簡(jiǎn)志宏 王雷 金桐 古麗娟 熊曉星
?
缺血性腦卒中后免疫反應(yīng)與肺部感染之間相互作用的研究進(jìn)展
簡(jiǎn)志宏王雷金桐古麗娟熊曉星
缺血性腦卒中是病死率和致殘率較高的中樞神經(jīng)系統(tǒng)疾病之一。腦卒中后局部及全身免疫系統(tǒng)的改變對(duì)腦卒中患者預(yù)后的影響日漸受到重視。腦卒中后存在免疫激活和免疫抑制,炎癥反應(yīng)可以清除壞死組織,但過度的炎癥反應(yīng)會(huì)導(dǎo)致繼發(fā)性損傷;免疫抑制可能具有神經(jīng)保護(hù)作用,但增加了感染的機(jī)會(huì)[1]。Prass等[2]認(rèn)為腦卒中誘導(dǎo)的免疫抑制綜合征(stroke-induced immunodeficiency syndrome, SIDS)是指腦卒中發(fā)生后激活交感腎上腺髓質(zhì)系統(tǒng),導(dǎo)致快速持久的細(xì)胞免疫功能抑制。交感神經(jīng)系統(tǒng)過度興奮所致SIDS,在腦卒中后肺部感染的發(fā)生中發(fā)揮著重要作用。本研究的目的是探討缺血性腦卒中后交感神經(jīng)系統(tǒng)興奮和肺部感染之間的關(guān)系。
缺血性腦卒中是由腦組織局部血流量的短暫或永久減少所引起的一個(gè)復(fù)雜變化過程,該過程包括神經(jīng)遞質(zhì)的釋放和免疫系統(tǒng)的激活。近來,參與腦損傷的發(fā)病機(jī)制和大腦修復(fù)機(jī)制(即神經(jīng)可塑性)的炎癥機(jī)制受到了廣泛的關(guān)注[3]。多項(xiàng)證據(jù)顯示,炎癥反應(yīng)的程度與腦卒中病灶大小和嚴(yán)重程度有關(guān),從而影響患者預(yù)后。腦卒中后免疫系統(tǒng)的應(yīng)答是雙相的,早期的免疫激活可以持續(xù)24 h,隨后是全身性的免疫抑制,即所謂的大腦相關(guān)的免疫抑制[4]。
大腦的巨噬細(xì)胞-小膠質(zhì)細(xì)胞在腦缺血發(fā)作的幾分鐘之內(nèi)被激活,他們產(chǎn)生大量的促炎介質(zhì),包括活性氧(Reactive oxygen species, ROS)、IL-1β、IL-6和TNF-α[5],這些介質(zhì)進(jìn)一步加劇了組織損傷。小膠質(zhì)細(xì)胞在血-腦屏障通透性的增加以及初期循環(huán)白細(xì)胞浸潤(rùn)進(jìn)入腦組織的過程中起著重要作用[6]。與小膠質(zhì)細(xì)胞的快速反應(yīng)相比,血源性的白細(xì)胞通常要延遲數(shù)小時(shí)到數(shù)天才聚集到腦組織中。第一批浸潤(rùn)到缺血腦組織的白細(xì)胞是中性粒細(xì)胞,其在局灶性腦缺血后30 min至幾小時(shí)入腦,高峰期持續(xù)24~72 h,而后迅速下降[7]。究其原因可能是由于交感神經(jīng)系統(tǒng)激活后誘導(dǎo)脾臟收縮和缺血性腦卒中后血腦屏障破壞,促進(jìn)它們向受損腦組織的遷移。然而,中性粒細(xì)胞在缺血性腦卒中發(fā)病過程中的確切作用及機(jī)制仍遠(yuǎn)未闡明。T淋巴細(xì)胞是炎癥反應(yīng)持續(xù)進(jìn)展的重要環(huán)節(jié),并在缺血腦組織再灌注幾小時(shí)內(nèi)不斷聚集[8]。T細(xì)胞可能通過幾個(gè)潛在的機(jī)制導(dǎo)致腦損傷,即輔助性T細(xì)胞(Helper T cell, TH)和細(xì)胞毒性T細(xì)胞(Cytotoxic T cell, TC)釋放的細(xì)胞因子和趨化因子(如IL-12、IL-17和IL-23)可能會(huì)加劇腦卒中后的炎癥反應(yīng)并使梗死面積增大[9]。此外,這些細(xì)胞因子和趨化因子可能會(huì)促使血管細(xì)胞粘附分子表達(dá)增加,并吸引其他免疫細(xì)胞進(jìn)入腦組織引起廣泛的細(xì)胞凋亡[10]。TC細(xì)胞通過細(xì)胞毒素的釋放或Fas受體的激活直接誘導(dǎo)細(xì)胞壞死和凋亡[11]。因此,T細(xì)胞被公認(rèn)為是腦卒中后腦組織中促炎癥細(xì)胞因子的主要來源。Offiner等[12]研究顯示,與對(duì)照組小鼠相比,腦卒中后6 h和22 h,試驗(yàn)組小鼠脾臟分泌的TNF-α,IFN-γ,IL-6,單核細(xì)胞趨化蛋白-1(monocyte chemotactic protein-1,MCP-1)和IL-2顯著增加,而且這些動(dòng)物在腦卒中6 h后脾臟細(xì)胞高表達(dá)趨化因子和趨化因子受體(CCR),包括巨噬細(xì)胞炎癥蛋白-2(macrophage inflammatory protein-2,MIP-2),CCR2,CCR7和CCR8;22 h高表達(dá)MIP-2,IFN-γ誘導(dǎo)的蛋白10(IP-10),CCR1和CCR2。
在腦缺血患者中T、B和自然殺傷(natural killer cell,NK)細(xì)胞在循環(huán)系統(tǒng)中的數(shù)量迅速減少,這可能是一種腦組織減輕局部炎癥反應(yīng)的內(nèi)源性保護(hù)機(jī)制[10]。機(jī)體在腦卒中后12 h內(nèi)就開始出現(xiàn)全身性的免疫抑制并持續(xù)達(dá)數(shù)周之久[2],此機(jī)制可能是由于SNS和下丘腦-垂體-腎上腺軸(hypothalamic pituitary axis,HPA)亢進(jìn)所致[13]。腦卒中相關(guān)的SNS激活分別通過β2腎上腺素受體(β2 adrenoceptor,β2-AR)和β3腎上腺素受體(β3 adrenoceptor,β3-AR)信號(hào)通路,促使調(diào)節(jié)性T細(xì)胞(regulatory T cells,Tregs)在骨髓中活化并進(jìn)入循環(huán)系統(tǒng)[14],Tregs介導(dǎo)的免疫抑制和細(xì)菌感染的易感性增加,均是由吞噬細(xì)胞活化不足,分泌 IFN-γ缺乏所致[14]。
缺血性腦卒中后72 h內(nèi)的細(xì)胞免疫抑制(如淋巴細(xì)胞和單核細(xì)胞的失活,Th1向Th2型細(xì)胞因子的轉(zhuǎn)化等)與自發(fā)的菌血癥和肺部感染有關(guān)[2]。Prass等[2]的研究表明,IFN-γ分泌減少,NK細(xì)胞和T細(xì)胞應(yīng)答受損是腦卒中時(shí)防御細(xì)菌失敗的關(guān)鍵因素。另外一些動(dòng)物實(shí)驗(yàn)顯示,當(dāng) IL-1β進(jìn)入腦細(xì)胞后由內(nèi)毒素刺激引起的全血細(xì)胞釋放IL-10減少,該結(jié)果是由HPA和交感-腎上腺髓質(zhì)軸激活引起的。Wong等[15]報(bào)道在實(shí)驗(yàn)性動(dòng)物缺血性腦卒中后去神經(jīng)支配的肝臟內(nèi)iNK T細(xì)胞的功能改變,由分泌IFN-γ轉(zhuǎn)變?yōu)榉置贗L-10,引起全身性免疫抑制。通過β受體阻滯劑普萘洛爾阻斷腎上腺素能神經(jīng)末梢可增強(qiáng)免疫反應(yīng),此過程是由于NK T細(xì)胞過度分泌 IFN-γ所致;相反地向肝臟注射去甲腎上腺素能減弱NK T細(xì)胞的功能,進(jìn)而抑制全身免疫機(jī)制[15]。
腦卒中后急性免疫應(yīng)激在急性腦損傷中發(fā)揮主要作用[3],隨后免疫抑制增加了腦卒中后感染特別是肺部感染的風(fēng)險(xiǎn),而感染是影響腦卒中患者恢復(fù)的1個(gè)重要因素。
2.1急性腦損傷所致的急性肺損傷(acute lung injury, ALI)
急性肺損傷(ALI)是以低氧血癥、非心源性肺水腫、低肺順應(yīng)性和廣泛的毛細(xì)血管滲漏為特點(diǎn)的特異性彌漫性肺損害[16]。業(yè)已證實(shí)大約三分之一的急性腦損傷患者會(huì)出現(xiàn)ALI,合并ALI的患者預(yù)后更差。ALI的發(fā)病機(jī)制包括神經(jīng)源性肺水腫(neurogenic pulmonary edema, NPE)、中性粒細(xì)胞的激活、炎癥介質(zhì)的釋放、肺泡/毛細(xì)血管屏障破壞、凝血系統(tǒng)的活化、表面活性劑的消耗以及感染[14]。腦損傷可能通過增加肺部受到后續(xù)有害機(jī)制損傷的易感性或缺血再灌注損傷,從而增加呼吸衰竭的風(fēng)險(xiǎn)[17]。
神經(jīng)源性肺水腫(NPE)是一個(gè)公認(rèn)的中樞神經(jīng)系統(tǒng)(central nervous system,CNS)損傷的并發(fā)癥[18]。NPE可能的機(jī)制包括嚴(yán)重顱腦損傷后大量神經(jīng)系統(tǒng)放電引起肺泡/毛細(xì)血管屏障受損、蛋白質(zhì)豐富的水腫液在肺泡內(nèi)積聚、出血和肺不張。據(jù)推測(cè),中樞神經(jīng)系統(tǒng)損傷后大量的交感神經(jīng)系統(tǒng)放電直接通過α- AR和β-AR影響肺部血管床,導(dǎo)致肺微靜脈血管收縮和/或內(nèi)皮細(xì)胞損傷。該理論稱為“肺微靜脈腎上腺素過敏”理論,可以解釋神經(jīng)系統(tǒng)對(duì)肺血管內(nèi)皮細(xì)胞的直接影響,而不需通過血流動(dòng)力學(xué)變化介導(dǎo)[18]。
越來越多的證據(jù)表明全身炎癥反應(yīng)在顱腦創(chuàng)傷或蛛網(wǎng)膜下腔出血后肺通氣功能障礙的進(jìn)展中起重要作用[19]。由交感神經(jīng)系統(tǒng)發(fā)出的神經(jīng)刺激可以在肺部引起一連串的反應(yīng),包括內(nèi)皮細(xì)胞功能障礙以及中性粒細(xì)胞和細(xì)胞因子釋放的全身性炎癥反應(yīng)[20]。腦出血使腦組織和肺部細(xì)胞內(nèi)粘附分子的表達(dá)增加,導(dǎo)致中性粒細(xì)胞逐漸聚集到肺間質(zhì)和肺泡腔并引起肺泡結(jié)構(gòu)破壞[20]。此外,實(shí)驗(yàn)證實(shí)兒茶酚胺可激活巨噬細(xì)胞中的 NFκB,并促使肺部炎癥細(xì)胞因子(IL-6,TNF-α和 IL-1β)以劑量依賴的方式分泌。經(jīng)由α2-ARs的吞噬細(xì)胞應(yīng)答的上調(diào)促進(jìn)了急性炎癥反應(yīng)的進(jìn)展[21]。
在大鼠實(shí)驗(yàn)中由嚴(yán)重腦損傷引起的NPE以促炎癥細(xì)胞因子的分泌為特征,更重要的是支氣管肺泡灌洗液中IL-6和免疫細(xì)胞的聚集[22-23]。有研究表明,輸注去甲腎上腺素能增強(qiáng)促炎癥細(xì)胞引子如 IL-6、IL-1α和IL-1β在肺組織和支氣管肺泡灌洗液中的表達(dá)[24]。兒茶酚胺增多促使肺部巨噬細(xì)胞通過β2-ARs路徑分泌IL-6,進(jìn)而導(dǎo)致機(jī)體呈現(xiàn)高凝狀態(tài)。Avlonitis等[22]研究表明,α腎上腺素拮抗劑能減少全身炎癥反應(yīng)、維護(hù)毛細(xì)血管肺泡細(xì)胞膜的完整性,進(jìn)而預(yù)防炎癥性肺損傷。由此表明SNS激活引起兒茶酚胺分泌增加,通過α-ARs和β-ARs信號(hào)通路來促進(jìn)肺局部炎癥反應(yīng),導(dǎo)致毛細(xì)血管肺泡膜完整性的損害。
2.2缺血性腦卒中后免疫抑制與肺部感染
據(jù)統(tǒng)計(jì),缺血性腦卒中患者發(fā)病后第1 d出現(xiàn)肺部和尿路感染的概率高達(dá)三分之一[25-26]。一項(xiàng)關(guān)于急性缺血性腦卒中患者的調(diào)查顯示,合并肺部感染患者的30 d病死率為27%,而無嚴(yán)重呼吸道感染的病死率僅為4%(P<0.001)[27]。吞咽困難是1個(gè)公認(rèn)的缺血性腦卒中后肺部感染的危險(xiǎn)因素,也是一項(xiàng)臨床上需鼻飼管進(jìn)食的常見指證,有人預(yù)測(cè)通過改善吞咽困難可以預(yù)防腦卒中后肺部感染,然而實(shí)際效果有限[28]。因此,有必要重新識(shí)別引起呼吸道損傷的機(jī)制,這其中就包括腦卒中相關(guān)的全身系統(tǒng)免疫反應(yīng)[26]。有研究證實(shí)阻斷β-ARs能夠預(yù)防肺部感染,提示交感神經(jīng)系統(tǒng)興奮引起的免疫抑制,且這與吸入相關(guān)性肺部感染的發(fā)生相關(guān)[29]。
近來,多項(xiàng)實(shí)驗(yàn)和臨床研究試圖解釋腦卒中后肺部感染和交感神經(jīng)系統(tǒng)興奮引起的免疫抑制之間的關(guān)系[30-33]。程明霞等[24]對(duì)636例腦卒中患者進(jìn)行分析發(fā)現(xiàn),感染組患者入院時(shí)T淋巴細(xì)胞計(jì)數(shù)低于對(duì)照組,其表達(dá)的CD3、CD4均較對(duì)照組低,并有顯著差異,說明腦卒中患者免疫功能下降,對(duì)細(xì)菌的易感性增加。缺血性腦卒中使交感神經(jīng)系統(tǒng)興奮和兒茶酚胺分泌增加[29, 34]。一級(jí)(骨髓和胸腺)和二級(jí)(脾臟和淋巴結(jié))淋巴器官主要被植物神經(jīng)所支配,這些植物神經(jīng)主要是交感神經(jīng)。交感神經(jīng)系統(tǒng)的主要神經(jīng)遞質(zhì)—去甲腎上腺素被釋放到淋巴組織中,可以調(diào)節(jié)免疫細(xì)胞的功能[35]。有研究認(rèn)為,腦卒中相關(guān)的交感神經(jīng)系統(tǒng)興奮能引起淋巴細(xì)胞減少,單核細(xì)胞功能受損,使Th1向Th2型細(xì)胞因子轉(zhuǎn)化,促進(jìn)淋巴細(xì)胞凋亡[36]。實(shí)驗(yàn)性腦卒中誘導(dǎo)的免疫功能抑制是通過HPA和SNS起作用的,其中SNS起著關(guān)鍵性作用。研究顯示通過β-受體阻滯劑抑制外周交感神經(jīng)系統(tǒng)的興奮性,可以減輕免疫抑制[2]。
2.3肺部感染與自身免疫反應(yīng)
缺血性腦卒中后免疫抑制可以防止針對(duì)自身的適應(yīng)性免疫應(yīng)答。缺血性腦卒中后由于血腦屏障的破壞,淋巴細(xì)胞浸潤(rùn)到缺血腦組織,進(jìn)而與各種中樞神經(jīng)系統(tǒng)抗原接觸,這些抗原包括神經(jīng)元、星形膠質(zhì)細(xì)胞和少突膠質(zhì)細(xì)胞。另外,試驗(yàn)中還觀察到一些抗原表達(dá)增加,如髓鞘堿性蛋白(myelin basic protein,MBP),神經(jīng)元特異性烯醇化酶(neuron-specific enolase,NSE),S-100和神經(jīng)膠質(zhì)纖維酸性蛋白(glial fibrillary acidic protein,GFAP)。周圍免疫系統(tǒng)可以識(shí)別這些因子,并有研究證實(shí)腦卒中發(fā)病幾天內(nèi)在頸部淋巴結(jié)有抗原遞呈過程[37]。
關(guān)于嚴(yán)重缺血性腦卒中患者的研究顯示,如果沒有合并感染,Th1細(xì)胞較少對(duì)MBP做出應(yīng)答。脂多糖(lipopolysaccharides,LPS)可以增加Th1細(xì)胞對(duì)MBP應(yīng)答的趨勢(shì),且脂多糖是缺血性腦卒中后誘導(dǎo)全身炎癥反應(yīng)的介質(zhì)[38]。在人體中缺血性腦卒中后的前15 d肺部感染增加了Th1細(xì)胞對(duì)MBP和GFAP應(yīng)答的機(jī)會(huì)[39]。對(duì)MBP較強(qiáng)的應(yīng)答以及對(duì)GFAP較低程度的應(yīng)答與患者的不良預(yù)后相關(guān)[40]。Planas的研究證實(shí)在頸部淋巴結(jié)核腭扁桃體對(duì)腦源性抗原的反應(yīng)增強(qiáng)與預(yù)后不良相關(guān)[37]。主要由革蘭氏陽(yáng)性細(xì)菌引起的肺部感染與Th1細(xì)胞反應(yīng)相關(guān),也與缺血性腦卒中后致死結(jié)果一致。與此相反,主要由革蘭氏陰性細(xì)菌引起的尿路感染并不引起Th1細(xì)胞反應(yīng),患者預(yù)后也相對(duì)較好[38]。盡管由于免疫抑制,不管是在外周淋巴器官或是在腦組織中肺部感染仍能引發(fā)足夠強(qiáng)的針對(duì)腦源性抗原的免疫反應(yīng)[39]。
目前的證據(jù)表明,免疫-交感神經(jīng)系統(tǒng)交互作用理論對(duì)于理解缺血性腦卒中后動(dòng)態(tài)內(nèi)環(huán)境的變化起著關(guān)鍵作用。在此交互作用過程中肺部不僅受到嚴(yán)重影響,也在主動(dòng)參與這一過程。最初的交感神經(jīng)系統(tǒng)興奮直接影響肺部(第1次打擊),接著免疫抑制間接地使肺部更容易受到感染(第2次打擊)。免疫抑制使免疫應(yīng)答從Th1細(xì)胞轉(zhuǎn)向Th2細(xì)胞,保護(hù)腦組織免受適應(yīng)性免疫反應(yīng)的損害。但肺部感染能夠抑制這種轉(zhuǎn)變,并重新啟動(dòng)Th1細(xì)胞針對(duì)中樞神經(jīng)系統(tǒng)抗原的自身免疫反應(yīng)。
本研究總結(jié)了當(dāng)前關(guān)于免疫-交感神經(jīng)系統(tǒng)交互作用的研究進(jìn)展,并強(qiáng)調(diào)在此過程中肺部和腦組織的相互影響。在將來的研究中只有將神經(jīng)和免疫的交互作用作為一個(gè)系統(tǒng),才能更好地闡明缺血性腦卒中與其他機(jī)體系統(tǒng)的關(guān)系。
[1]李立,吳世政,張淑坤.缺血性腦卒中后相關(guān)免疫學(xué)研究進(jìn)展[J].中華老年心腦血管病雜志,2015,17(2):219-221.
[2]Prass K,Meisel C,H?flich C,et al.Stroke-induced immunodeficiency promotes spontaneous bacterial infections and is mediated by sympathetic activation reversal by poststroke T helper cell type 1-like immunostimulation[J].J Exp Med,2003,198(5):725-736.
[3]Famakin BM.The immune response to acute focal cerebral ischemia and associated post-stroke immunodepression: a focused review[J].Aging Dis,2014,5(5):307-326.
[4]Chang LL,Chen YT,Li J,et al.Cocaine-and amphetamine-regulated transcript modulates peripheral immunity and protects against brain injury in experimental stroke[J].Brain Behav Immun,2011,25(2):260-269.
[5]Nakajima K,Kohsaka S.Microglia: activation and their significance in the central nervous system[J].J Biochem,2001,130(2):169-175.
[6]Pun PB,Lu J,Moochhala S.Involvement of ROS in BBB dysfunction[J].Free Radic Res,2009,43(4):348-364.
[7]Cuenca-Lopez MD,Brea D,Galindo MF,et al.Inflammatory response during ischaemic processes: adhesion molecules and immunomodulation[J].Rev Neurol,2010,51(1):30-40.
[8]Seifert HA,Pennypacker KR.Molecular and cellular immune responses to ischemic brain injury[J].Transl Stroke Res,2014,5(5):543-553.
[9]Konoeda F,Shichita T,Yoshida H,et al.Therapeutic effect of IL-12/23 and their signaling pathway blockade on brain ischemia model[J].Biochem Biophys Res Commun,2010,402(3):500-506.
[10]Brait VH,Arumugam TV,Drummond GR.Importance of T lymphocytes in brain injury, immunodeficiency, and recovery after cerebral ischemia[J].Journal of Cerebral Blood Flow and Metabolism,2012,32(4):598-611.
[11]Brait VH,Jackman KA,Walduck AK,et al.Mechanisms contributing to cerebral infarct size after stroke: gender, reperfusion, T lymphocytes, and Nox2-derived superoxide[J].Journal of Cerebral Blood Flow and Metabolism,2010,30(7):1306-1317.
[12]Offner H,Subramanian S,Parker SM,et al.Experimental stroke induces massive, rapid activation of the peripheral immune system[J].Journal of Cerebral Blood Flow and Metabolism,2006,26(5):654-665.
[13]Mracsko E,Liesz A,Karcher S,et al.Differential effects of sympathetic nervous system and hypothalamic-pituitary-adrenal axis on systemic immune cells after severe experimental stroke[J].Brain Behav Immun,2014,41:200-209.
[14]Wang JP,Yu L,Jiang C,et al.Cerebral ischemia increases bone marrow CD4(+)CD25(+)FoxP3(+) regulatory T cells in mice via signals from sympathetic nervous system[J].Brain Behav Immun,2015,43:172-183.
[15]Wong CH,Jenne CN,Lee WY,et al.Functional innervation of hepatic iNKT cells is immunosuppressive following stroke[J].Science,2011,334(652):101-105.
[16]Ranieri VM,Rubenfeld GD,Thompson B,et al.Acute respiratory distress syndrome the Berlin definition[J].JAMA,2012,307(23):2526-2533.
[17]López-Aguilar J,Villagr A,Bernab F,et al.Massive brain injury enhances lung damage in an isolated lung model of ventilator-induced lung injury[J].Crit Care Med,2005,33(5):1077-1083.
[18]Davison DL,Terek M,Chawla LS.Neurogenic pulmonary edema[J].Critical Care,2012,16(2):212.
[19]Cobelens PM,Tiebosch IA,Dijkhuizen RM,et al.Interferon-beta attenuates lung inflammation following experimental subarachnoid hemorrhage[J].Critical Care,2010,14(4):R157.
[20]Mascia L.Acute lung injury in patients with severe brain injury: a double hit model[J].Neurocrit Care,2009,11(3):417-426.
[21]Flierl MA,Rittirsch D,Nadeau BA,et al.Upregulation of phagocyte-derived catecholamines augments the acute inflammatory response[J].PLoS One,2009,4(2):e4414.
[22]Avlonitis VS,Wigfield CH,Kirby JA,et al.The hemodynamic mechanisms of lung injury and systemic inflammatory response following brain death in the transplant donor[J].American Journal of Transplantation,2005,5(4):684-693.
[23]Sammani S,Park KS,Zaidi SR,et al.A sphingosine 1-phosphate 1 receptor agonist modulates brain death-induced neurogenic pulmonary injury[J].Am J Respir Cell Mol Biol,2011,45(5):1022-1027.
[24]程明霞,蔣坤,蔡靜,等.腦卒中患者免疫功能與醫(yī)院感染的調(diào)查分析[J].中華醫(yī)院感染學(xué)雜志,2014,24(8):1926-1930.
[25]Ostroumova OD,Bondarets OV.Secondary prevention of cardiovascular and cerebrovascular complications after ischemic stroke[J].Kardiologiia,2014,54(5):80-87.
[26]Lord AS,Langefeld CD,Sekar P,et al.Infection after intracerebral hemorrhage: risk factors and association with outcomes in the ethnic/racial variations of intracerebral hemorrhage study[J].Stroke,2014,45(12):3535-3542.
[27]Katzan IL,Cebul RD,Husak SH,et al.The effect of pneumonia on mortality among patients hospitalized for acute stroke[J].Neurology,2003,60(4):620-625.
[28]Warusevitane A,Karunatilake D,Sim J,et al.Safety and effect of metoclopramide to prevent pneumonia in patients with stroke fed via nasogastric tubes trial[J].Stroke,2015,46(2):454-460.
[29]Hannawi Y,Hannawi B,Rao CP,et al.Stroke-associated pneumonia: major advances and obstacles[J].Cerebrovasc Dis,2013,35(5):430-443.
[30]Yan FL,Zhang JH.Role of the sympathetic nervous system and spleen in experimental Stroke-Induced immunodepression[J].Medical Science Monitor,2014,20:2489-2496.
[31]Klehmet J,Harms H,Richter M,et al.STROKE-INDUCED IMMUNODEPRESSION AND POST-STROKE INFECTIONS: LESSONS FROM THE PREVENTIVE ANTIBACTERIAL THERAPY IN STROKE TRIAL[J].Neuroscience,2009,158(3):1184-1193.
[32]Chamorro A,Urra X,Planas AM.Infection after acute ischemic stroke: a manifestation of brain-induced immunodepression[J].Stroke,2007,38(3):1097-1103.
[33]Jin R,Zhu XL,Liu L,et al.Simvastatin attenuates stroke-induced splenic atrophy and lung susceptibility to spontaneous bacterial infection in mice[J].Stroke,2013,44(4):1135.
[34]Prass K,Braun JS,Dirnagl U,et al.Stroke propagates bacterial aspiration to pneumonia in a model of cerebral ischemia[J].Stroke,2006,37(10):2607-2612.
[35]Xu FF,Huang Y,Wang XQ,et al.Modulation of immune function by glutamatergic neurons in the cerebellar interposed nucleus via hypothalamic and sympathetic pathways[J].Brain Behav Immun,2014,38:263-271.
[36]Walter U,Kolbaske S,Patejdl R,et al.Insular stroke is associated with acute sympathetic hyperactivation and immunodepression[J].European Journal of Neurology,2013,20(1):153-159.
[37]Planas AM,G mez-Choco M,Urra X,et al.Brain-derived antigens in lymphoid tissue of patients with acute stroke[J].J Immunol,2012,188(5):2156-2163.
[38]Zierath D,Thullbery M,Hadwin J,et al.CNS immune responses following experimental stroke[J].Neurocrit Care,2010,12(2):274-284.
[39]Becker KJ,Kalil AJ,Tanzi P,et al.Autoimmune responses to the brain after stroke are associated with worse outcome[J].Stroke,2011,42(10):U133-2763.
[40]Tanzi P,Cain K,Kalil A,et al.Post-Stroke infection: a role for IL-1ra?[J].Neurocrit Care,2011,14(2):244-252.
(2016-08-18收稿)
國(guó)家自然科學(xué)基金(項(xiàng)目編號(hào)為:81571147)
430060武漢大學(xué)人民醫(yī)院神經(jīng)外科2科[簡(jiǎn)志宏王雷金桐古麗娟熊曉星(通信作者)]
R743
A
1007-0478(2016)05-0386-04
10.3969/j.issn.1007-0478.2016.05.024