第一作者武吉梅女,博士,教授,博士生導(dǎo)師,1963年10月生
基于微分求積法的印刷運(yùn)動薄膜動力穩(wěn)定性分析
武吉梅,陳媛,王硯,武秋敏
(西安理工大學(xué),西安710048)
摘要:以印刷運(yùn)動薄膜為研究對象進(jìn)行橫向振動特性及穩(wěn)定性研究。建立拋物線型變密度運(yùn)動薄膜計算模型。用微分求積法對運(yùn)動薄膜橫向振動方程進(jìn)行離散,獲得運(yùn)動薄膜的復(fù)特征值方程。通過數(shù)值求解獲得系統(tǒng)無量綱復(fù)頻率與運(yùn)動速度、密度系數(shù)、薄膜張力比的關(guān)系曲線,確定密度系數(shù)與臨界速度的函數(shù)關(guān)系,分析密度系數(shù)、薄膜張力比對薄膜振動特性影響。結(jié)果表明,密度系數(shù)及張力比對薄膜穩(wěn)定性有重要影響。
關(guān)鍵詞:印刷運(yùn)動薄膜;動力穩(wěn)定性;微分求積法;拋物線變密度
基金項目:國家自然科學(xué)基金(11272253,11202159);陜西省自然科學(xué)基金(2014JM7290);陜西省重點實驗室項目(13JS081)
收稿日期:2015-01-26修改稿收到日期:2015-03-10
中圖分類號:TS803.6
文獻(xiàn)標(biāo)志碼:A
DOI:10.13465/j.cnki.jvs.2015.20.010
Abstract:A printing moving membrane was concerned and its transverse vibration characteristics and dynamic stability were analyzed. A calculation model of the moving membrane with parabolic density distribution was established. The transverse vibration equation of the printing membrane was discretized using the differential quadrature method, and the complex eigen value equation was obtained. The relation curves of the first three dimensionless complex frequencies versus the dimensionless velocity, the density coefficient and the tension ratio were derived by numerical calculation. The functional relationship between the density coefficient and the critical speed was determined. The effects of density coefficient and tension ratio on vibration characteristics of the membrane were discussed. The numerical results show that the density coefficient and the tension ratio have important impacts on the stability of moving membrane. The study provides a theoretical basis for optimizing the structure of printing press and improving the working stability of high-speed moving membranes.
Dynamic stability of printing moving membrane based on differential quadrature method
WUJi-mei,CHENYuan,WANGYan,WUQiu-min(Xi’an University of Technology, Xi’an 710048, China)
Key words:printing moving membrane; dynamic stability; differential quadrature method;parabolic density distribution
卷筒紙印刷機(jī)紙帶、凹版印刷機(jī)薄膜、生產(chǎn)線的紙張等均可?;癁檩S向運(yùn)動的薄膜。薄膜作為承印材料廣泛用于印刷包裝領(lǐng)域。高速運(yùn)動的料膜在印刷過程中橫向振動及由振動引發(fā)的“皺褶”現(xiàn)象會嚴(yán)重影響印品的套印精度,從而影響其質(zhì)量。諸多場合薄膜密度非恒定,如印刷紙帶或PET膜等。印刷中印版據(jù)圖文分布進(jìn)行潤濕、著墨,通過橡皮滾筒、壓印滾筒對滾將油墨轉(zhuǎn)移至承印物。該油墨及潤版液必會引起料膜面密度變化;而承印物厚度不均勻也會使面密度發(fā)生變化。面密度不均勻會影響薄膜的振動特性、降低印刷的穩(wěn)定性,進(jìn)而影響印品質(zhì)量。因此,研究變密度運(yùn)動薄膜的橫向振動特性,對有效控制印刷過程中薄膜振動、提高印品套印精度具有重要意義。
近年來,軸向運(yùn)動系統(tǒng)橫向振動及穩(wěn)定性研究已取得較大成果。陳立群等[1-4]分別研究軸向運(yùn)動弦線、梁及薄板的橫向非線性振動問題,并就不同研究對象分析其穩(wěn)態(tài)響應(yīng)過程。王冬梅等[5]用微分求積數(shù)值方法求解軸向加速粘彈性梁的橫向振動控制方程。周銀鋒等[6]研究軸向運(yùn)動粘彈性板的橫向振動特性。Shin等[7]通過研究軸向運(yùn)動薄膜面外振動動力特性,發(fā)現(xiàn)薄膜固有頻率及振動模型受運(yùn)動速度、邊界條件、薄膜張力比及長寬比影響。Kulachenk等[8-9]對薄膜非線性動力學(xué)行為深入研究,并用算例進(jìn)行驗證。趙鳳群等[10]研究四邊固支運(yùn)動矩形薄膜的振動特性。Wu等[11]研究加速運(yùn)動矩形紙帶的穩(wěn)定性問題,確定紙帶動力不穩(wěn)定及穩(wěn)定性區(qū)域,并討論系統(tǒng)參數(shù)對不穩(wěn)定區(qū)域影響。Nguyen等[12-13]分別研究軸向運(yùn)動紙帶、薄膜在給定速度下的穩(wěn)定性及橫向振動控制問題。Ma等[14]用次最優(yōu)控制法分析變密度運(yùn)動紙帶的振動控制問題。
以上研究多為恒定密度下軸向運(yùn)動體的振動特性及控制問題。本文以印刷運(yùn)動薄膜為研究對象,建立拋物線型變密度印刷薄膜的振動微分方程。用微分求積法計算變密度薄膜的橫向振動,獲得系統(tǒng)無量綱復(fù)頻率與運(yùn)動速度、密度系數(shù)、薄膜張力比的關(guān)系曲線,確定密度系數(shù)與臨界速度關(guān)系。分析密度系數(shù)、薄膜張力比對薄膜振動特性影響。
1振動模型建立
變密度印刷運(yùn)動薄膜計算模型見圖1。其中圖1 (a)、(b)分別為變密度印刷薄膜的力學(xué)模型及密度變化規(guī)律。將印刷過程中兩對滾筒(或輥子)間支承的一段運(yùn)動薄膜簡化為數(shù)學(xué)模型(圖1(a)),并對此段薄膜進(jìn)行受力分析。
圖1 薄膜力學(xué)模型及面密度變化規(guī)律 Fig.1 Mathematical model and density change rule
(1)
設(shè)薄膜振動時所受外力F(x,y,t)沿z向,得運(yùn)動薄膜橫向振動微分方程[15]為
(2)
不考慮橫向外力作用即F(x,y,t)=0,將變密度式(1)代入式(2),整理得拋物線型變密度印刷運(yùn)動薄膜的橫向振動微分方程為
(3)
引入無量綱量
(4)
將式(3)化為無量綱形式,即
(5)
設(shè)方程(5)的解為
w(ξ,η,τ)=W(ξ,η)ejωτ
(6)
將式(6)代入式(5),得拋物線型變密度印刷薄膜的橫向振型微分方程為
(7)
印刷運(yùn)動薄膜邊界條件為
(8)
2復(fù)特征方程
據(jù)微分求積法[16]引入N×N(N=9)個網(wǎng)點,網(wǎng)點劃分形式為
(9)
未知數(shù)各階偏導(dǎo)數(shù)可表示為
(10)
各階權(quán)系數(shù)值計算式為
(11)
(12)
對式(7)用微分求積法建立復(fù)特征值方程,微分求積形式為
4α(η-η2)ω2Wij=0
(13)
邊界條件的微分求積形式為
(14)
將式(13)、(14)合并成矩陣形式可構(gòu)成廣義特征值問題,其特征方程為
(15)
式中:R,G,K為矩陣,含薄膜張力比λ、無量綱速度c、密度系數(shù)α、長寬比μ等參數(shù)。
3計算結(jié)果及分析
密度系數(shù)α=0時變密度印刷運(yùn)動薄膜振動方程退化為密度均勻不變的運(yùn)動薄膜橫向自由振動方程。取α=0,c=0,λ=1,長寬比分別為μ=1及2,計算運(yùn)動薄膜前3階無量綱振動復(fù)頻率,結(jié)果見表1。由表1知,利用微分求積法所得振動頻率值與文獻(xiàn)[17]解相吻合,表明用微分求積法求解運(yùn)動薄膜的橫向振動可行、有效。
表1 橫向振動頻率解的比較
圖2 無量綱復(fù)頻率與速度關(guān)系(λ=0.5,μ=2,α=0)Fig.2Dimensionlesscomplexfrequencyvariedwithdimensionlessvelocity圖3 無量綱復(fù)頻率與速度關(guān)系(λ=1,μ=2,α=0)Fig.3Dimensionlesscomplexfrequencyvariedwithdimensionlessvelocity
張力比λ=1、長寬比μ=2、密度系數(shù)分別為α=0.4、α=0.7、α=1.0時變密度薄膜第1階無量綱復(fù)頻率實部、虛部與速度關(guān)系變化曲線見圖4。由圖4看出,隨密度系數(shù)增大第1階模態(tài)發(fā)散失穩(wěn)的臨界速度不斷減??;第1階模態(tài)重新趨于穩(wěn)定狀態(tài)的速度不斷提前。α=1.0時臨界速度提前到cr=0.71。
張力比為λ=0.5、λ=0.8、λ=1.0(α=0.4、μ=2)時第1階無量綱復(fù)頻率實部與速度關(guān)系曲線見圖5。由圖5看出,張力比增大對三條曲線變化趨勢影響較小,即張力比對臨界速度及第1階復(fù)頻率大小影響較小。
張力比為λ=0.5、λ=1時密度系數(shù)與3階模態(tài)臨界速度關(guān)系曲線見圖6。由圖6看出,密度系數(shù)增大3階模態(tài)臨界速度逐漸減小,兩條曲線基本重合,說明張力比對臨界速度影響較小。
圖4 第1階無量綱復(fù)頻率與速度關(guān)系(λ=1,μ=2)Fig.4Dimensionlesscomplexfrequencyvariedwithdimensionlessvelocity圖5 第1階無量綱復(fù)頻率實部與速度關(guān)系(α=0.4、μ=2)Fig.5Dimensionlesscomplexfrequencyvariedwithdimensionlessvelocity圖6 密度系數(shù)與前3階模態(tài)臨界速度關(guān)系Fig.6Relationshipbetweendensitycoefficientandcriticalspeed
4結(jié)論
用微分求積法對面密度以拋物線規(guī)律變化的印刷運(yùn)動薄膜振動特性及穩(wěn)定性進(jìn)行研究,并通過退化驗證該方法的可行性及有效性。結(jié)論如下:
(1)密度系數(shù)α=0時前3階無量綱復(fù)頻率實部隨無量綱速度增大不斷減小,階數(shù)越高,初始復(fù)頻率實部值越大;對薄膜穩(wěn)定工作區(qū)中任意相同無量綱速度,張力比增大高階復(fù)頻率值不斷增大,薄膜不穩(wěn)定區(qū)域持續(xù)范圍隨之增大。
(2)α>0時,在密度系數(shù)、長寬比相同情況下,張力比對臨界速度及第1階復(fù)頻率大小影響較小。對相同張力比、長寬比薄膜,臨界速度隨密度系數(shù)增大而減小,系統(tǒng)重新趨于穩(wěn)定狀態(tài)的速度亦越小,說明此時薄膜的穩(wěn)定性態(tài)變差。
(3)本文計算結(jié)果可用于確定印刷機(jī)械設(shè)計、制造及使用中安全穩(wěn)定工作速度區(qū)間,同時亦為進(jìn)一步優(yōu)化印刷機(jī)結(jié)構(gòu)提供理論依據(jù)。
參考文獻(xiàn)
[1]吳俊,陳立群. 軸向變速運(yùn)動弦線的非線性振動的穩(wěn)態(tài)響應(yīng)及其穩(wěn)定性[J]. 應(yīng)用數(shù)學(xué)和力學(xué),2004,25(9):917-925.
WU Jun, CHEN Li-qun. Steady-state responses and their stability of nonlinear vibration of an axially accelerating string [J]. Applied Mathematics and Mechanics,2004, 25(9): 917-925.
[2]丁虎,陳力群. 軸向運(yùn)動粘彈性梁橫向非線性受迫振動[J]. 振動與沖擊,2009,28(12):128-131.
DING Hu, CHEN Li-qun.Transverse non-linear forced vibration of axially moving viscoelastic beam [J]. Journal of Vibration and Shock,2009,28(12):128-131.
[3]熊楊柳,張國策,丁虎,等. 粘彈性屈曲梁非線性內(nèi)共振穩(wěn)態(tài)周期響應(yīng)[J]. 應(yīng)用數(shù)學(xué)和力學(xué),2014,35(11):1188 -1196.
XIONG Yang-liu, ZHANG Guo-ce, DING Hu,et al. Steady-state periodic responses of a viscoelastic buckled beam in nonlinear internal resonance[J]. Applied Mathematics and Mechanics, 2014, 35(11):1188-1196.
[4]唐有綺,陳立群. 面內(nèi)平動黏彈性板非線性振動的內(nèi)-外聯(lián)合共振[J]. 應(yīng)用數(shù)學(xué)和力學(xué),2013,34(5):480-487.
TANG You-qi, CHEN Li-qun.Internal-external combination resonance of nonlinear vibration of in-plane translating viscoelastic plates[J]. Applied Mathematics and Mechanics, 2013, 34(5): 480-487.
[5]周銀鋒,王忠民. 軸向運(yùn)動粘彈性板的橫向振動特性[J]. 應(yīng)用數(shù)學(xué)和力學(xué),2007, 28(2): 191-199.
ZHOU Yin-feng, WANG Zhong-min.The transverse vibration characteristics of the axially moving viscoelastic plate[J]. Applied Mathematics and Mechanics,2007, 28(2): 191-199.
[6]王冬梅,張偉,劉燕. 用微分求積法分析軸向加速粘彈性梁的非線性動力學(xué)行為[J]. 動力學(xué)與控制學(xué)報,2013, 11(1):41-45.
WANG Dong-mei, ZHANG Wei, LIU Yan. Analysis on nonlinear dynamics of an axially accelerating viscoelastic beam using DQM [J]. Journal of Dynamics and Control, 2013, 11(1): 42-45.
[7]Shin C, Chung J, Kim W. Dynamic characteristics of the out-of-plane vibration for an axially moving membrane [J].Journal of Sound and Vibration, 2005,286:1019-1031.
[8]Kulachenko A, Gradin P, Koivurova H. Modeling the dynamical behaviour of a paper webpart I [J]. Computers and Structures, 2007, 85(1): 131-147.
[9]Kulachenko A, Gradin P, Koivurova H. Modeling the dynamical behaviour of a paper webpart II[J]. Computers and Structures, 2007, 85(2): 148-157.
[10]趙鳳群,王忠民. 運(yùn)動矩形薄膜的非線性振動分析[J]. 機(jī)械科學(xué)與技術(shù),2010,29(6):768-771.
ZHAO Feng-qun,WANG Zhong-min. Nonlinear vibration analysis of a moving rectangular membrane[J]. Mechanical Science and Technology for Aerospace Engineering, 2010, 29(6): 768-771.
[11]Wu Ji-mei, Wu Qiu-min, Ma Li-e,et al. Parameter vibration and dynamic stability of the printing paper web with variable speed [J]. Journal of Low Frequency Noise, Vibration and Active Control, 2010, 29 (4): 281-291.
[12]Nguyen Q C, Hong K S. Stabilization of an axially moving web via regulation of axial velocity[J]. Journal of Sound and Vibration, 2011, 330(20): 4676-4688.
[13]Nguyen Q C, Hong K S. Transverse vibration control of axially moving membranes by regulation of axial velocity [J]. IEEE Transactions on Control Systems Technology, 2012, 20(4): 1124-1131.
[14]Ma Li-e, Wu Ji-mei, Mei Xue-song,et al. Active vibration control of moving wed with varying density[J]. Journal of Low Frequency Noise, Vibration and Active Control, 2013, 32(4): 323-334.
[15]Wu Ji-mei, Lei Wen-jiao, Wu Qiu-min,et al. Transverse vibration characteristics and stability of a moving membrane with elastic supports[J]. Journal of Low Frequency Noise, Vibration and Active Control, 2014, 33(1): 65-78.
[16]王永亮. 微分求積法和微分求積單元法-原理與應(yīng)用[D]. 南京:南京航空航天大學(xué),2001.
[17]Timoshenko S P, Young D H, Weaver W. Vibration problems in engineering[M]. New York:John Wiley & Sons, Inc., 1974.