王榮 周勝虎 李旭升
人工關節(jié)磨損顆粒對骨髓間充質(zhì)干細胞影響的研究現(xiàn)狀
王榮 周勝虎 李旭升
人工關節(jié);間充質(zhì)干細胞;綜述;磨損顆粒
人工關節(jié)置換術始于19 世紀[1],此后伴隨著人工關節(jié)設計的不斷改進和手術操作的日益規(guī)范,發(fā)展至今,人工關節(jié)置換術治療各種骨關節(jié)病的療效已經(jīng)得到肯定[2-3]。然而隨著假體植入時間的延長,假體無菌性松動成為影響手術遠期療效的主要原因[4-5],而人工關節(jié)磨損顆粒誘導的假體周圍骨溶解是導致假體無菌性松動的最重要原因[6]。在對其機制的研究上,人們針對磨損顆粒對破骨細胞、成骨細胞的影響進行了大量體外與體內(nèi)研究[7]。但后來的人體及動物研究發(fā)現(xiàn),磨損顆粒還可以通過界面膜通路遷入骨髓腔,與骨髓間充質(zhì)干細胞(bone marrow mesenchymal stem cells,BMSCs)發(fā)生相互作用[8]。BMSCs來源于非造血組織,具有很強的增殖能力和多向分化潛能,是成骨細胞、軟骨細胞、脂肪細胞等間充質(zhì)來源細胞的前體細胞[9]。假體-骨界面的骨長入與長期穩(wěn)定需要BMSCs 成骨分化的持續(xù)表達[10-11],有學者認為磨損顆粒對BMSCs 的作用,將直接影響假體周圍骨再生和重建[12-13]。那么,其是否會影響人工關節(jié)的遠期療效?現(xiàn)就人工關節(jié)磨損顆粒對 BMSCs 影響問題的研究現(xiàn)狀進行綜述分析。以期為研究假體無菌性松動的機制提供新的方向,為臨床醫(yī)生防治假體無菌性松動開辟新的思路,同時為假體材料的改良提供參考和依據(jù)。
細胞趨化是指細胞沿著外界某一物質(zhì)的濃度朝向或背離發(fā)放源進行運動,是發(fā)生后續(xù)細胞反應的前提[14]。Fritton 等[15]將 BMSCs 與超高分子量聚乙烯(UHMWPE)顆粒共孵育,采用生物發(fā)光成像技術進行觀察,發(fā)現(xiàn) BMSCs向 UHMWPE 發(fā)生了明顯的聚集。Huang 等[16]在他們的基礎上進一步研究發(fā)現(xiàn),阻斷 BMSCs 表面 CCR1 或 CCR2 受體可使趨化效應消除。Okafor 等[17]通過激光共聚焦掃描顯微鏡來觀察 BMSCs 對鈦顆粒的內(nèi)吞作用,結(jié)果發(fā)現(xiàn)細胞外顆粒的數(shù)量隨時間變化減少的同時細胞增殖率、基質(zhì)黏附率、成骨分化率逐漸降低,而細胞凋亡率增加。當給予松胞素 D 干預后,由于抑制了 BMSCs 對顆粒的內(nèi)吞作用,上述不良反應減輕。由此推斷出磨損顆粒對 BMSCs的不良影響與 BMSCs 對顆粒的內(nèi)吞作用有密切關系。
骨生物力學研究表明,骨組織細胞變形黏附能力與細胞的增殖、分化成熟、功能基因表達密切相關[18-19]。吳江等[20-21]將 BMSCs 與不同直徑大小的鈦顆粒懸液共孵育,經(jīng)免疫熒光抗體染色結(jié)合流式細胞術定量分析表面黏附分子表達的變化情況來判斷 BMSCs 黏附能力的變化。結(jié)果表明不同直徑大小的鈦顆??刹煌潭鹊匾种起じ侥芰Γw粒越小,抑制作用越明顯。侯彥華等[22]使用二氧化鈦(TiO2)納米顆粒處理 BMSCs12 h 和 24 h 后,對黏附蛋白的熒光強度進行了定量分析,結(jié)果亦表明 TiO2顆??梢种?BMSCs 的黏附能力,且顆粒越小,抑制作用越明顯。同時他使用 Transwell 小室侵襲實驗和傷口愈合實驗(劃痕遷移評價)對 BMSCs 遷移能力的變化進行評估,發(fā)現(xiàn) TiO2顆粒的直徑越小,細胞數(shù)量及遷移能力受到的影響越重。他們的研究結(jié)果表明,鈦顆粒可影響 BMSCs 的黏附、遷移能力,且這種影響與顆粒直徑負相關。
Cao 等[23]通過 MTT 比色法測定不同直徑、不同濃度、不同作用時間下鈦顆粒對 BMSCs 的增殖的影響,結(jié)果顯示鈦顆粒對細胞增殖的影響與顆粒濃度、作用時間正相關,與顆粒直徑負相關,直徑 0.9 μm 的顆粒影響最為強烈。姜云鵬等[24]通過體外與體內(nèi)實驗研究不同類型磨損顆粒(鈦合金 Ti、聚甲基丙烯酸甲酯 PMMA、UHMWPE、鉆鉻合金 Co-Cr)對 BMSCs 的影響。細胞毒性實驗顯示所有的顆粒均有一定的細胞毒性作用。MTT 細胞增殖實驗表明低濃度的 Ti、UHMWPE 和 Co-Cr 顆粒對 BMSCs 增殖的抑制并不明顯,而高濃度的顆粒則明顯抑制細胞的增殖反應,PMMA 顆粒無論在低濃度還是高濃度時都對細胞的增殖無明顯抑制作用。Wang 等[25]選用來自全髖置換患者股骨頭的 BMSCs 與直徑約 0.8~1.0 μm 的純鈦顆粒和氧化鋯顆粒進行體外共培養(yǎng),發(fā)現(xiàn)純鈦顆??善茐募毎羌?,抑制細胞的增殖和活力,甚至引起細胞凋亡。而氧化鋯在相似的條件下對 BMSCs 的增殖影響輕微,且并不誘發(fā)凋亡。Meng 等[26]、Haleem-Smith 等[27]的實驗同樣證實暴露于鈦顆粒中的 BMSCs 結(jié)構(gòu)被破壞,增殖能力受到抑制。他們的研究表明磨損顆粒(UHMWPE、Ti、Co-Cr)具備細胞毒性且會對 BMSCs 的增殖造成影響,這種影響與顆粒濃度、作用時間正相關,與顆粒直徑負相關。相比而言,PMMA 和氧化鋯顆粒的影響則輕微許多。
成熟的成骨細胞會釋放堿性磷酸酶、骨鈣素及 I 型膠原,并形成鈣結(jié)節(jié),通過對它們的測定及觀察可反映BMSCs 的成骨分化是否受到抑制[28-29]。Wang 等[25]通過測定上述指標進行了鈦和氧化鋯顆粒對 BMSCs 成骨分化影響的研究。結(jié)果表明鈦顆??娠@著影響 BMSCs 的成骨分化,但同樣直徑的氧化鋯顆粒對 BMSCs 的成骨分化卻并無影響。Schofer 等[30]和 Rakow 等[31]的研究證實鈷鉻鉬合金(Co-Cr-Mo)顆粒對 BMSCs 的成骨分化具有負面作用,且與顆粒濃度正相關。Chiu 等[32]、Ma 等[33]的研究顯示PMMA 可抑制 BMSCs 的成骨分化。上述研究表明金屬顆粒(Ti、Co-Cr-Mo)和 PMMA 均可抑制 BMSCs 的成骨分化,且這種影響與顆粒濃度正相關,與直徑負相關;氧化鋯作為一種新型假體材料,不僅具備優(yōu)秀的耐磨能力[34],而且其磨損顆粒對 BMSCs 成骨分化的影響也很輕微。
骨保護素(OPG)/ 核激活因子受體配體(RANKL)/ 核激活因子受體(RANK)系統(tǒng)因其在破骨細胞分化成熟中的調(diào)控作用而成為研究熱點[35-36]。RANKL 與破骨細胞前體細胞表面 RANK 結(jié)合后,會使其分化為成熟破骨細胞,從而造成骨溶解。OPG 可與 RANKL 競爭性結(jié)合 RANK,從而抑制破骨細胞的分化成熟,進而起到骨保護的作用[37-38]。Wang 等[39]使用流式細胞術及 ELISA 實驗檢測髖關節(jié)置換術后假體松動患者 BMSCs 的 OPG 和 RANKL 表達水平,結(jié)果顯示這些患者擁有很高的 RANKL 表達,而 OPG 表達水平卻很低。姜云鵬等[24]發(fā)現(xiàn)其實驗中的所有顆粒(Ti,PMMA,UHMWPE,Co-Cr)均刺激 BMSCs 表達更高的RANKL 水平,在這些顆粒中,PMMA 顆粒刺激的細胞表達 RANKL 水平最低,提示 PMMA 在 RANKL / RANK 系統(tǒng)介導的骨溶解中的作用可能最小。
Lin 等[8]將核因子-κB 誘騙寡核苷酸轉(zhuǎn)染入 UHMWPE負載的 BMSCs 中,發(fā)現(xiàn)它增強了細胞活性和 OPG 的表達。因此,通過核因子-κB 誘騙寡核苷酸轉(zhuǎn)染 BMSCs 可能通過保護 BMSCs 的成骨能力而削弱破骨細胞介導的溶骨效應。
Vermes 等[40]進行了鈦顆粒負載下二磷酸鹽對 BMSCs影響的研究,結(jié)果顯示二磷酸鹽可抑制 BMSCs 釋放 IL-6和 TNF-α,部分恢復了成骨細胞堿性磷酸酶、骨鈣素及I 型膠原的分泌。von Knoch 等[41]的研究發(fā)現(xiàn),二磷酸鹽能刺激 BMSCs 的增殖并啟動其向成骨細胞的分化。綜合他們的研究成果,二磷酸鹽對 BMSCs 的增殖與成骨分化有積極的促進作用。
目前研究多通過觀察 BMSCs 增殖分化、測定釋放的細胞因子及蛋白表達來反映人工關節(jié)磨損顆粒對 BMSCs影響,但對釋放細胞因子的信號傳導途徑及影響增殖分化的分子生物學機制鮮有研究且尚無明確的答案[27]。這些因子及途徑之間既具有聯(lián)合的協(xié)同作用[42],又有相互的制約關系[43],因此,將它們作為全新的研究方向,才能在假體松動機制的研究上實現(xiàn)質(zhì)的飛躍[44]。
隨著更耐磨的假體材料的應用及負重關節(jié)面設計的不斷發(fā)展,磨損顆粒直徑大多數(shù)在1 μm 以下(主要為金屬和陶瓷顆粒),研究結(jié)果也發(fā)現(xiàn)直徑越小的顆粒對 BMSCs的影響越大[45]。因此未來關于磨損顆粒的研究應選用納米級顆粒[46]。
新型材料擁有更出色的耐磨損性能,但 Rajpura 等[45]對交聯(lián)聚乙烯的一項研究卻發(fā)現(xiàn)其誘發(fā)的骨溶解的能力強于超高分子量聚乙烯。因此,新的假體雖然更耐磨,但其產(chǎn)生的磨損顆粒是否對細胞有更強的負面作用?尚有待進一步研究證實。
[1]張先龍,吳海山,戴戎.人工關節(jié)置換臨床實踐與思考.1版.北京: 人民衛(wèi)生出版社.2012:16.
[2]王俏杰,張先龍.人工髖關節(jié)置換術的現(xiàn)狀與熱點.中華關節(jié)外科雜志,2015,9(6):718-724.
[3]Tria AJ,Scuderi GR.Minimally invasive knee arthroplasty: An overview.World J Orthop,2015,6(10):804-811.
[4]Chong DY,Hansen UN,Amis AA.Analysis of bone-prosthesis interface micromotion for cementless tibial prosthesis fixation and the influence of loading conditions.J Biomech,2010,43(6):1074-1080.
[5]Kanaji A,Orhue V,Caicedo MS,et al.Cytotoxic effects of cobalt and nickel ions on osteocytes in vitro.J Orthop Surg Res,2014,9(1):1-8.
[6]Utzschneider S,Lorber V,Dedic M,et al.Biological activity and migration of wear particles in the knee joint: an in vivo comparison of six different polyethylene materials.J Mater Sci Mater Med,2014,25(6):1599-1612.
[7]Pajarinen J,Lin TH,Sato T,et al.Interaction of materials and biology in total joint replacement - successes,challenges and future directions.J Mater Chem B Mater Biol Med,2014,2(41): 7094-7108.
[8]Lin TH,Sato T,Barcay KR,et al.NF-kappaB decoy oligodeoxynucleotide enhanced osteogenesis in mesenchymal stem cells exposed to polyethylene particle.Tissue Eng Part A,2015,21(5-6):875-883.
[9]Meppelink AM,Wang XH,Bradica G,et al.Rapid isolation of bone marrow mesenchymal stromal cells using integrated centrifuge-based technology.Cytotherapy,2016,18(6):729-739.
[10]Todeschi MR,EI Backly R,Capelli C,et al.Transplanted umbilical cord mesenchymal stem cells modify the in vivo microenvironment enhancing angiogenesis and leading to bone regeneration.Stem Cells Dev,2015,24(13):1570-1581.
[11]Tan J,Xu X,Tong Z,et al.Decreased osteogenesis of adult mesenchymal stem cel s by reactive oxygen species under cyclic stretch: a possible mechanism of age related osteoporosis.Bone Res,2015,3(1):46-51.
[12]Hou Y,Cai K,Li J,et al.Effects of titanium nanoparticles on adhesion,migration,proliferation,and differentiation of mesenchymal stem cells.Int J Nanomedicine,2013,8(36):19-30.
[13]Tuan RS.Role of adult stem/progenitor cells in osseointegration and implant loosening.Int J Oral Maxillofac Implants,2011,26(Suppl):S50-62.
[14]Huang L,Hu J,Su Y,et al.Identification and characterization of three Vibrio alginolyticus non-coding RNAs involved in adhesion,chemotaxis,and motility processes.Front Cell Infect Microbiol,2015,5(56):1-13.
[15]Fritton K,Ren PG,Gibon E,et al.Exogenous MC3T3 preosteoblasts migrate systemically and mitigate the adverse effects of wear particles.Tissue Eng Part A,2012,18(23-24): 2559-2567.
[16]Huang Z,Ma T,Ren PG.et al.Effects of orthopedic polymer particles on chemotaxis of macrophages and mesenchymal stem cells.J Biomed Mater Res A,2010,94(4):1264-1269.
[17]Okafor CC,Haleem-Smith H,Laqueriere P,et al.Particulate endocytosis mediates biological responses of human mesenchymal stem cells to titanium wear debris.J Orthop Res,2006,24(3):461-473.
[18]Ruppender N,Larson S,Lakely B,et al.Cellular adhesion promotes prostate cancer cells escape from dormancy.PLoS One,2015,10(6):1-16.
[19]Sun S,Yu W,Zhang Y,et al.Increased preosteoblast adhesion and osteogenic gene expression on TiO2 nanotubes modified with KRSR.J Mater Sci Mater Med,2013,24(4):1079-1091.
[20]吳江,陳槐卿.鈦顆粒負荷對假體松動過程中主要細胞功能的影響及其機理研究.[2016-05-26].http://xueshu.baidu.com/s?wd=paperuri:(e226f02092e8cee2c973612bdf576273)&filter=sc_long_sign&sc_ks_para=q%3D鈦顆粒負荷對假體松動過程中主要細胞功能的影響及其機理研究&tn=SE_ baiduxueshu_c1gjeupa&ie=utf-8.
[21]Wu J,Zhao Z,Wang Y,et al.Investigation on disturbing of adipocytic differentiation of rBMSCs by loaded titanium particles.Journal of biomedical engineering,2013,30(5):1010-1014.
[22]侯彥華,蔡開勇.不同尺度二氧化鈦納米顆粒的細胞毒性及其機制研究.[2016-05-26].http://xueshu.baidu.com/s?wd=不同尺度二氧化鈦納米顆粒的細胞毒性及其機制研究&tn=SE_baiduxueshu_c1gjeupa&cl=3&ie=utf-8&bs=paperur i%3A%28e226f02092e8cee2c973612bdf576273%29&f=8&r sv_bp=1&rsv_sug2=1&sc_f_para=sc_tasktype%3D%7BfirstSi mpleSearch%7D&rsv_n=2.
[23]Cao H,Chen HQ,Wu J,et al.Effect of titanium particles loading on the viability of mesenchymal stem cells after osteoblastic induction.Journal of Sichuan University(Medical Science Edition),2004,35(3):323-326.
[24]姜云鵬,賈堂宏.骨髓基質(zhì)干細胞在磨損顆粒導致的假體周圍骨溶解中的重要作用.[2016-05-26].http://xueshu.baidu.com/s?wd=paperuri:(30f51cf8afa559a7cff0efd9148bd3db)&filter=sc_long_sign&sc_ks_para=q%3D骨髓基質(zhì)干細胞在磨損顆粒導致的假體周圍骨溶解中的重要作用&tn=SE_ baiduxueshu_c1gjeupa&ie=utf-8.
[25]Wang ML,Nesti LJ,Tuli R,et al.Titanium particles suppress expression of osteoblastic phenotype in human mesenchymal stem cells.J Orthop Res,2002,20(6):1175-1184.
[26]Meng B,Chen J,Guo D,et al.The effect of titanium particles on rat bone marrow stem cells in vitro.Toxicol Mech Methods,2009,19(9):552-558.
[27]Haleem-Smith H,Argintar E,Bush C,et al.Biological responses of human mesenchymal stem cells to titanium wear debris particles.J Orthop Res,2012,30(6):853-863.
[28]Chen Q,Yuan Y,Chen T,et al.Morphology,differentiation and adhesion molecule expression changes of bone marrow mesenchymal stem cells from acute myeloid leukemia patients.Mol Med Rep,2014,9(1):293-298.
[29]Henrich D,Nau C,Kraft SB,et al.Effect of the harvest procedure and tissue site on the osteogenic function of and gene expression in human mesenchymal stem cells.Int J Mol Med,2016,37(4):976-988.
[30]Schofer MD,F(xiàn)uchs-Winkelmann S,Kessler-Thones A,et al.The role of mesenchymal stem cells in the pathogenesis of Co-Cr-Mo particle induced aseptic loosening: an in vitro study.Biomed Mater Eng,2008,18(6):395-403.
[31]Rakow A,Schoon J,Dienelt A,et al.Influence of particulate and dissociated metal-on-metal hip endoprosthesis wear on mesenchymal stromal cells in vivo and in vitro.Biomaterials,2016,26(98):31-40.
[32]Chiu R,Ma T,Smith RL,et al.Polymethylmethacrylate particles inhibit osteoblastic differentiation of bone marrow osteoprogenitor cells.J Invest Med,2006,77(4):850-856.
[33]Ma GK,Chiu R,Huang Z,et al.Polymethylmethacrylate particle exposure causes changes in p38 MAPK and TGF-beta signaling in differentiating MC3T3-E1 cells.J Biomed Mater Res A,2010,94(1):234-240.
[34]Berni M,Lopomo N,Marchiori G,et al.Tribological characterization of zirconia coatings deposited on Ti6Al4V components for orthopedic applications.Mater Sci Eng C Mater Biol Appl,2016,1(62):643-655.
[35]Geusens P.The role of RANK ligand/osteoprotegerin in rheumatoid arthritis.Ther Adv Musculoskelet Dis,2012,4(4): 225-233.
[36]Mizrak S,Turan V,Inan S,et al.Effect of nicotine on RANKL and OPG and bone mineral density.J Invest Surg,2014,27(6): 327-331.
[37]Yu M,Chen X,Lv C,et al.Curcumol suppresses RANKL-induced osteoclast formation by attenuating the JNK signaling pathway.Biochem Biophys Res Commun,2014,447(2): 364-370.
[38]孔令擘,朱慶生.骨保護素/核激活因子受體配體/核激活因子受體(OPG/RANKL/RANK)系統(tǒng)與人工關節(jié)置換術后的假體周圍骨溶解.第四軍醫(yī)大學學報,2008,29(2):186-189.
[39]Wang CT,Lin YT,Chiang BL,et al.Over-expression of receptor activator of nuclear factor-kappaB ligand(RANKL),inflammatory cytokines,and chemokines in periprosthetic osteolysis of loosened total hip arthroplasty.Biomaterials,2010,31(1):77-82.
[40]Vermes C,Chandrasekaran R,Dobai JG,et al.The combination of pamidronate and calcitriol reverses particle- and TNF-alphainduced altered functions of bone-marrow-derived stromal cells with osteoblastic phenotype.J Bone Joint Surg Br,2004,86(5):759-770.
[41]von Knoch F,Jaquiery C,Kowalsky M,et al.Effects of bisphosphonates on proliferation and osteoblast differentiation of human bone marrow stromal cells.Biomaterials,2005,26(34):6941-6949.
[42]Wang N,Xu Y,Qin T,et al.Myocardin-related transcription factor-A is a key regulator in retinoic acid-induced neural-like differentiation of adult bone marrow-derived mesenchymal stem cells.Gene,2013,523(2):178-186.
[43]Yamanaka S.Induced pluripotent stem cells: Past,present,and future.Cell Stem Cell,2012,10(6):678-684.
[44]尤田.人工髖關節(jié)置換術后假體無菌性松動的機制及預防的研究現(xiàn)狀.中國矯形外科雜志,2011,19(24):2061-2064.
[45]Rajpura A,Kendoff D,Board TN.The current state of bearing surfaces in total hip replacement.Bone Joint J,2014,96-b(2):147-156.
[46]Catelas I,Wimmer MA.New insights into wear and biological effects of metal-on-metal bearings.J Bone Joint Surg Am,2011,93(Suppl 2):S76-83.
(本文編輯:李貴存)
Research status of the effects of prosthesis wear particles on bone marrow mesenchymal stem cells
WANG Rong,ZHOU Sheng-hu,LI Xu-sheng.Department of Joint Surgery,Lanzhou General Hospital of Lanzhou Military Area Command,Lanzhou,Gansu,730050,PRC
LI Xu-sheng,Email: lixush1968@sina.com
To review the research status of the effects of joint prosthesis wear particles on bone marrow mesenchymal stem cells(BMSCs).Joint prosthetic replacement is an effective way to treat osteoarthrosis of advanced stage,which can get rid of arthral pain,eliminate the joint deformities and rebuild the function of activity to boost life quality.Aseptic loosening is the main reason of the failure of arthroplasty.Wear particle induced biological reaction in tissues surrounding the prosthesis is an important factor of osteolysis and aseptic loosening after the arthroplasty.Wear particles move into the bone marrow cavity through the implant-bone interface membrane pathways,and interact with BMSCs.Wear particles affect the bone regeneration and reconstruction around the prosthesis by influencing adhesion and migration,proliferation and osteogenic differentiation and expression of osteoprotegerin(OPG)and receptor activator for nuclear factor-κB ligand(RANKL)of BMSCs.Decoy oligodeoxynucleotides for NF-κB could enhance the activity and OPG expression of BMSCs.Diphosphate could inhibit the release of inflammatory cytokines and promote the proliferation and osteogenic differentiation,playing a positive role in the prevention and treatment of aseptic loosening.
Joint prosthesis;Mesenchymal stem cells;Review;Wear particles
10.3969/j.issn.2095-252X.2016.10.012
R687.4,Q813
730050 甘肅,蘭州軍區(qū)蘭州總醫(yī)院全軍骨科中心關節(jié)骨病外科通信作者:李旭升,Email: lixush1968@sina.com
(2016-02-27)