梁靈剛, 吳溯帆
?
綜 述
干細(xì)胞治療脊髓損傷研究進(jìn)展
梁靈剛, 吳溯帆
骨髓間充質(zhì)干細(xì)胞; 神經(jīng)干細(xì)胞; 胚胎干細(xì)胞; 人臍帶血干細(xì)胞; 脂肪來(lái)源干細(xì)胞; 脊髓損傷
脊髓損傷(spinal cord injury)最常由車(chē)禍和體育運(yùn)動(dòng)引起,常導(dǎo)致肢體嚴(yán)重的運(yùn)動(dòng)和感覺(jué)功能障礙,對(duì)患者造成巨大的身心創(chuàng)傷,對(duì)家庭和社會(huì)也形成很大的負(fù)擔(dān)。脊髓損傷目前還無(wú)有效的治療方法,發(fā)病早期主要依賴(lài)于外科減壓和激素治療,后期只能做康復(fù)治療。而干細(xì)胞治療有希望成為有效的方法,已經(jīng)有實(shí)驗(yàn)證實(shí):干細(xì)胞移植到脊髓損傷動(dòng)物模型后可存活、遷移、減輕炎癥反應(yīng)、釋放神經(jīng)營(yíng)養(yǎng)因子、減少膠質(zhì)瘢痕的形成、促進(jìn)軸突再髓鞘化,從而促進(jìn)損傷脊髓的再生和受損功能的恢復(fù)。筆者復(fù)習(xí)了2000-2015年干細(xì)胞治療脊髓損傷的相關(guān)論文,對(duì)于治療脊髓損傷的干細(xì)胞種類(lèi)、移植前處理、移植方法以及其他有臨床意義的內(nèi)容作一綜述。
1.1 骨髓間充質(zhì)干細(xì)胞
骨髓間充質(zhì)干細(xì)胞(bone marrow-derived mesenchymal stem cells, BMSCs)是較早應(yīng)用于治療脊髓損傷研究的干細(xì)胞,在體外試驗(yàn)中已經(jīng)證實(shí),這類(lèi)干細(xì)胞可以被誘導(dǎo)分化為神經(jīng)細(xì)胞和膠質(zhì)細(xì)胞[1];在體內(nèi)實(shí)驗(yàn)中可以觀察到移植細(xì)胞圍繞著受體神經(jīng)的軸索,起到神經(jīng)膠質(zhì)細(xì)胞的作用[2];動(dòng)物實(shí)驗(yàn)證實(shí)移植骨髓干細(xì)胞可促進(jìn)受損脊髓再生,減小損傷空腔,提高神經(jīng)營(yíng)養(yǎng)因子如神經(jīng)營(yíng)養(yǎng)因子3(neurotrophic factor 3, NT-3)、腦源性神經(jīng)營(yíng)養(yǎng)因子(brain-derived neurotrophic factor, BDNF)[2-3]、血管內(nèi)皮生長(zhǎng)因子(vascular endothelial growth factor,VEGF)[4]的表達(dá)水平,促進(jìn)軸突生長(zhǎng),減弱感覺(jué)過(guò)敏,促進(jìn)局部血管形成,抑制膠質(zhì)瘢痕形成[2],降低局部炎癥因子如IL-1β、TNF-α的表達(dá)[4],改善肢體運(yùn)動(dòng)功能。
骨髓干細(xì)胞的優(yōu)點(diǎn)是較易從骨髓中獲取,并且可以取自患者自身而不涉及倫理學(xué)問(wèn)題。不足之處是單次獲取量有限,需要在體外培養(yǎng)和增殖,待達(dá)到一定數(shù)量后再進(jìn)行移植;此外,這些骨髓干細(xì)胞是否能在多次傳代和增殖過(guò)程中持續(xù)保持其生物學(xué)特性還有待于證實(shí)。
1.2 神經(jīng)干細(xì)胞
神經(jīng)干細(xì)胞(neural stem cell, NSC)是另一類(lèi)用于脊髓損傷治療研究的細(xì)胞,在體外可分化為神經(jīng)元、星形細(xì)胞和膠質(zhì)細(xì)胞[5]:部分體內(nèi)實(shí)驗(yàn)也證實(shí)神經(jīng)干細(xì)胞可向神經(jīng)元細(xì)胞、膠質(zhì)細(xì)胞[6]、星形細(xì)胞[7]和少突細(xì)胞分化。目前,有許多神經(jīng)干細(xì)胞治療脊髓損傷的研究:動(dòng)物實(shí)驗(yàn)顯示神經(jīng)干細(xì)胞移植后可存活,并呈現(xiàn)出膠質(zhì)纖維酸性蛋白和βⅢ微管蛋白(βⅢ-tubulin)染色陽(yáng)性,可促使局部神經(jīng)營(yíng)養(yǎng)因子如BDNF、NT-3[8]的表達(dá)上調(diào),凋亡蛋白酶3(caspase-3)的表達(dá)下調(diào),這都利于局部損傷的修復(fù)。神經(jīng)干細(xì)胞移植后,可見(jiàn)細(xì)胞和受體組織相融合,可促進(jìn)軸突再生[6,9],促進(jìn)神經(jīng)元軸突再髓鞘化,軸突可越過(guò)白質(zhì)向灰質(zhì)滲透,與宿主神經(jīng)元形成突觸[6],向損傷區(qū)域外遷移,實(shí)驗(yàn)動(dòng)物的功能得到明顯改善[10]。
盡管神經(jīng)干細(xì)胞移植被認(rèn)為是一種有前景的治療方法,但其長(zhǎng)期效果有待證實(shí)。一項(xiàng)長(zhǎng)達(dá)12個(gè)月的研究顯示,移植的細(xì)胞至少存活了6個(gè)月,并且在這期間實(shí)驗(yàn)動(dòng)物有功能改善,但12個(gè)月后大部分移植細(xì)胞失去了它們的形態(tài)學(xué)特征并且破裂,且功能改善在6個(gè)月之后就不再持續(xù)。在6個(gè)月時(shí)觀察到大量CD8陽(yáng)性T細(xì)胞滲透進(jìn)脊髓組織,推測(cè)移植細(xì)胞可能激活了受體的免疫系統(tǒng),移植的細(xì)胞數(shù)量減少可能是由于遭到激活的免疫系統(tǒng)攻擊所致。早期的功能恢復(fù)是由于其分泌神經(jīng)營(yíng)養(yǎng)因子所致,移植后6~8個(gè)月細(xì)胞開(kāi)始大量分化為星形細(xì)胞,分泌神經(jīng)營(yíng)養(yǎng)因子的能力減弱,功能恢復(fù)也不再繼續(xù)[11]。Nemati等[12]使用猴神經(jīng)干細(xì)胞移植治療恒河猴脊髓損傷,移植細(xì)胞并未大量存活到6個(gè)月之久,但卻有明顯的改善肢體和尾巴運(yùn)動(dòng)功能的效果。在移植后第6個(gè)月可觀察到實(shí)驗(yàn)動(dòng)物有意識(shí)的肢體和尾巴運(yùn)動(dòng),甚至部分動(dòng)物可站立,且細(xì)胞移植治療可明顯降低實(shí)驗(yàn)動(dòng)物肌肉萎縮和褥瘡的發(fā)生率。
神經(jīng)干細(xì)胞是神經(jīng)細(xì)胞和膠質(zhì)細(xì)胞的前體細(xì)胞,理論上講更容易向神經(jīng)細(xì)胞分化,更容易調(diào)控其分化過(guò)程,這是它在治療脊髓損傷方面的優(yōu)勢(shì)。但是,由于神經(jīng)干細(xì)胞需要取材于腦組織和脊髓,人的神經(jīng)干細(xì)胞來(lái)源于流產(chǎn)胎兒,涉及到倫理學(xué)問(wèn)題,其臨床實(shí)際應(yīng)用的可能性很小。
1.3 胚胎干細(xì)胞
胚胎干細(xì)胞(embryonic stem cells, ESC)為多能干細(xì)胞,具有高度的增殖分化能力,可分化為內(nèi)胚層、中胚層、外胚層組織,由于其具有分化為幾乎所有細(xì)胞的能力,也被用于治療脊髓損傷的研究。目前的一些動(dòng)物實(shí)驗(yàn)結(jié)果顯示,移植胚胎干細(xì)胞可減弱局部炎癥反應(yīng)[13],表達(dá)基質(zhì)金屬蛋白酶9,從而酶解膠質(zhì)瘢痕的成分之一硫酸軟骨素多糖,抑制膠質(zhì)瘢痕的形成[14],改善運(yùn)動(dòng)功能[13]。還有研究顯示,移植細(xì)胞存活且在移植后7 d內(nèi),新生的軸突以大于1 mm/d的速度向瘢痕內(nèi)生長(zhǎng),此軸突更傾向于在白質(zhì)內(nèi)再生[14]。
胚胎干細(xì)胞需取自胚胎組織,這將涉及倫理學(xué)問(wèn)題,臨床實(shí)際應(yīng)用會(huì)受到很大的限制。胚胎干細(xì)胞在實(shí)際應(yīng)用時(shí)如何調(diào)控其分化、避免腫瘤發(fā)生等,將是研究的難點(diǎn)和重點(diǎn)。
1.4 人臍帶血干細(xì)胞
人臍帶血干細(xì)胞(human umbilical cord blood mesenchymal stem cells, hUCBSCs)是在胎兒分娩時(shí)從臍帶血中獲得,是具有實(shí)際臨床應(yīng)用價(jià)值的干細(xì)胞來(lái)源,目前世界上多個(gè)國(guó)家已建立臍帶血庫(kù)。hUCBSCs可分化為骨、軟骨、脂肪、骨骼肌、心肌、神經(jīng)元等,與其他成體干細(xì)胞相比,在體外有更快的增殖速度和更小的免疫原性[15]。其在治療血液系統(tǒng)疾病、免疫性疾病中的益處已被證明[16]。hUCBSCs在治療脊髓損傷方面的作用也被逐漸認(rèn)識(shí),如可通過(guò)表達(dá)神經(jīng)營(yíng)養(yǎng)因子,改善微環(huán)境,從而有利于神經(jīng)修復(fù)[15];實(shí)驗(yàn)中觀察到移植的細(xì)胞向遠(yuǎn)處小距離遷移,受體膠質(zhì)細(xì)胞可向移植物內(nèi)遷移,髓鞘化的軸突可向移植物內(nèi)生長(zhǎng)[16],臍帶血干細(xì)胞移植可明顯促進(jìn)動(dòng)物的肢體運(yùn)動(dòng)功能恢復(fù),提高動(dòng)物對(duì)于刺激的反應(yīng)性[17]。
臍帶血干細(xì)胞來(lái)源于新生兒的臍帶血,因其來(lái)源有限,限制了其應(yīng)用,但臍帶血庫(kù)的建立在一定程度上緩和了這個(gè)問(wèn)題。此外,臍帶血的應(yīng)用也存在著一定程度的倫理學(xué)問(wèn)題。
1.5 脂肪來(lái)源干細(xì)胞
脂肪來(lái)源干細(xì)胞(adipose-derived stem cells, ADSCs)是從抽脂患者的脂肪液中分離獲得,可分化為骨、軟骨、脂肪等組織細(xì)胞[18]。一些研究顯示了其在多個(gè)學(xué)科疾病治療上的作用:在自身免疫性疾病的治療上可減少破骨細(xì)胞形成、促進(jìn)免疫耐受、減輕炎癥反應(yīng),從而減弱類(lèi)風(fēng)濕性關(guān)節(jié)炎動(dòng)物模型的局部和全身性的骨組織丟失[19];還可改善血管活性,如ADSCs注射可提高缺血-再灌注游離皮瓣的存活率[20]以及加強(qiáng)急性心肌梗死動(dòng)物模型的心肌再灌注[21];甚至還可在體外促進(jìn)毛發(fā)合成細(xì)胞的增殖及促進(jìn)體內(nèi)毛發(fā)的生長(zhǎng)[22]。ADSCs也應(yīng)用在脊髓損傷的研究:體外預(yù)先神經(jīng)性分化的ADSCs局部移植可較好地存活并參與到神經(jīng)修復(fù)中[23];預(yù)分化的ADSCs可在脊髓組織內(nèi)存活,緊密地和脊髓組織融合并且較好地包繞神經(jīng)元軸突和少突細(xì)胞[18];用ADSCs預(yù)分化的雪旺細(xì)胞移植,可促進(jìn)軸突再生和再髓鞘化,運(yùn)動(dòng)功能有明顯的改善,感覺(jué)功能恢復(fù)到正常水平[24]。
ADSCs用于脊髓損傷方面的研究還不多,但由于其提取方便、來(lái)源充足、可一次大量獲取,不需體外增殖便可移植,使用自身的ADSCs不涉及倫理學(xué)問(wèn)題,這使得其與其他細(xì)胞相比有較大的實(shí)際應(yīng)用優(yōu)勢(shì),是一種有前景的干細(xì)胞類(lèi)型。
2.1 細(xì)胞移植前轉(zhuǎn)染神經(jīng)營(yíng)養(yǎng)因子
有許多研究者做了移植前的細(xì)胞轉(zhuǎn)染,試圖在細(xì)胞內(nèi)轉(zhuǎn)染有利于神經(jīng)生長(zhǎng)的因子,其中使用最多的是各種神經(jīng)營(yíng)養(yǎng)因子(如NT-3、VEGF、FGF、 BDNF等)。神經(jīng)營(yíng)養(yǎng)因子可促進(jìn)神經(jīng)細(xì)胞存活和軸突生長(zhǎng)。
2.1.1 NT-3 NT-3是眾多神經(jīng)營(yíng)養(yǎng)因子的一員,可促進(jìn)神經(jīng)組織的修復(fù),有學(xué)者證實(shí),經(jīng)轉(zhuǎn)染表達(dá)NT-3的骨髓干細(xì)胞較普通干細(xì)胞療效更明顯,能更明顯減小受損區(qū)域空腔,更好地提高動(dòng)物運(yùn)動(dòng)功能的恢復(fù)[3],提高NT-3、BDNF、VEGF的表達(dá)水平,減少硫酸軟骨素多糖的表達(dá)[3]。Wang等[24]的研究則顯示,聯(lián)合移植中表達(dá)NT-3的雪旺細(xì)胞(NT-3-SCs)和表達(dá)Trkc(NT-3受體)的神經(jīng)干細(xì)胞(Trk-NSCs),可促進(jìn)神經(jīng)干細(xì)胞的分化、再髓鞘化和和突觸形成。
2.1.2 VEGF 脊髓損傷后的低氧環(huán)境限制了干細(xì)胞移植后的存活率,血管內(nèi)皮生長(zhǎng)因子(VEGF)可促進(jìn)血管生成、有神經(jīng)保護(hù)作用,轉(zhuǎn)染表達(dá)VEGF的干細(xì)胞移植是有前景的治療方法,但不受控制的VEGF表達(dá)也可導(dǎo)致腫瘤的形成。為解決此問(wèn)題有學(xué)者將轉(zhuǎn)染VEGF的神經(jīng)干細(xì)胞在低氧環(huán)境下預(yù)培養(yǎng)形成VEGF表達(dá)穩(wěn)定的細(xì)胞系,再移植治療鼠的脊髓損傷模型,結(jié)果顯示移植細(xì)胞存活率增加并促進(jìn)血管形成,且沒(méi)有引起異常的細(xì)胞增殖和血管形成[25]。而將骨髓間充質(zhì)干細(xì)胞轉(zhuǎn)染表達(dá)Shh基因可提高FGF、VEGF的表達(dá)、改善局部微環(huán)境,從而提高移植細(xì)胞的存活率[26]。
2.1.3 成纖維生長(zhǎng)因子 成纖維生長(zhǎng)因子(basic fibroblast growth factor, bFGF)可促進(jìn)細(xì)胞有絲分裂和增殖,在脊髓損傷后促進(jìn)軸突再生和修復(fù)方面重要作用。利用轉(zhuǎn)染bFGF的骨髓干細(xì)胞治療動(dòng)物脊髓損傷,可更好地促進(jìn)軸突再生和運(yùn)動(dòng)功能恢復(fù),增加受損局部NF-200和髓鞘堿性蛋白陽(yáng)性神經(jīng)細(xì)胞的密度。干細(xì)胞移植受限于它的低存活率、增殖能力和促進(jìn)功能恢復(fù)的能力,有學(xué)者將FGF-2置于聚丙交酯納米微球,發(fā)現(xiàn)在體外培養(yǎng)時(shí)釋放的FGF-2可以促進(jìn)干細(xì)胞的增殖,將它們共同植入受損脊髓局部可提高細(xì)胞的存活率并促進(jìn)運(yùn)動(dòng)功能的恢復(fù)[27]。
2.1.4 BDNF 腦源性神經(jīng)營(yíng)養(yǎng)因子(brain-derived neurotrophic factor, BDNF)也是一種常見(jiàn)的神經(jīng)營(yíng)養(yǎng)因子,將轉(zhuǎn)染BDNF的骨髓間充質(zhì)干細(xì)胞移植治療鼠的脊髓挫傷,可大大提升BDNF的表達(dá)水平,富含血小板血漿和BDNF-BMSC聯(lián)合治療可明顯增加實(shí)驗(yàn)動(dòng)物后肢運(yùn)動(dòng)BBB評(píng)分[28]。2.1.5 其他因子 睫狀神經(jīng)營(yíng)養(yǎng)因子(ciliary neurotrophic factor, CNTF)為眾多神經(jīng)營(yíng)養(yǎng)因子的一種,可以在體外環(huán)境中促進(jìn)少突細(xì)胞前體細(xì)胞的分化和成熟,還可以促進(jìn)成熟少突細(xì)胞的存活。將移植轉(zhuǎn)染CNTF的骨髓間充質(zhì)干細(xì)胞移植到鼠的脊髓損傷模型,實(shí)驗(yàn)動(dòng)物后肢運(yùn)動(dòng)功能的恢復(fù)明顯高于單獨(dú)治療組[29]。Nishimura等[30]研究顯示,移植轉(zhuǎn)染表達(dá)干擾素β的神經(jīng)干細(xì)胞可通過(guò)激活TLR4(toll-like receptor 4)信號(hào)通路調(diào)控活性星形細(xì)胞,從而減少膠質(zhì)瘢痕的形成,并且促進(jìn)運(yùn)動(dòng)功能的恢復(fù)。Lin等[31]則發(fā)現(xiàn),MSC移植前轉(zhuǎn)染表達(dá)Ngb基因可較單獨(dú)細(xì)胞移植更好地提高動(dòng)物肢體運(yùn)動(dòng)BBB評(píng)分,且更好地降低受損局部的脂質(zhì)過(guò)氧化物水平。
2.2 細(xì)胞移植前預(yù)分化
干細(xì)胞移植到脊髓損傷的動(dòng)物模型后,難以直接分化為神經(jīng)細(xì)胞和膠質(zhì)細(xì)胞,所以有學(xué)者嘗試在移植前先將干細(xì)胞誘導(dǎo)分化為神經(jīng)系統(tǒng)的細(xì)胞,再植入動(dòng)物模型。有研究使用豬的胚胎干細(xì)胞,在體外向神經(jīng)細(xì)胞系分化,而后移植治療鼠的脊髓損傷,結(jié)果顯示移植前預(yù)分化有助于提高胚胎干細(xì)胞的治療效果[32]。Alexanian等[33]的研究顯示,骨髓干細(xì)胞在體外預(yù)先向神經(jīng)細(xì)胞分化后再移植,可提高移植后細(xì)胞的存活率和分化率,更好地改善運(yùn)動(dòng)功能、減小空腔大小和白質(zhì)丟失。將ADSCs在體外預(yù)先向神經(jīng)細(xì)胞系分化2周后移植,也可更好地修復(fù)受損脊髓[23],細(xì)胞存活更好、與宿主組織相容性更好、包繞宿主軸突和少突細(xì)胞[18]。還有研究將多能干細(xì)胞在NBR混合物(包含NGF、BDNF、RA)中培養(yǎng)7 d,然后添加細(xì)胞外基質(zhì)蛋白TN-C進(jìn)行培養(yǎng),再移植治療鼠脊髓損傷,結(jié)果顯示有明顯的脊髓組織再生和干細(xì)胞分布,且運(yùn)動(dòng)功能明顯提高[34]。
2.3 其他移植前處理
使用血小板溶解物可促進(jìn)神經(jīng)干細(xì)胞的體外存活率[33],移植前低氧預(yù)處理可提高經(jīng)干細(xì)胞的存活率,使凋亡基因Bax的表達(dá)下降[35],Bambakidis等[36]發(fā)現(xiàn),用Shh信號(hào)通路激動(dòng)劑Ag11.1可促進(jìn)內(nèi)源性神經(jīng)前體細(xì)胞和少突前體細(xì)胞的增殖,而使用丙戊酸預(yù)處理BMSC則可促進(jìn)趨化因子SDF-1的受體CXCR4表達(dá)上調(diào),從而促進(jìn)移植的骨髓干細(xì)胞遷移到受損區(qū)域[37]。骨髓干細(xì)胞和神經(jīng)細(xì)胞團(tuán)塊共培養(yǎng),可促進(jìn)神經(jīng)團(tuán)塊分化,且它們的軸突延長(zhǎng)并相互連接[38]。另有研究認(rèn)為,髓干細(xì)胞和神經(jīng)干細(xì)胞體外共培養(yǎng)時(shí)前者可分泌一種未知的因子促進(jìn)后者向少突細(xì)胞分化,而在體內(nèi)實(shí)驗(yàn)時(shí)并未發(fā)現(xiàn)此現(xiàn)象[39]。骨髓間充質(zhì)干細(xì)胞移植聯(lián)合電針刺激可較好地促進(jìn)干細(xì)胞的存活和神經(jīng)性分化、軸突的再生以及運(yùn)動(dòng)功能恢復(fù),重建神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)和功能[40-41]。
3.1 局部注射
局部注射為動(dòng)物實(shí)驗(yàn)中較為常用的一種方法,許多學(xué)者采用注射器將細(xì)胞緩慢注射至受損脊髓局部中心[35]。這種方法創(chuàng)傷較大,需要通過(guò)手術(shù)打開(kāi)脊椎骨,顯露脊髓,使用針頭直接將細(xì)胞注射于損傷部位,可能加重?fù)p傷或造成脊髓新的損傷,且難以重復(fù)操作。這種方法需要切開(kāi)脊椎骨顯露脊髓,其實(shí)際臨床的可用性較小。
3.2 靜脈注射
老鼠作為實(shí)驗(yàn)動(dòng)物時(shí),許多研究采用尾靜脈注射的方法進(jìn)行移植[37-38]。該方法如果應(yīng)用于臨床,細(xì)胞數(shù)量至少需要1×107~1×108個(gè),且靜脈給藥要求較高,為實(shí)際應(yīng)用帶來(lái)困難。
3.3 腦脊液注射
腦脊液是在蛛網(wǎng)膜下腔中流動(dòng)的液體,腦室和脊髓內(nèi)的腦脊液相通,注入腦脊液中的干細(xì)胞可以通過(guò)腦脊液流動(dòng)遷移到損傷部位。動(dòng)物實(shí)驗(yàn)時(shí)可通過(guò)腦室內(nèi)注射干細(xì)胞,在人體試驗(yàn)時(shí),有研究者使用注射器將細(xì)胞在腰椎處注射入蛛網(wǎng)膜下腔進(jìn)行移植[3,39]。對(duì)于臨床應(yīng)用而言,這種方法最具有實(shí)際操作意義。
3.4 種植于生物材料內(nèi)
對(duì)于切開(kāi)脊髓的有缺損的動(dòng)物模型,有研究者將細(xì)胞提前種植于生物材料如明膠海綿[24-25]、膠原支架[42]、水凝膠支架[43]上,再將生物材料移植于缺損中心,對(duì)于完全離斷傷,不失為一種好的方法,移植的生物材料既可為細(xì)胞提供一個(gè)載體又可為損傷兩端提供橋接作用。脊髓損傷的臨床病例中,罕有需要植入材料的脊髓節(jié)段性缺損病例,其實(shí)際應(yīng)用性不大。
目前世界范圍內(nèi)干細(xì)胞移植治療脊髓損傷主要在動(dòng)物模型上進(jìn)行,而最終目的在于將此項(xiàng)治療手段用于人體。但由于目前細(xì)胞治療脊髓損傷還有諸多問(wèn)題亟待解決,所以世界范圍內(nèi)此類(lèi)臨床試驗(yàn)甚少。有研究利用自體骨髓干細(xì)胞+自體雪旺細(xì)胞移植治療脊髓損傷,雖未觀察到患者明顯的功能改善,但在2年的隨訪時(shí)間里未觀察到腫瘤等不良事件發(fā)生,作者認(rèn)為細(xì)胞移植是安全的[44]。Karamouzian等[45]研究顯示,通過(guò)腰椎穿刺移植骨髓干細(xì)胞雖然并未得到明顯的益處,但并未發(fā)生明顯不良后果,作者認(rèn)為其是安全的。Saito等[46]通過(guò)腰椎穿刺移植自體骨髓干細(xì)胞治療1例C5損傷的患者,在6個(gè)月的隨訪時(shí)間內(nèi)發(fā)現(xiàn)患者有輕微的運(yùn)動(dòng)功能改善而無(wú)感覺(jué)功能改善,后又繼續(xù)進(jìn)行6個(gè)月的隨訪,發(fā)現(xiàn)患者可以自主坐立于輪椅。另一項(xiàng)利用自體骨髓干細(xì)胞移植治療脊髓損傷20例的臨床試驗(yàn)結(jié)果顯示,ASIA 1級(jí)改善1例,2級(jí)改善1例,其余大部分患者的身體異常束帶感和頭痛癥狀得到改善[47]。
脊髓損傷是一種后果嚴(yán)重但缺乏有效治療手段的疾病,干細(xì)胞的研究給這一頑癥帶來(lái)了希望的曙光,仍有大量的工作需要我們?nèi)プ觥?/p>
[1] Oliver RS, Bello S, Biering-S?rensen F. Mesenchymal stem cells improve locomotor recovery in traumatic spinal cord injury: systematic review with meta-analyses of rat models[J]. Neurobiol Dis, 2014,62:338-353.
[2] Kumagai G, Tsoulfas P, Toh S, et al. Genetically modified mesenchymal stem cells (MSCs) promote axonal regeneration and prevent hypersensitivity after spinal cord injury[J]. Exp Neurol, 2013,248:369-380.
[3] Wang LJ, Zhang RP, Li JD. Transplantation of neurotrophin-3-expressing bone mesenchymal stem cells improves recovery in a rat model of spinal cord injury[J]. Acta Neurochir(Wien), 2014,156(7):1409-1418.
[4] Han D, Wu C, Xiong Q, et al. Anti-inflammatory mechanism of bone marrow mesenchymal stem cell transplantation in rat model of spinal cord injury[J]. Cell biochem Biophys, 2015,71(3):1341-1347.
[5] Binan L, Tendey C, De Crescenzo G, et al. Differentiation of neuronal stem cells into motor neurons using electrospun poly-L-lactic acid/gelatin scaffold[J]. Biomaterials, 2014,35(2):664-674.
[6] Lu P, Wang Y, Graham L, et al. Long-distance growth and connectivity of neural stem cells after severe spinal cord injury[J]. Cell, 2012,150(6):1264-1273.
[7] Boido M, Garbossa D, Vercelli A, et al. Early graft of neural precursors in spinal cord compression reduces glial cyst and improves function[J]. J Neurosurg Spine, 2011,15(1):97-106.
[8] He BL, Ba YC, Wang XY, et al. BDNF expression with functional improvement in transected spinal cord treated with neural stem cells in adult rats[J]. Neuropeptides, 2013,47(1):1-7.
[9] Hu JG, Shen L, Wang R, et al. Effects of Olig2-overexpressing neural stem cells and myelin basic protein-activated T cells on recovery from spinal cord injury[J]. Neurotherapeutics, 2012,9(2):422-445.
[10] Cheng I, Mayle RE, Cox CA, et al. Functional assessment of the acute local and distal transplantation of human neural stem cells after spinal cord injury[J]. Spine J, 2012,12(11):1040-1044.
[11] Xu L, Xu CJ, Lü HZ, et al. Long-term fate of allogeneic neural stem cells following transplantation into injured spinal cord[J]. Stem Cell Rev, 2010,6(1):121-136.
[12] Nemati SN, Jabbari R, Hajinasrollah M, et al. Transplantation of adult monkey neural stem cells into a contusion spinal cord injury model in rhesus macaque monkeys[J]. Cell J, 2014,16(2):117.
[13] Vadivelu S, Stewart TJ, Qu Y, et al. NG2+ progenitors derived from embryonic stem cells penetrate glial scar and promote axonal outgrowth into white matter after spinal cord injury[J]. Stem cells Transal Med, 2015,4(4):401-411.
[14] Hu SL, Luo HS, Li JT, et al. Functional recovery in acute traumatic spinal cord injury after transplantation of human umbilical cord mesenchymal stem cells[J]. Crit Care Med, 2010,38(11):2181-2189.
[15] Liu J, Chen J, Liu B, et al. Acellular spinal cord scaffold seeded with mesenchymal stem cells promotes long-distance axon regeneration and functional recovery in spinal cord injured rats[J]. J Neurol Sci, 2013,325(1-2):127-136.
[16] Kaner T, Karadag T, Cirak B, et al. The effects of human umbilical cord blood transplantation in rats with experimentally induced spinal cord injury[J]. J Neurosurg Spine, 2010,13(4):543-551.
[17] Arboleda D, Forostyak S, Jendelova P, et al. Transplantation of predifferentiated adipose-derived stromal cells for the treatment of spinal cord injury[J]. Cell Mol Neurobiol, 2011,31(7):1113-1122.
[18] Garimella MG, Kour S, Piprode V, et al. Adipose-derived mesenchymal stem cells prevent systemic bone loss in collagen-induced arthritis[J]. J Immunol, 2015,195(11):5136-5148.
[19] Han HH, Lim YM, Park SW, et al. Improved skin flap survival in venous ischemia-reperfusion injury with the use of adipose-derived stem cells[J]. Microsurgery, 2015,35(8):645-652.
[20] Lee HW, Lee HC, Park JH, et al. Effects of intracoronary administration of autologous adipose tissue-derived stem cells on acute myocardial infarction in a porcine model[J]. Yonsei Med J, 2015,56(6):1522-1529.
[21] Jin SE, Sung JH. Hair regeneration using adipose-derived stem cells[J]. Histol Histopathol, 2016,31(3):249-256.
[22] Zhao Y, Jiang H, Liu XW, et al. Neurogenic differentiation from adipose-derived stem cells and application for autologous transplantation in spinal cord injury[J]. Cell Tissue Bank, 2015,16(3):335-342.
[23] Zaminy A, Shokrgozar MA, Sadeghi Y, et al. Transplantation of schwann cells differentiated from adipose stem cells improves functional recovery in rat spinal cord injury[J]. Arch Iran Med, 2013,16(9):533-541.
[24] Wang JM, Zeng YS, Wu JL, et al. Cograft of neural stem cells and schwann cells overexpressing TrkC and neurotrophin-3 respectively after rat spinal cord transection[J]. Biomaterials, 2011,32(3):7454-7468.
[25] Oh JS, An SS, Gwak SJ, et al. Hypoxia-specific VEGF-expressing neural stem cells in spinal cord injury model[J]. Neuroreport, 2012,23(3):174-178.
[26] Jia Y, Wu D, Zhang R, et al. Bone marrow-derived mesenchymal stem cells expressing the Shh transgene promotes functional recovery after spinal cord injury in rats[J]. Neurosci Lett, 2014,573:46-51.
[27] Shin DA, Pennant WA, Yoon DH, et al. Co-transplantation of bone marrow-derived mesenchymal stem cells and nanospheres containing FGF-2 improve cell survival and neurological function in the injured rat spinal cord[J]. Acta Neurochir(Wien), 2014,156(2):297-303.
[28] Zhao T, Yan W, Xu K, et al. Combined treatment with platelet-rich plasma and brain-derived neurotrophic factor-overexpressing bone marrow stromal cells supports axonal remyelination in a rat spinal cord hemi-section model[J]. Cytotherapy, 2013,15(7):792-804.
[29] Abbaszadeh HA, Tiraihi T, Noori-Zadeh A, et al. Human ciliary neurotrophic factor-overexpressing stable bone marrow stromal cells in the treatment of a rat model of traumatic spinal cord injury[J]. Cytotherapy, 2015,17(7):912-921.
[30] Nishimura Y, Natsume A, Ito M, et al. Interferon-β delivery via human neural stem cell abates glial scar formation in spinal cord injury[J]. Cell Transplant, 2013,22(12):2187-2201.
[31] Lin WP, Chen XW, Zhang LQ, et al. Effect of neuroglobin genetically modified bone marrow mesenchymal stem cells transplantation on spinal cord injury in rabbits[J]. PLoS One, 2013,8(5):e63444.
[32] Yang JR, Liao CH, Pang CY, et al. Transplantation of porcine embryonic stem cells and their derived neuronal progenitors in a spinal cord injury rat model[J]. Cytotherapy, 2013,15(2):201-208.
[33] Alexanian AR, Fehlings MG, Zhang Z, et al. Transplanted neurally modified bone marrow-derived mesenchymal stem cells promote tissue protection and locomotor recovery in spinal cord injured rats[J]. Neurorehabil Neural Repair, 2011,25(9):873-880.
[34] Deng WP, Yang CC, Yang LY, et al. Extracellular matrix-regulated neural differentiation of human multipotent marrow progenitor cells enhances functional recovery after spinal cord injury[J]. Spine J, 2014,14(10):2488-2499.
[35] Oh JS, Ha Y, An SS, et al. Hypoxia-preconditioned adipose tissue-derived mesenchymal stem cell increase the survival and gene expression of engineered neural stem cells in a spinal cord injury model[J]. Neurosci Lett, 2010,472(3):215-219.
[36] Bambakidis NC, Wang X, Lukas RJ, et al. Intravenous Hedgehog agonist induces proliferation of neural and oligodendrocyte precursors in rodent spinal cord injury[J]. Neurosurgery, 2010,67(6):1709-1715.
[37] Chen L, Cui X, Wu Z, et al. Transplantation of bone marrow mesenchymal stem cells pretreated with valproic acid in rats with an acute spinal cord injury[J]. Biosci Trends, 2014,8(2):111-119.
[38] Mothe AJ, Bozkurt G, Catapano J, et al. Intrathecal transplantation of stem cells by lumbar puncture for thoracic spinal cord injury in the rat[J]. Spinal Cord, 2011,49(9):967-973.
[39] Sandner B, Rivera FJ, Caioni M, et al. Bone morphogenetic proteins prevent bone marrow stromal cell-mediated oligodendroglial differentiation of transplanted adult neural progenitor cells in the injured spinal cord[J]. Stem Cell Res, 2013,11(2):758-771.
[40] Liu Z, Ding Y, Zeng YS. A new combined therapeutic strategy of governor vessel electro-acupuncture and adult stem cell transplantation promotes the recovery of injured spinal cord[J]. Curr Med Chem, 2011,18(33):5165-5171.
[41] Ding Y, Yan Q, Ruan JW, et al. Electro-acupuncture promotes survival, differentiation of the bone marrow mesenchymal stem cells as well as functional recovery in the spinal cord-transected rats[J]. BMC Neurosci, 2009,10:35.
[42] Li X, Xiao Z, Han J, et al. Promotion of neuronal differentiation of neural progenitor cells by using EGFR antibody functionalized collagen scaffolds for spinal cord injury repair[J]. Biomaterials, 2013,34(21):5107-5116.
[43] Ruzicka J, Romanyuk N, Hejci A, et al. Treating spinal cord injury in rats with a combination of human fetal neural stem cells and hydrogels modified with serotonin[J]. Acta Neurobiol Exp(Wars), 2013,73(1):102-115.
[44] Yazdani SO, Hafizi M, Zali AR, et al. Safety and possible outcome assessment of autologous Schwann cell and bone marrow mesenchymal stromal cell co-transplantation for treatment of patients with chronic spinal cord injury[J]. Cytotherapy, 2013,15(7):782-791.
[45] Karamouzian S, Nematollahi-Mahani SN, Nakhaee N, et al. Clinical safety and primary efficacy of bone marrow mesenchymal cell transplantation in subacute spinal cord injured patients[J]. Clin Neurol NeurolSurg, 2012,114(7):935-939.
[46] Saito F, Nakatani T, Iwase M, et al. Spinal cord injury treatment with intrathecal autologous bone marrow stromal cell transplantation: the first clinical trial case report[J]. J Trauma, 2008,64(1):53-59.
[47] Jiang PC, Xiong WP, Wang G, et al. A clinical trial report of autologous bone marrow-derived mesenchymal stem cell transplantation in patients with spinal cord injury[J]. Exp Ther Med, 2013,6(1):140-146.
310014 浙江 杭州,浙江省人民醫(yī)院 整形外科
梁靈剛(1989-),男,四川南充人,碩士研究生.
吳溯帆,310014,浙江省人民醫(yī)院 整形外科,電子信箱:sufanwu@163.com
10.3969/j.issn.1673-7040.2016.10.019
2016-06-19)