第一作者涂亞慶男,博士,教授,1963年生
計及負(fù)頻率的DFT與DTFT相位差測量誤差分析
涂亞慶,李明,沈廷鰲,張海濤
(后勤工程學(xué)院信息工程系,重慶401311)
摘要:針對噪聲背景下計及負(fù)頻率的DFT(Discrete Fourier Transform)與DTFT(Discrete Time Fourier Transform)相位差測量誤差問題,用誤差理論分別推導(dǎo)出高斯白噪聲背景下計及負(fù)頻率的DFT與DTFT相位差估計方差計算公式。對不同的泄漏誤差系數(shù)、采樣序列長度及信噪比,在負(fù)頻率影響條件下進(jìn)行計算驗證。結(jié)果表明,仿真結(jié)果與計算結(jié)果一致,表明相位差測量誤差分析公式的正確性。提升頻率估計精度、增加采樣序列長度、提高信號信噪比,可有效提升計及負(fù)頻率的DFT與DTFT相位差測量方法精度。采樣序列長度大于2048點或信噪比大于5 dB時,相位差測量精度提升有限,且DTFT相位差測量方法對頻率估計精度更敏感。
關(guān)鍵詞:相位差測量;誤差分析;負(fù)頻率;DFT;DTFT
基金項目:國家自然科學(xué)基金(61271449,61302175);重慶市自然科學(xué)基金(CSTC2011BA2015,CSTC2012jjA0877,CSTC2013jcyjA40030)
收稿日期:2014-01-08修改稿收到日期:2014-05-14
中圖分類號:TN911.7
文獻(xiàn)標(biāo)志碼:A
DOI:10.13465/j.cnki.jvs.2015.20.015
Abstract:Aiming at the errors in phase difference measurement based on DFT(Discrete Fourier Transform) or DTFT (Discrete Time Fourier Transform) methods, taking into account the negative frequency contribution under white noise background, the formulas for evaluating the variance of phase difference were presented according to the error theory. With the consideration of negative frequency contribution, the different leakage error coefficients, sampling sequence lengths and signal-noise-ratios (SNR) were calculated. The results of some the simulations coincide well with those results calculated by using the presented formulas, which shows the correctness of the phase measurement error analysis method. The accuracy of DFT or DTFT based phase difference measurement methods considering the negative frequency contribution could be further improved effectively by enhancing the frequency estimation accuracy, increasing the sampling sequence length, and improving the SNR. When the sampling sequence length is more than 2048 or SNR is greater than 5dB, the further improvement of the accuracy of phase difference measurement is limited. The DTFT based phase measurement method is more sensitive to frequency estimation accuracy.
Error analysis of DFT or DTFT based phase difference measurement considering the negative frequency contribution
TUYa-qing,LIMing,SHENTing-ao,ZHANGHai-tao(Department of Information Engineering, Logistical Engineering University, Chongqing 401311, China)
Key words:phase difference measurement; error analysis; negative frequency; DFT; DTFT
正弦信號相位差測量在雷達(dá)、導(dǎo)航、電力系統(tǒng)、機(jī)械狀態(tài)監(jiān)測與故障診斷、工業(yè)測量等領(lǐng)域中廣泛應(yīng)用。相位差測量方法較多,而數(shù)字相關(guān)法[1-2]及頻譜分析法[3-6]為研究、應(yīng)用較多的兩種方法。數(shù)字相關(guān)法具有良好的噪聲抑制能力,但難以消除諧波干擾,且要求對周期信號實行嚴(yán)格整周期采樣;頻譜分析法對諧波及隨機(jī)噪聲干擾抑制能力較強(qiáng),且能利用FFT快速算法取得高運(yùn)算效率,便于硬件實現(xiàn),因而應(yīng)用較廣。
然而,當(dāng)信號頻率較低或接近奈奎斯特頻率(即采樣頻率一半)時負(fù)頻率干擾嚴(yán)重,數(shù)字相關(guān)法及頻譜分析法的相位差測量精度均不理想。為此,文獻(xiàn)[7]通過詳細(xì)分析,對計及負(fù)頻率影響的頻譜分析方法進(jìn)行綜述。文獻(xiàn)[8-9]針對負(fù)頻率影響提出消除負(fù)頻率影響的頻率校正方法,可有效提升低頻頻率估計精度。隨對負(fù)頻率研究不斷深入[10-12],針對負(fù)頻率對相位差測量影響,文獻(xiàn)[13]提出改進(jìn)的全相位FFT相位差頻譜校正方法,能有效改善負(fù)頻率條件下相位差的測量精度,但計算略顯復(fù)雜,且未對測量性能進(jìn)行理論分析。文獻(xiàn)[14-15]在傳統(tǒng)DFT與DTFT計算基礎(chǔ)上計及負(fù)頻率影響,提出DFT與DTFT相位差測量方法,該法計算簡便、精度較高,可有效消除負(fù)頻率對相位差測量影響,但未在噪聲背景下對該方法進(jìn)行性能分析。
本文在對計及負(fù)頻率的DFT與DTFT相位差測量方法歸納基礎(chǔ)上對其在噪聲背景下的測量誤差進(jìn)行分析、對比,推導(dǎo)出高斯白噪聲背景下計及負(fù)頻率的相位差估計方差計算公式,以期提高相位測量精度。
1計及負(fù)頻率的DFT相位差測量誤差分析
1.1DFT相位差測量原理
設(shè)觀測信號為兩路單一頻率的實正弦信號s1(t),s2(t)以fs(fs≥2f0)同時對兩路信號進(jìn)行采樣,獲得采樣序列為
(1)
式中:A1,A2為信號幅度;f0為信號頻率;θ1,θ2為信號初相位;N為采樣點數(shù)。
對式(1)進(jìn)行DFT求得頻譜S1(k),在k0處譜線具有最大值(k0為整數(shù)),f0可表示為
f0=(k0+δ)fd
(2)
式(1)的采樣序列表示為
(3)
由DFT定義,計及負(fù)頻率的S1(k)在k=k0處具有最大譜峰值,即
(4)
推導(dǎo)得
(5)
式中:cf1=sin(2πk0/N);cf2=sin[2π(k0+δ)/N];cf3=2sin(πδ/N)sin[π(2k0+δ)/N];φf1為S1(k0)相位。
同理,對第二路正弦采樣序列s2(n),有
(6)
式中:φf2為s2(n)在最大譜線k0處DFT變換相位。
由式(5)、(6)可求得兩路信號間相位差(即加矩形窗時DFT相位差計算公式)為
(7)
1.2高斯白噪聲背景下DFT法誤差分析
在加性噪聲背景下第一路觀測信號采樣序列可表示為
r1(n)=s1(n)+z1(n),(n=0,1,…,N-1)
(8)
r1(n)的N點DFT變換可表示為
(9)
式中:S1(k)為s1(n)的DFT變換;Ak,φk分別為S1(k)幅度、相位;Z1(k)為z1(n)DFT變換;b,φz分別為Z1(k)的幅度、相位。
由DFT定義,有
(10)
對z1(n)進(jìn)行DFT變換相當(dāng)于z1(n)通過一個線性系統(tǒng)輸出。由于z1(n)為高斯白噪聲,Z1(k)也服從高斯分布,其均值、方差[16]分別為
(11)
(12)
據(jù)式(10),Z1(k)的自相關(guān)函數(shù)為
(13)
對白噪聲序列z1(n),m≠n時有E[z1(m)z1(n)]=0,故式(13)可簡化為
(14)
可見,由于DFT基函數(shù)的正交特性,由同一組隨機(jī)變量線性組合而成的Z1(k)不相關(guān)[17]。而對z1(n)的不同次實現(xiàn),由于z1(n)本身不相關(guān)性,Z1(k)也不相關(guān)。因此,Z1(k)為復(fù)高斯白噪聲序列。故Z1(k)的實部(bcosφz)及虛部(bsinφz)亦均為高斯白噪聲序列,且有
E[bcosφz]=E[bsinφz]=E[Z1(k)]=0
(15)
var[bcosφz]=var[bsinφz]=
(16)
在最大譜線k0處,r1(n)的DFT變換可表示為
R1(k0)=S1(k0)+Z1(k0)=Ak1ejφf1+bejφz
(17)
式中:Ak1為S1(k0)幅度。
由式(4)得
(18)
式中:φf1為S1(k0)相位。
式(17)可進(jìn)一步整理為
(19)
(20)
當(dāng)信噪比不特別低時,對較大N一般認(rèn)為b/Ak1?1,于是有
(21)
式中:b,φz為隨機(jī)變量;Ak1,φf1為非隨機(jī)變量。
式(21)可表示為
(22)
式中:φz1為迭加在φf1上的噪聲,且
φz1=bsin(φz-φf1)/Ak1
(23)
顯然,φz1為高斯白噪聲,其均值、方差分別為
E[φz1]=E[bsinφzcosφf1-bcosφzsinφf1]/Ak1=
(E[bsinφz]cosφf1-E[bcosφz]sinφf1)/Ak1=0
(24)
(var[bsinφz]cos2φf1+
(25)
同理,對第二路觀測信號r2(n)=s2(n)+z2(n),(n=0,1,…,N-1)。在最大譜線k0處r2(n)的DFT變換可表示為
R2(k0)=S2(k0)+Z1(k0)=Ak2ejφf2+bejφz
(26)
式中:Ak1為S1(k0)幅度,由式(4)得
(27)
(28)
式中:φf2為S2(k0)相位,φz2=bsin(φz-φf2)/Ak2為迭加在φf2的噪聲,且其均值、方差分別為
E[φz2]=0
(29)
(30)
據(jù)DFT法測量原理,高斯白噪聲環(huán)境下,兩路信號間相位差計算式為
(31)
Δθ=f(T)
(32)
將f在點T0=E[T]=[φf1φf2]T=[μ1μ2]T=μ附近用一階泰勒級數(shù)展開[18],即
(33)
E[Δθ]=f(μ)=
(34)
則Δθ估計方差為
(35)
式中:CT為矩陣T的協(xié)方差矩陣。
(36)
(37)
(38)
通常迭加在兩路觀測信號的高斯白噪聲可認(rèn)為互不相關(guān),因而φz1,φz2亦不相關(guān),則有
(39)
將式(36)~式(39)代入式(35)可得Δθ的估計方差為
(40)
2計及負(fù)頻率的DTFT相位差測量誤差分析
2.1DTFT相位差測量原理
DTFT的相位差測量方法(簡稱DTFT法),先用離散頻譜校正方法求出信號頻率的準(zhǔn)確估計值,再利用DTFT求出兩路信號的相位差。式(3)的采樣序列s1(n)與s2(n)可表示為
(41)
式中:ω=2πf0/fs為數(shù)字角頻率或數(shù)字頻率。
(42)
對式(42),不忽略負(fù)頻率成分有
(43)
(44)
式中:
cd1=sinα1sinα2cos(α1-α3)+sinα3sinα4cos(α4-α2)
cd2=sinα1sinα2sin(α1-α3)-sinα3sinα4sin(α4-α2)
cd3=sinα1sinα2sin(α1-α3)+sinα3sinα4sin(α4-α2)
cd4=sinα1sinα2cos(α1-α3)-sinα3sinα4cos(α4-α2)
同理,對第二路正弦采樣序列s2(n),有
(45)
由式(44)、(45)可求得兩路信號間相位差(即加矩形窗時DTFT相位差計算公式),即
(46)
式中:
βd3=(cd1cd4+cd2cd3)(tanφd2-tanφd1)
2.2高斯白噪聲背景下DTFT法誤差分析
(47)
由式(10)得
(48)
式(47)可整理為
(49)
(50)
信噪比不特別低時,一般可認(rèn)為b1/Ap1?1,則有
(51)
式(51)可表示為
(52)
式中:φz1為迭加在φd1上的噪聲,即
φz1=bsin(φz-φd1)/Ap1
(53)
同樣,φz1為高斯白噪聲,其均值、方差分別為
E[φz1]=0
(54)
(55)
同理,對第二路采樣序列r2(n)=s2(n)+z2(n),(n=0,1,…,N-1),有
(56)
(57)
E[φz2]=0
(58)
(59)
據(jù)DTFT法測量原理,高斯白噪聲環(huán)境下兩路信號間相位差計算式為
(60)
Δθ=g(T)
(61)
將g在點T0=E[T]=[φd1φd2]T=[η1η2]T=η附近用一階泰勒級數(shù)展開,即
Δθ=g(T)≈
(62)
(63)
Δθ的估計方差為
var[Δθ]=
(64)
式中:CT為矩陣T的協(xié)方差矩陣。
(65)
(66)
βd4=cd1cd4+cd2cd3
(67)
(68)
通常情況下,迭加在兩路觀測信號的高斯白噪聲可認(rèn)為互不相關(guān),因而φz1及φz2也不相關(guān),則有
(69)
將式(65)~式(69)代入式(64)得Δθ估計方差為
(70)
3計算驗證
采用單一頻率實正弦信號迭加高斯白噪聲,對本文相位差估計方差計算公式進(jìn)行計算機(jī)仿真驗證。兩路信號迭加的為互不相關(guān)的高斯白噪聲。
在A1=A2=1,N=1024,k0=1,δ=0.4,真實相位差Δθ=π/3條件下DFT方法相位差估計方差與信噪比SNR及采樣序列長度N的關(guān)系見圖2、圖3。由兩圖看出,仿真結(jié)果與計算結(jié)果吻合,且SNR越高或N越大相位差估計方差越小,當(dāng)SNR>5 dB或N>2 048時相位差測量精度提升有限。
圖1 DFT方法相位差估計方差與泄漏誤差系數(shù)d關(guān)系Fig.1TherelationbetweenthevarianceofphaseestimationmethodbasedonDFTandtheleakageerrorcoefficientd圖2 DFT方法相位差估計方差與信噪比SNR關(guān)系Fig.2TherelationbetweenthevarianceofphaseestimationmethodbasedonDFTandSNR圖3 DFT方法相位差估計方差與采樣序列長度N關(guān)系Fig.3TherelationbetweenthevarianceofphaseestimationmethodbasedonDFTandthesamplingsequencelengthN
圖4 DTFT方法相位差估計方差與相對誤差Dω關(guān)系Fig.4TherelationbetweenthevarianceofphaseestimationmethodbasedonDTFandtherelativeerrorDω圖5 DTFT方法相位差估計方差與信噪比SNR關(guān)系Fig.5TherelationbetweenthevarianceofphaseestimationmethodbasedonDTFTandSNR圖6 DTFT方法相位差估計方差與采樣序列長度N關(guān)系Fig.6TherelationbetweenthevarianceofphaseestimationmethodbasedonDTFTandthesamplingsequencelengthN
在A1=A2=1,N=1024,k0=1,Δω=0.8π/N,真實相位差Δθ=π/3條件下DTFT方法相位差估計方差與信噪比SNR關(guān)系見圖5。
在A1=A2=1,k0=1,Δω=0.8π/N,SNR=5 dB,真實相位差Δθ=π/3條件下,DTFT方法的相位差估計方差與采樣序列長度N關(guān)系見圖6。由圖6看出,仿真結(jié)果與計算結(jié)果吻合較好,且SNR越高或N越大相位差估計方差越小。當(dāng)SNR>5 dB或N>2 048時,DTFT法相位差測量精度提升有限。
4結(jié)論
(1)通過對噪聲環(huán)境下計及負(fù)頻率的DFT與DTFT相位差測量誤差分析,分別給出高斯白噪聲背景下相位差估計方差計算公式。理論分析與仿真結(jié)果均表明,DFT法相位差估計方差與信噪比、采樣序列長度及泄漏誤差系數(shù)有關(guān),提高信噪比或增加采樣序列長度可降低相位差估計的均方根誤差,且頻譜泄漏誤差越小其相位差測量精度越高。
(2)DTFT法相位差估計方差與DFT法類似,與信噪比、采樣序列長度及相對誤差Δω有關(guān),提高信噪比或增加采樣序列長度,可降低相位差估計方差,且相對誤差Δω越小其相位差測量精度越高。而相位差測量精度對頻率估計精度Δω要求較高,當(dāng)Δω變化較小時相位差測量將產(chǎn)生較大變化。
參考文獻(xiàn)
[1]劉燦濤,趙偉,袁俊. 基于數(shù)字相關(guān)原理的相位差測量新方法[J]. 計量學(xué)報, 2002, 23(3): 219-223.
LIU Can-tao, ZHAO Wei, YUAN Jun. A new method for phase difference measurement based on digital correlation theory[J]. Acta Metrologica Sinica, 2002, 23(3): 219-223.
[2]鄭勝峰,陳素明,狄金海,等. 一種基于多重互相關(guān)的相位差測量方法[J]. 宇航計測技術(shù), 2012, 32(1): 34-40.
ZHENG Sheng-feng, CHEN Su-ming, DI Jin-hai, et al. Phase difference measurement of sinusoidal signal based on multi-layer cross-correlation[J]. Journal of Astronautic Metrology and Measurement, 2012, 32(1): 34-40.
[3]江亞群,何怡剛. 基于加窗DFT的相位差高精度測量算法[J]. 電路與系統(tǒng)學(xué)報, 2005, 10(2): 112-116.
JIANG Ya-qun, HE Yi-gang. New algorithm for high-accuracy phase difference measurement based on windowed DFT[J]. Journal of Circuits and Systems,2005,10(2):112-116.
[4]陳孔陽. 一種基于改進(jìn)DFT算法的相位差測量研究[J]. 微計算機(jī)信息, 2012, 28(4): 142-144.
CHEN Kong-yang. A research on phase difference measurement based on improved DFT algorithm[J]. Microcomputer Information, 2012, 28(4): 142-144.
[5]張海濤,涂亞慶. 計及負(fù)頻率影響的科里奧利質(zhì)量流量計信號處理方法[J]. 儀器儀表學(xué)報, 2007, 3(3): 539-544.
ZHANG Hai-tao, TU Ya-qing. New signal processing method with negative frequency contribution for Coriolis mass flowmeter[J]. Chinese Journal of Scientific Instrument, 2007, 3(3): 539-544.
[6]沈廷鰲,涂亞慶,張海濤,等. 科氏流量計的時變信號處理方法[J]. 重慶大學(xué)學(xué)報, 2013, 36(4): 93-98.
SHEN Ting-ao, TU Ya-qing, ZHANG Hai-tao, et al. A time-varying signal processing method for Coriolis Mass Flowmeter[J]. Journal of Chongqing University, 2013, 36(4): 93-98.
[7]毛育文,涂亞慶,張海濤,等. 計及負(fù)頻率影響的頻譜分析方法及研究進(jìn)展[J]. 電測與儀表, 2011, 48(5): 27-32.
MAO Yu-wen, TU Ya-qing, ZHANG Hai-tao,et al. Advances and trends in spectrum analysis methodology with negative frequency contribution[J]. Electrical Measurement & Instrumentation, 2011, 48(5): 27-32.
[8]陳奎孚,張森文,郭幸福. 消除負(fù)頻率影響的頻譜校正[J]. 機(jī)械強(qiáng)度, 2004, 26(1): 25-28.
CHEN Kui-fu, ZHANG Sen-wen, GUO Xing-fu. Spectrum rectifying with negative frequency contribution eliminating[J]. Journal of Mechanical Strenth, 2004, 26(1): 25-28.
[9]毛育文,涂亞慶,武建軍. 基于小波和灰色關(guān)聯(lián)度的消除負(fù)頻率干涉方法[J]. 電子測量與儀器學(xué)報, 2012, 26(9): 805- 811.
MAO Yu-wen, TU Ya-qing, WU Jian-jun. New method to eliminate negative frequency interference based on wavelet transformation and grey correlation degree theory[J]. Journal of Electronic Measurement and Instrument, 2012, 26(9): 805-811.
[10]毛育文,涂亞慶,張海濤,等. 極低頻信號的一種離散頻譜校正新方法[J]. 振動工程學(xué)報,2012,25(4): 474-480.
MAO Yu-wen, TU Ya-qing, ZHANG Hai-tao, et al. A discrete spectrum correction metod for ultra low frequency signals[J].Journal of Vibration Engineering, 2012, 25(4): 474-480.
[11]陳奎孚,王建立,張森文. 低頻成份的頻譜校正[J]. 振動工程學(xué)報, 2008, 21(1): 38-42.
CHEN Kui-fu, WANG Jian-li, ZHANG Sen-wen. Correction of frequency spectrum for low frequency components[J]. Journal of Vibration Engineering, 2008, 21(1): 38-42.
[12]毛育文,涂亞慶,張海濤,等.計及負(fù)頻率的極高頻信號離散頻譜校正新方法[J].振動、測試與診斷, 2012,32(3):477-482.
MAO Yu-wen, TU Ya-qing, ZHANG Hai-tao, et al. New discrete spectrum correction method with negative frequency contribution for ultra high frequency signals[J]. Journal of vibration, Measurement & Diagnosis.,2012,32(3):477-482.
[13]譚思煒,任志良,孫常存. 全相位FFT相位差頻譜校正法改進(jìn)[J]. 系統(tǒng)工程與電子技術(shù), 2013, 35(1): 34-39.
TAN Si-wei, REN Zhi-liang, SUN Chang-cun. Improvement of phase difference correcting spectrum method based on all-phase FFT[J]. Systems Engineering and Electronics, 2013, 35(1): 34-39.
[14]張海濤,涂亞慶. 基于FFT的一種計及負(fù)頻率影響的相位差測量新方法[J]. 計量學(xué)報, 2008,29(2):168-171.
ZHANG Hai-tao, TU Ya-qing. A new method for phase difference measurement based on FFT with Negative frequency contribution[J]. Acta Metrologica Sinica, 2008, 29(2): 168-171.
[15]張海濤,涂亞慶. 基于DTFT的一種低頻振動信號相位差測量新方法[J]. 振動工程學(xué)報, 2007, 20(2): 180-184.
ZHANG Hai-tao, TU Ya-qing. A new phase difference measurement method for low-frequency vibration signals based on DTFT[J]. Journal of Vibration Engineering, 2007, 20(2): 180-184.
[16]張海濤,涂亞慶,牛鵬輝. 相位差測量的FFT法和DTFT法誤差分析[J]. 電子測量與儀器學(xué)報, 2007, 21(3):61-65.
ZHANG Hai-tao, TU Ya-qing, NIU Peng-hui. Error analysis of phase difference measurement using FFT-based method and DTFT-based method[J]. Journal of Electronic Measurement and Instrument. 2007, 21(3):61-65.
[17]齊國清. 利用FFT相位差校正信號頻率和初相估計的誤差分析[J]. 數(shù)據(jù)采集與處理, 2003, 18(1):7-11.
QI Guo-qing. Error analysis of frequency and phase estimations based on phase difference of segmented FFTs[J]. Journal of Data Acquisition & Processing, 2003, 18(1):7-11.
[18]Kay S M. Fundamentals of statistical processing volume 1: estimation theory[M].New Jersey: A Simon & Schuster Company, 1993: 294-295.