖維素酶解效果越好[19-21]。高溫液態(tài)水可溶解全部半纖維素[22-23]。Mok等[15]采用不同種類的木本和草本植物在200~230 ℃的高溫液態(tài)水中處理0~15min,半纖維素100%溶解,經(jīng)后續(xù)處理得到90%的單糖。

在木質(zhì)纖維素水解還原糖的研究中,對木質(zhì)素單獨(dú)的研究較少。當(dāng)高溫液態(tài)水的溫度升至木質(zhì)素熔溶溫度后,它透過細(xì)胞壁并在細(xì)胞壁表面沉降下來[24],重新分布,同時(shí)少量木質(zhì)素脫落,最后生成木質(zhì)素衍生物[25],木質(zhì)纖維素溶解越多,酶解糖收率越大[26-27]。

木質(zhì)纖維素溶解最多的條件未必是最佳預(yù)處理?xiàng)l件。評價(jià)預(yù)處理的效果有兩方面,即半纖維素糖收率與纖維素的可及度。目前,利用高溫液態(tài)水預(yù)處理木質(zhì)纖維素以獲得最大總還原糖收率,預(yù)處理工藝及半纖維素水解機(jī)理是主要的研究方向。表1為不同木質(zhì)纖維素原料在高溫液態(tài)水中不同反應(yīng)條件下的糖收率。

2.2 半纖維素水解的影響因素

2.2.1 木質(zhì)纖維素種類

半纖維素是植物細(xì)胞壁中除纖維素以外的雜聚多糖的總稱。不同種類木質(zhì)纖維素中的半纖維素含量與組成不同,因此預(yù)處理效果也不同[35-36]。采用6種農(nóng)業(yè)廢物制取低聚木糖,其產(chǎn)量與半纖維素含量及半纖維素支鏈上的乙酰基有關(guān),可能是因?yàn)橐阴;撀渖傻囊宜岽龠M(jìn)了半纖維素水解[37]。但有實(shí)驗(yàn)證明其無影響[38-39],甚至在去乙?;哪举|(zhì)纖維素中加入過量乙酸(使用量超過脫掉的乙?;浚?,其水解效果不如自然進(jìn)料[40]。乙?;撀渖傻囊宜釋Π肜w維素的水解是否具有催化作用與木質(zhì)纖維素的種類相關(guān),需要進(jìn)一步探討半纖維素水解機(jī)理才能得出定論。

2.2.2 工藝條件

在反應(yīng)溫度、反應(yīng)時(shí)間及反應(yīng)壓力3個(gè)參數(shù)中,反應(yīng)溫度對半纖維素水解影響最大[41];反應(yīng)時(shí)間依賴于反應(yīng)溫度;反應(yīng)壓力不僅能使水在預(yù)處理溫度下保持液態(tài),而且能使木質(zhì)纖維素的結(jié)構(gòu)發(fā)生變化[26]。在高溫液態(tài)水預(yù)處理木質(zhì)纖維素過程中,通常采用Overend與Chornet推導(dǎo)的反應(yīng)強(qiáng)度系數(shù)[42],即R0=t×描述反應(yīng)溫度與反應(yīng)時(shí)間對半纖維素水解的共同影響[19]:半纖維素衍生糖收率是反應(yīng)溫度與反應(yīng)時(shí)間共同作用的結(jié)果。反應(yīng)溫度升高,半纖維素水解速率加快;在同一反應(yīng)溫度下,隨反應(yīng)時(shí)間的延長,糖收率先升高后降低,即半纖維素首先水解生成寡糖,寡糖再生成單糖,單糖進(jìn)一步降解成副產(chǎn)物[43],當(dāng)半纖維素水解速率大于單糖降解速率時(shí),糖收率升高,反之則降低。反應(yīng)溫度越高,反應(yīng)時(shí)間越長,單糖降解的副產(chǎn)物越多[44]。在200~220 ℃的高溫液態(tài)水中預(yù)處理某些草本及木本生物質(zhì)0~10 min,即可得到最高半纖維素衍生糖收率[45]。固液比(1.0%~10.0%)對半纖維素水解糖收率沒有影響[46];原料顆粒越小,與水接觸的面積越大,半纖維素水解越容易,效果越好[47],但原料顆粒小到一定程度時(shí),其粉碎作用相當(dāng)于球磨,將減少半纖維素的含量[48]。

表1 不同木質(zhì)纖維素原料在高溫液態(tài)水中不同反應(yīng)條件下的糖收率/%Tab.1 Sugar yields for different types of lignocellulose materials in hot liquid water under different reaction conditions/%

預(yù)處理常用設(shè)備有間歇釜式反應(yīng)器與半連續(xù)釜式反應(yīng)器。在間歇釜式反應(yīng)器中,水解產(chǎn)物單糖在反應(yīng)器內(nèi)停留時(shí)間較長,降解副產(chǎn)物多,但水解液糖濃度高,可實(shí)現(xiàn)較大的固液比;在半連續(xù)釜式反應(yīng)器中,流水的沖刷使水解液中木質(zhì)纖維素表面的長鏈聚合物與水分子形成的“冰層”變薄,有利于水滲入到木質(zhì)纖維素內(nèi)部,加速水解反應(yīng)進(jìn)行,并且生成的寡糖與溶出的木質(zhì)素被水帶出反應(yīng)器,減少單糖的降解,提高半纖維素衍生糖收率與酶解糖收率,但水解液糖濃度較小,用水量大,能耗高[39,49]。近年來,有學(xué)者采用半連續(xù)固定床反應(yīng)器提高了原料固液比,有效地抑制水解產(chǎn)物的降解,降低能耗,且不需要對原料進(jìn)行粉碎[50]。因此,研制出高效、節(jié)能的反應(yīng)器型式是提高預(yù)處理效果、降低用水量及能耗的重要途徑。

在半連續(xù)操作中,水的高速流動(dòng)對半纖維素水解的促進(jìn)作用只在反應(yīng)初期有效而末期效果卻不明顯,因而Liu等[51]提出部分流動(dòng)工藝:先在200 ℃下間歇反應(yīng)4min,然后在連續(xù)流動(dòng)中反應(yīng)8min,最后再進(jìn)行間歇反應(yīng)12min。木糖收率84%~89%,纖維素的酶消化性88%~90%,木質(zhì)素去除了40%~45%,總糖收率達(dá)到了90%~92%,比單純采用連續(xù)流動(dòng)操作節(jié)省了60%的用水量。在間歇操作過程中,最高半纖維素衍生糖收率與最高纖維素酶解糖收率的預(yù)處理?xiàng)l件不一致,因此采用兩步法預(yù)處理:第一步水解獲取最高半纖維素衍生糖收率,第二步使纖維素可及度最大,此時(shí),所得木質(zhì)纖維素總糖收率最高[25,31]。此外,將水pH 值控制在4~7 之間[26],可使半纖維素水解生成的糖以寡糖的形式存在,減少單糖的生成與降解,提高半纖維素衍生糖收率[52]。

2.2.3 水解過程強(qiáng)化

采用CO2加壓的方式使水保持液相的同時(shí)形成碳酸,Savage等根據(jù)CO2-H2O 二元系統(tǒng)的熱力學(xué)性質(zhì)建立了預(yù)測富含CO2高溫液態(tài)水的pH 值的模型。計(jì)算證明,添加的CO2可以使高溫液態(tài)水的pH 值降低幾個(gè)單位[53]。CO2可催化某些木質(zhì)纖維素中半纖維素水解,顯著提高木糖和呋喃的濃度,抑制水解液中有機(jī)酸的累積,泄壓之后,CO2逸出,水的pH 值又可恢復(fù)正常[53-54]。采用富含高壓CO2的液態(tài)水在較低溫度下(105~110 ℃)預(yù)處理甘蔗渣,酶解糖收率與經(jīng)高溫預(yù)處理后的酶解糖收率相似[55];但是,CO2對山楊[56]和黑麥稻稈的水解[54]卻沒有效果,木糖的收率也未提高。此外,向富含CO2的高溫液態(tài)水中加入少量乙醇,可溶解更多的木質(zhì)素,酶解糖收率提高[34]。

木質(zhì)纖維素的灰分中含有少量的Ca2+、K+、Mg2+、Na+、Al3+、Fe3+,含有這些陽離子的無機(jī)鹽對木質(zhì)纖維素的氣化過程[57]及半纖維素水解有催化作用,對水解液產(chǎn)品具有選擇性[33,58-59]。高溫液態(tài)水聯(lián)合其它預(yù)處理不僅可以處理高固液比原料[32],還可以減少后續(xù)水解纖維素的酶用量[60]。

2.3 半纖維素水解機(jī)理

半纖維素水解產(chǎn)物受反應(yīng)器、工藝參數(shù)、添加劑以及木質(zhì)纖維素本身的影響,而且水解產(chǎn)物復(fù)雜,除木(單)糖之外還有不同聚合度的低聚糖、有機(jī)酸及糠醛等[61]。高溫液態(tài)水中的H+由水提供,并表現(xiàn)出稀酸催化作用,因此,通常把稀酸催化半纖維素水解的一階連串動(dòng)力學(xué)模型應(yīng)用于高溫液態(tài)水中,并采用阿倫尼烏斯方程預(yù)測動(dòng)力學(xué)參數(shù)。最初的半纖維素動(dòng)力學(xué)模型是以纖維素動(dòng)力學(xué)模型為基礎(chǔ)而建立的,如模型(1):

Kobayashi等[62]用稀酸水解硬木,發(fā)現(xiàn)半纖維素可以分為兩部分水解:快速水解部分和慢速水解部分,快速水解部分約占30%。研究發(fā)現(xiàn),在半纖維素向單糖轉(zhuǎn)變過程中還存在寡糖,如模型(2)[46]:

Nabarlatz等[63]將寡糖水解產(chǎn)物細(xì)化成3 種單體,即乙酸、木糖和阿拉伯糖,而后單糖再降解成糠醛等副產(chǎn)物,3種單體收率的理論計(jì)算值與實(shí)驗(yàn)值相符,但寡糖構(gòu)成隨時(shí)間與溫度變化的理論計(jì)算值與實(shí)驗(yàn)值存在偏差,如模型(3):

余強(qiáng)等[64]認(rèn)為半纖維素主要發(fā)生鏈間的斷裂,產(chǎn)物以木聚糖為主,支鏈上的基團(tuán)會(huì)脫落生成阿拉伯糖、乙酸和葡萄糖醛酸等,低聚木糖會(huì)進(jìn)一步水解為木糖、小分子酸類,如甲酸是糠醛和乙醇酸的進(jìn)一步降解產(chǎn)物,并將木聚糖和單糖放在一起考慮,如模型(4):

應(yīng)用該模型預(yù)測水稻稈與棕櫚稈的水解,糖產(chǎn)率的實(shí)驗(yàn)值與理論計(jì)算值較吻合[45]。不同原料、不同反應(yīng)條件、不同模型的水解反應(yīng)動(dòng)力學(xué)參數(shù)如表2所示。

表2 不同木質(zhì)纖維素原料半纖維素高溫液態(tài)水水解反應(yīng)動(dòng)力學(xué)參數(shù)Tab.2 Kinetic parameters for hydrolysis of hemicellulose in hot liquid water with different lignocellulose materials

3 纖維素水解反應(yīng)

在半纖維素水解的同時(shí)還有一部分纖維素——無定型纖維素與半纖維素、木質(zhì)素同時(shí)水解[14,66]。研究表明,無定型纖維素在180℃開始水解,結(jié)晶纖維素則在>230 ℃水解[67-68]。在240~290 ℃時(shí),纖維素分解成低聚物、單糖和降解產(chǎn)物[69]。在320~350 ℃時(shí),纖維素的水解率與寡糖的降解率隨溫度升高而增大,纖維素水解速率小于葡萄糖和纖維二糖的分解速率,產(chǎn)品主要是葡萄糖降解產(chǎn)物;在350~400 ℃時(shí),反應(yīng)速率更快,400 ℃時(shí)反應(yīng)速率比320~350 ℃時(shí)快兩個(gè)數(shù)量級,此時(shí),纖維素水解速率大于葡萄糖與纖維二糖的分解速率,產(chǎn)品是單糖與低聚糖[70]。

預(yù)處理的主要目標(biāo)是溶解半纖維素和木質(zhì)素,保留纖維素并最大限度地將其暴露出來。因此,預(yù)處理溫度應(yīng)低于結(jié)晶纖維素的水解溫度(<230 ℃)。

4 結(jié)語

高溫液態(tài)水預(yù)處理是一種高效、綠色的方法,增大了木質(zhì)纖維素中纖維素與酶的接觸面積,提高了酶水解效率及還原糖收率,且預(yù)處理過程中無需添加其它化學(xué)制劑。目前,預(yù)處理工藝存在水解液糖濃度較低、進(jìn)料液固比較高、水解產(chǎn)物復(fù)雜、糖收率不高等問題。因此,應(yīng)根據(jù)木質(zhì)纖維素種類并結(jié)合酶水解效果共同研究合理的預(yù)處理工藝及反應(yīng)器,提高預(yù)處理效果,并進(jìn)一步研究半纖維素的水解機(jī)理,建立準(zhǔn)確的動(dòng)力學(xué)模型,從而指導(dǎo)和控制水解過程。

[1]趙巖,王洪濤,陸文靜,等.秸稈超(亞)臨界水預(yù)處理與水解技術(shù)[J].化學(xué)進(jìn)展,2007,19(11):1832-1838.

[2]UEMATSU M,F(xiàn)RANK E U.Static dielectric constant of water and steam[J].Journal of Physical and Chemical Reference Data,1980,9(4):1291.

[3]TOOR S S,ROSENDAHL L,RUDOLF A.Hydrothermal liquefaction of biomass:A review of subcritical water technologies[J].Energy,2011,36(5):2328-2342.

[4]KRUSE A,DINJUS E.Hot compressed water as reaction medium and reactant[J].The Journal of Supercritical Fluids,2006,41(3):361-379.

[5]AKIYA N,SAVAGE P E.Roles of water for chemical reactions in high-temperature water[J].Chemical Reviews,2002,102(8):2725-2750.

[6]HERRERO M,CIFUENTES A,IBANEZ E.Sub-and supercritical fluid extraction of functional ingredients from different natural sources:Plants,food-by-products,algae and microalgae[J].Food Chemistry,2006,98(1):136-148.

[7]HAWTHORNE S B,YANG Y,MILLER D J.Extraction of organic pollutants from environmental solids with sub-and supercritical water[J].Analytical Chemistry,1994,66(18):2912-2920.

[8]BRUNNER G,MISCH B,F(xiàn)IRUS A,et al.Supercritical Water and Supercritical Carbon Dioxide for Cleaning of Soil Material[M]//Treatment of Contaminated Soil,Berlin:Springer-Veerlag:491-517.

[9]HODES M,MARRONE P A,HONG G T,et al.Salt precipitation and scale control in supercritical water oxidation—Part A:Fundamentals and research[J].The Journal of Supercritical Fluids,2004,29(3):265-288.

[10]MARSHALL W L,F(xiàn)RANCK E U.Ion product of water substance,0~1000 ℃,1~10000bars:New international formulation and its background[J].J Phys Chem Ref Data,1981,10(2):295-340.

[11]SAVAGE P E.Organic chemical reactions in supercritical water[J].Chemical Reviews,1999,99(2):603-621.

[12]劉慧屏,銀建中,徐剛.超/亞臨界水兩步法水解玉米秸稈制備還原糖[J].化學(xué)與生物工程,2010,27(11):47-50.

[13]ANDO H,SAKARI T,KOBUSHO T,et al.Decomposition behavior of plant biomass in hot-compressed water[J].Industrial&Engineering Chemistry Research,2000,39(10):3688-3693.

[14]HASHAIKEH R,F(xiàn)ANG Z,BUTLER I S,et al.Hydrothermal dissolution of willow in hot compressed water as a model for biomass conversion[J].Fuel,2006,86(10):1614-1622.

[15]MOK W S L,ANTAL M J.Uncatalyzed solvolysis of whole biomass hemicellulose by hot compressed liquid water[J].Industrial&Engineering Chemistry Research,1992,31(4):1157-1161.

[16]YIN J Z,HAO L D,YU W,et al.Enzymatic hydrolysis enhancement of corn lignocellulose by supercritical CO2combined with ultrasound pretreatment[J].Chinese Journal of Catalysis,2014,35:763-769.

[17]KRISTENSEN J B,THYGESEN L G,F(xiàn)ELBY C,et al.Cell-wall structural changes in wheat straw pretreated for bioethanol production[J].Biotechnol Biofuels,2008,1(1):5.

[18]HANSEN M A T,KRISTENSEN J B,F(xiàn)ELBY C,et al.Pretreatment and enzymatic hydrolysis of wheat straw(TriticumaestivumL.)—The impact of lignin relocation and plant tissues on enzymatic accessibility[J].Bioresource Technology,2010,102(3):2804-2811.

[19]YANG B,WYMAN C E.Effect of xylan and lignin removal by batch and flow through pretreatment on the enzymatic digestibility of corn stover cellulose[J].Biotechnology and Bioengineering,2004,86(1):88-98.

[20]ZENG M J,MOSIER N S,HUANG C P,et al.Microscopic examination of changes of plant cell structure in corn stover due to hot water pretreatment and enzymatic hydrolysis[J].Biotechnology and Bioengineering,2007,97(2):265-278.

[21]XIAO X,BIAN J,LI M F,et al.Enhanced enzymatic hydrolysis of bamboo(DendrocalamusgiganteusMunro)culm by hydrothermal pretreatment[J].Bioresource Technology,2014,159:41-47.

[22]LASER M,SCHULMAN D,ALLEN S G,et al.A comparison of liquid hot water and steam pretreatments of sugar cane bagasse for bioconversion to ethanol[J].Bioresource Technology,2002,81(1):33-44.

[23]SASAKI M,ADSCHIRI T,ARAI K.Fractionation of sugarcane bagasse by hydrothermal treatment[J].Bioresource Technology,2002,86(3):301-304.

[24]DONOHOE B S,DECKER S R,TUCKER M P,et al.Visualizing lignin coalescence and migration through maize cell walls following thermochemical pretreatment[J].Biotechnology and Bioengineering,2008,101(5):913-925.

[25]YU Q,ZHUANG X S,YUAN Z H,et al.Two-step liquid hot water pretreatment ofEucalyptusgrandisto enhance sugar recovery and enzymatic digestibility of cellulose[J].Bioresource Technology,2009,101(13):4895-4899.

[26]ALVIRA P,TOMAS-PEJO E,BALLESTEROS M,et al.Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis:A review[J].Bioresource Technology,2009,101(13):4851-4861.

[27]KIM Y,MOSIER N S,LADISCH M R.Enzymatic digestion of liquid hot water pretreated hybrid poplar[J].Biotechnology Progress,2009,25(2):340-348.

[28]SREENATH H K,KOEGEL R G,MOLDES A B,et al.Enzymic saccharification of alfalfa fibre after liquid hot water pretreatment[J].Process Biochem,1999,35(1-2):33-41.

[29]PHAIBOONSILPA N,OGURA M,YAMAUCHI K,et al.Twostep hydrolysis of rice(Oryzasativa)husk as treated by semiflow hot-compressed water[J].Industrial Crops and Products,2013,49:484-491.

[30]PHAIBOONSILPA N,YAMAUCHI K,LU X,et al.Two-step hydrolysis of Japanese cedar as treated by semi-flow hot-compressed water[J].Journal of Wood Science,2010,56(4):331-338.

[31]PEREZ J A,BALLESTEROS I,BALLESTEROS M,et al.Optimizing liquid hot water pretreatment conditions to enhance sugar recovery from wheat straw for fuel-ethanol production[J].Fuel,2008,87(17):3640-3647.

[32]YU Q,ZHUANG X S,YUAN Z H,et al.Pretreatment of sugarcane bagasse with liquid hot water and aqueous ammonia[J].Bioresource Technology,2013,144:210-215.

[33]LIU L,SUN J S,CAI C Y,et al.Corn stover pretreatment by inorganic salts and its effects on hemicellulose and cellulose degradation[J].Bioresource Technology,2009,100(23):5865-5871.

[34]Lü H S,REN M M,ZHANG M H,et al.Pretreatment of corn stover using supercritical CO2with water-ethanol as co-solvent[J].Chinese Journal of Chemical Engineering,2013,21(5):551-557.

[35]PHAIBOONSILPA N,SAKA S.Hydrolysis behaviors of lignocellulosics as treated by two-step semi-flow hot-compressed water[J].Cellulose,2012,48(44.8):p.31.3.

[36]IMMAN S,ARNTHONG J,BURAPATANA V,et al.Autohydrolysis of tropical agricultural residues by compressed liquid hot water pretreatment[J].Applied Biochemistry and Biotechnology,2013,170(8):1982-1995.

[37]NABARLATZ D,EBRINGEROVA A,MONTANE D.Autohydrolysis of agricultural by-products for the production of xylooligosaccharides[J].Carbohydrate Polymers,2006,69(1):20-28.

[38]LIU C,WYMAN C E.The effect of flow rate of compressed hot water on xylan,lignin,and total mass removal from corn stover[J].Industrial & Engineering Chemistry Research,2003,42(21):5409-5416.

[39]BOBLETER O,BONN G,PRUTSCH W.Steam explosion-h(huán)ydro-thermolysis-organosolv.A comparison[C]//Steam Explosion Techniques.Gordon and Breach,Philadelphia,1991:59-82.

[40]STUHLER S L.Effects of solids concentration,acetylation,and transient heat transfer on uncatalyzed batch pretreatment of corn stover[D].Dartmouth College,2002.

[41]PEREZ J A,GONZALEZ A,OLIVA J M,et al.Effect of process variables on liquid hot water pretreatment of wheat straw for bioconversion to fuel-ethanol in a batch reactor[J].Journal of Chemical Technology and Biotechnology,2007,82(10):929-938.

[42]OVEREND R P,CHOMET E,GASCOIGNE J A.Fractionation of lignocellulosics by steam-aqueous pretreatments[J].Philosophical Transactions of the Royal Society of London A,1987,321(1561):523-536.

[43]LI X,CONVERSE A O,WYMAN C E.Characterization of molecular weight distribution of oligomers from autocatalyzed batch hydrolysis of xylan[J].Applied Biochemistry and Biotechnology,2003,107(1):515-522.

[44]ROGALINSKI T,INGRAM T,BRUNNER G.Hydrolysis of lignocellulosic biomass in water under elevated temperatures and pressures[J].The Journal of Supercritical Fluids,2008,47(1):54-63.

[45]ZHUANG X S,YUAN A H,MA L L,et al.Kinetic study of hydrolysis of xylan and agricultural wastes with hot liquid water[J].Biotechnology Advances,2009,27(5):578-582.

[46]JACOBSEN S E,WYMAN C E.Xylose monomer and oligomer yields for uncatalyzed hydrolysis of sugarcane bagasse hemicellulose at varying solids concentration[J].Industrial &Engineering Chemistry Research,2002,41(6):1454-1461.

[47]KROGELL J,KOROTKOVA E,ERANEN K,et al.Intensification of hemicellulose hot-water extraction from spruce wood in a batch extractor—Effects of wood particle size[J].Bioresource Technology,2013,143:212-220.

[48]TILLMAN L M,LEE Y Y,TORGET R.Effect of transient acid diffusion on pretreatment/hydrolysis of hardwood hemicellulose[J].Applied Biochemistry and Biotechnology,1990,24(1):103-113.

[49]LU X,YAMAUCHI K,PHAIBOONSILPA N,et al.Two-step hydrolysis of Japanese beech as treated by semi-flow hot-compressed water[J].Journal of Wood Science,2009,55(5):367-375.

[50]INGRAM T,ROGALINSKI T,BOCKEMUHL V,et al.Semicontinuous liquid hot water pretreatment of rye straw[J].The Journal of Supercritical Fluids,2008,48(3):238-246.

[51]LIU C G,WYMAN C E.Partial flow of compressed-h(huán)ot water through corn stover to enhance hemicellulose sugar recovery and enzymatic digestibility of cellulose[J].Bioresource Technology,2005,96(18):1978-1985.

[52]MOSIER N,HENDRICKSON R,HO N,et al.Optimization of pH controlled liquid hot water pretreatment of corn stover[J].Bioresource Technology,2005,96(18):1986-1993.

[53]HUNTER S E,SAVAGE P.Quantifying rate enhancements for acid catalysis in CO2-enriched high-temperature water[J].AIChE Journal,2008,54(2)516-528.

[54]van WALSUM G P,SHI H.Carbonic acid enhancement of hydrolysis in aqueous pretreatment of corn stover[J].Bioresource Technology,2004,93(3):217-226.

[55]GURGEL L V A,PIMENTA M T B,da SILVA CURVELO A A.Enhancing liquid hot water(LHW)pretreatment of sugarcane bagasse by high pressure carbon dioxide(HP-CO2)[J].Industrial Crops and Products,2014,57:141-149.

[56]McWILLIAMS R C,van WALSUM G P.Comparison of aspen wood hydrolysates produced by pretreatment with liquid hot water and carbonic acid[J].Applied Biochemistry and Biotechnology,2002,98-100:109-121.

[57]VARHEGYI G,ANTAL M J,SZEKELY T,et al.Simultaneous thermogravimetric-mass spectrometric studies of the thermal decomposition of biopolymers.1.Avicel cellulose in the presence and absence of catalysts[J].Energy & Fuels,1988,2(3):267-272.

[58]LIU C G,WYMAN C E.The enhancement of xylose monomer and xylotriose degradation by inorganic salts in aqueous solutions at 180 ℃[J].Carbohydrate Research,2006,341(15):2550-2556.

[59]YU Q,ZHUANG X S,YUAN Z H,et al.The effect of metal salts on the decomposition of sweet sorghum bagasse in flowthrough liquid hot water[J].Bioresource Technology,2011,102(3):3445-3450.

[60]INOUE H,YANO S,ENDO T,et al.Combining hot-compressed water and ball milling pretreatments to improve the efficiency of the enzymatic hydrolysis of eucalyptus[J].Biotechnology Biofuels,2008,1(1):2.

[61]金強(qiáng),張紅漫,嚴(yán)立石,等.生物質(zhì)半纖維素稀酸水解反應(yīng)[J].化學(xué)進(jìn)展,2010,22(4):654-662.

[62]KOBAYASHI T,SAKAI Y B.Hydrolysis rate of pentosan of hardwood in dilute sulfuric acid[J].Agr Chem Soc Japan,1956,20(1):1-7.

[63]NABARLATZ D,F(xiàn)ARRIOL X,MONTANE D.Kinetic modeling of the autohydrolysis of lignocellulosic biomass for the production of hemicellulose-derived oligosaccharides[J].Industrial&Engineering Chemistry Research,2004,43(15):4124-4131.

[64]余強(qiáng),莊新姝,袁振宏,等.高溫液態(tài)水中甜高粱渣半纖維素水解及其機(jī)理[J].化工學(xué)報(bào),2012,63(2):599-605.

[65]徐明忠,莊新姝,袁振宏,等.農(nóng)業(yè)廢棄物高溫液態(tài)水水解動(dòng)力學(xué)[J].過程工程學(xué)報(bào),2008,8(5):941-944.

[66]ALLEN S G,KAM L C,ZEMANN A J,et al.Fractionation of sugar cane with hot,compressed,liquid water[J].Industrial &Engineering Chemistry Research,1996,35(8):2709-2715.

[67]YU Y,WU H.Significant differences in the hydrolysis behavior of amorphous and crystalline portions within microcrystalline cellulose in hot-compressed water[J].Industrial & Engineering Chemistry Research,2010,49(8):3902-3909.

[68]YU Y,WU H.Evolution of primary liquid products and evidence of in situ structural changes in cellulose with conversion during hydrolysis in hot-compressed water[J].Industrial &Engineering Chemistry Research,2010,49(8):3919-3925.

[69]KAMIO E,SATO H,TAKAHASHI S,et al.Liquefaction of cellulose in hot compressed water under variable temperatures[J].Industrial & Engineering Chemistry Research,2006,45(14):4944-4953.

[70]SASAKI M,F(xiàn)ANG Z,F(xiàn)UKUSHIMA Y,et al.Dissolution and hydrolysis of cellulose in subcritical and supercritical water[J].Industrial & Engineering Chemistry Research,2000,39(8):2883-2890.

猜你喜歡
液態(tài)水木質(zhì)木質(zhì)素
基于微波輻射計(jì)的張掖地區(qū)水汽、液態(tài)水變化特征分析
Ka/Ku雙波段毫米波雷達(dá)功率譜數(shù)據(jù)反演液態(tài)水含量方法研究
木質(zhì)素增強(qiáng)生物塑料的研究進(jìn)展
上海包裝(2019年8期)2019-11-11 12:16:14
零下溫度的液態(tài)水
木質(zhì)風(fēng)景畫
PEMFC氣體擴(kuò)散層中液態(tài)水傳輸實(shí)驗(yàn)研究綜述
一種改性木質(zhì)素基分散劑及其制備工藝
天津造紙(2016年1期)2017-01-15 14:03:29
木質(zhì)燃料
木質(zhì)燃料
木質(zhì)燃料
周口市| 界首市| 定南县| 芦溪县| 牙克石市| 德清县| 娄烦县| 屏山县| 黎城县| 上林县| 游戏| 洪湖市| 苍梧县| 龙里县| 定州市| 邳州市| 澳门| 固阳县| 安宁市| 沿河| 喀喇沁旗| 蚌埠市| 淳安县| 海林市| 辽宁省| 唐海县| 普洱| 三台县| 青神县| 临沂市| 晋中市| 綦江县| 凌海市| 咸丰县| 海安县| 墨竹工卡县| 丁青县| 且末县| 和硕县| 鄂温| 梅河口市|