籍新潮 徐如祥
腦源性神經(jīng)營養(yǎng)因子在中樞神經(jīng)系統(tǒng)損傷中的多種神經(jīng)保護(hù)作用及其機(jī)制的研究進(jìn)展
籍新潮 徐如祥
中樞神經(jīng)系統(tǒng)損傷后腦源性神經(jīng)營養(yǎng)因子(BDNF)可以通過多種機(jī)制發(fā)揮其神經(jīng)保護(hù)作用,如抑制神經(jīng)元及少突膠質(zhì)細(xì)胞的凋亡,促進(jìn)神經(jīng)突觸的生長(zhǎng)和軸突再生,促進(jìn)髓鞘再生,以及調(diào)節(jié)損傷后的免疫反應(yīng)和神經(jīng)興奮性等。本文主要綜述了BDNF在神經(jīng)保護(hù)中可能的分子機(jī)制,以進(jìn)一步明確其在神經(jīng)治療中的應(yīng)用價(jià)值。
腦源性神經(jīng)營養(yǎng)因子;神經(jīng)保護(hù);中樞神經(jīng)系統(tǒng)
腦源性神經(jīng)營養(yǎng)因子(brain-derived neurotrophic factor,BDNF)自從1980年代早期被發(fā)現(xiàn)后一直備受關(guān)注,在過去的三四十年中它在中樞神經(jīng)系統(tǒng)中的作用包括細(xì)胞水平和分子水平都已進(jìn)行了大量研究,例如,BDNF可以促進(jìn)損傷神經(jīng)元的存活并抑制其凋亡,能夠增強(qiáng)軸突再生及其可塑性。盡管大量研究顯示BDNF可以通過多種機(jī)制發(fā)揮其神經(jīng)保護(hù)的作用,但有關(guān)其在神經(jīng)保護(hù)作用中的報(bào)道也不盡一致。這篇綜述中筆者主要討論BDNF在神經(jīng)保護(hù)中可能的分子機(jī)制,進(jìn)一步明確其在神經(jīng)治療中的應(yīng)用價(jià)值。
BDNF是1982年發(fā)現(xiàn)的神經(jīng)營養(yǎng)因子家族的第二個(gè)成員,在基因翻譯過程中首先形成 32KD的前體蛋白 pro-BDNF,經(jīng)過酶切后最終成為具有生物活性的14KD成熟蛋白。BDNF通過與高親和力的酪氨酸受體激酶受體 B(tyrosine kinase receptor B,TrkB)和低親和力的總神經(jīng)營養(yǎng)因子受體-P75NTR相結(jié)合進(jìn)而發(fā)揮其生物學(xué)作用。TrkB具有三種亞型:(1)具有信號(hào)轉(zhuǎn)導(dǎo)功能的全長(zhǎng)型受體(gp145trkB或TrkB-TK)。 (2) 缺乏胞漿內(nèi)催化區(qū)域的截短型受體(gp95trkB或TrkB-T1)。(3)缺乏酪氨酸激酶區(qū)域但包含Shc結(jié)合位點(diǎn)亞型[2-6]。當(dāng)BDNF與gp145trkB結(jié)合后可以激活細(xì)胞內(nèi)的數(shù)條信號(hào)通路包括:Ras/Rap-MAPK,PI3K-Akt:以及PLCγ-PKC,這些信號(hào)途徑的活化在促進(jìn)神經(jīng)元的生長(zhǎng),分化以及神經(jīng)突觸的生長(zhǎng)和可塑性中發(fā)揮著重要作用[7-9],可簡(jiǎn)單歸納為以下幾個(gè)途徑:通過磷脂酰肌醇-3激酶 (PI3K)和Akt、TrkB釋放出促進(jìn)神經(jīng)元存活的信號(hào);通過細(xì)胞外信號(hào)調(diào)節(jié)激酶(ERK)和調(diào)節(jié)cAMP的水平促進(jìn)軸突的再生;通過磷脂酶C(PLC),肌醇-3-磷酸(IP3)和鈣離子信號(hào),TrkB可以影響突觸可塑性和突觸傳遞。當(dāng)然,這些途徑并不是完全獨(dú)立的,而是相互協(xié)同或相互補(bǔ)償?shù)?。此外,BDNF促進(jìn)損傷修復(fù)的另一個(gè)可能的機(jī)制是其神經(jīng)興奮性作用。通過NMDA受體亞基,TrkB信號(hào)可能會(huì)導(dǎo)致鈣離子流和鈉離子流的增加。相似的,TrkB-PLC通路的激活也可以誘導(dǎo)鈣離子介導(dǎo)的通道的開放,進(jìn)而增加了膜電位[11-12]。
pro-BDNF是由N-末端的前結(jié)構(gòu)區(qū)域和C-末端的成熟區(qū)域組成。并且能夠被前蛋白轉(zhuǎn)換酶酶切為分泌顆粒,pro-BDNF在胞外還可以通過纖溶酶或基質(zhì)金屬蛋白酶的加工處理成為成熟的BDNF。大量研究證實(shí)pro-BDNF與P75NTR結(jié)合后在對(duì)神經(jīng)元的結(jié)構(gòu)和突觸可塑性的影響中與 BDNF/ TrkB信號(hào)途徑的作用是相反的,包括抑制神經(jīng)元的生長(zhǎng),減少膽堿能神經(jīng)元纖維以及海馬樹突棘的數(shù)量[13-17],例如:重組pro-BDNF可以通過P75NTR誘導(dǎo)體外培養(yǎng)神經(jīng)元的凋亡以及突觸的回縮。此外,在海馬CA1區(qū)重組pro-BDNF可以增強(qiáng)長(zhǎng)時(shí)程抑制,而成熟的BDNF是TBS誘導(dǎo)的長(zhǎng)時(shí)程增強(qiáng)所必須的。重組pro-BDNF可以負(fù)調(diào)控神經(jīng)肌肉突觸的活性,并且pro-BDNF與BDNF的相對(duì)表達(dá)水平在中樞神經(jīng)系統(tǒng)的結(jié)構(gòu)和功能調(diào)節(jié)中起著重要的作用。此外,成熟的BDNF與p75受體結(jié)合影響軸突生長(zhǎng)的機(jī)制之一是通過與控制軸突生長(zhǎng)的關(guān)鍵分子GTPase Rho相互作用,p75可以通過激活Rho進(jìn)而抑制軸突的生長(zhǎng),并且P75在BDNF介導(dǎo)的突觸抑制中也起了重要的作用。此外,因?yàn)榕cTrkB相比,P75與BDNF的親和力較低所以需要高濃度的BDNF方可激活P75途徑[18-20]。
BDNF促進(jìn)神經(jīng)元存活的機(jī)制已進(jìn)行了大量研究,在分子水平上BDNF/TrkB可以通過PI3/Akt途徑抑制促凋亡信號(hào)分子:Forkhead,Bad,GSK-3以及JNK-p53-Bax。在軸突橫斷的神經(jīng)元內(nèi)促凋亡因子的表達(dá)明顯上調(diào),BDNF可能在促進(jìn)神經(jīng)元存活中起了重要的作用。脊髓損傷后BDNF介導(dǎo)的強(qiáng)有力的神經(jīng)保護(hù)作用已有大量報(bào)道,通過移植BDNF基因修飾的成纖維細(xì)胞支架到損傷處或者通過蛛網(wǎng)膜下腔注射BDNF均可觀察到明顯的神經(jīng)保護(hù)作用。L5節(jié)段脊髓損傷后第4周通過對(duì)運(yùn)動(dòng)神經(jīng)元的逆行示蹤顯示62%神經(jīng)元存活,而局部注射BDNF后顯著降低運(yùn)動(dòng)神經(jīng)元的凋亡達(dá)92%的神經(jīng)元存活,并明顯減少了損傷空洞體積[21]。大鼠神經(jīng)根性撕脫傷后立即予以鞘內(nèi)注射BDNF后,明顯減少了運(yùn)動(dòng)神經(jīng)元的死亡,此外,還抑制了因神經(jīng)遞質(zhì)相關(guān)的酶類如乙酰膽堿轉(zhuǎn)移酶或乙酰膽堿酯酶的降低引起的胞體萎縮[22]。大量證據(jù)顯示BDNF可以阻止損傷導(dǎo)致的紅核脊髓神經(jīng)元的退行性改變,并且BDNF對(duì)其它上行的和下行的纖維束的保護(hù)性作用也已見報(bào)道。大鼠頸髓損傷后第8周51%的紅核脊髓神經(jīng)元死亡,而通過蛛網(wǎng)膜下腔向小腦延髓池內(nèi)注射BDNF后發(fā)現(xiàn)71%的紅核脊髓神經(jīng)元存活且胞體萎縮不明顯[23]。大鼠頸髓半橫斷后立即進(jìn)行未修飾的成纖維細(xì)胞和BDNF基因修飾的成纖維細(xì)胞移植,損傷后第8周通過熒光金對(duì)紅核脊髓神經(jīng)元進(jìn)行逆行示蹤顯示移植未修飾成纖維細(xì)胞組中丟失了45%的神經(jīng)元并有40%的殘存神經(jīng)元出現(xiàn)萎縮,而BDNF基因修飾組中丟失神經(jīng)元不足15%,且僅有20%存活神經(jīng)元中出現(xiàn)胞體萎縮[24]。外周神經(jīng)軸突橫斷模型中能更有力地證明BDNF的神經(jīng)保護(hù)作用,并從另一方面說明BDNF的神經(jīng)保護(hù)作用對(duì)低級(jí)運(yùn)動(dòng)神經(jīng)元的保護(hù)作用更為明顯。總之,在軸突橫斷后BDNF可以顯著增加存活神經(jīng)元的數(shù)量,但前提是損傷處的細(xì)胞可以表達(dá)足夠的具有信號(hào)轉(zhuǎn)導(dǎo)作用的全長(zhǎng)的TrkB受體。
BDNF的神經(jīng)營養(yǎng)作用不僅僅體現(xiàn)在促進(jìn)神經(jīng)元細(xì)胞的存活,還能顯著促進(jìn)軸突再生。將過表達(dá)BDNF的腺相關(guān)病毒(AAV-BDNF)轉(zhuǎn)染施萬細(xì)胞后將其移植到損傷脊髓處,16周后通過對(duì)神經(jīng)元逆行示蹤顯示超過2倍的神經(jīng)元突觸長(zhǎng)入移植細(xì)胞支架中,且明顯促進(jìn)運(yùn)動(dòng)功能恢復(fù)[25]。脊髓全橫斷后2~4周將胚胎脊髓(fetalspinal cord,F(xiàn)SC)移植入損傷處,結(jié)果顯示同時(shí)進(jìn)行微量泵BDNF注射組損傷軸突可以通過FSC長(zhǎng)入尾側(cè),并顯著促進(jìn)運(yùn)動(dòng)功能恢復(fù)[26]。有趣的是,Kwon等[27]發(fā)現(xiàn)頸髓損傷后1年,紅核脊髓神經(jīng)元并沒有死亡,只是大量胞體發(fā)生萎縮,此時(shí)通過應(yīng)用BDNF可以促進(jìn)再生相關(guān)基因GAP43和T-alpha-1-tubulin的表達(dá),并促進(jìn)紅核脊髓神經(jīng)元軸突的再生,認(rèn)為脊髓損傷1年后仍具有再生可能。頸髓損傷后通過在損傷附近注射過表達(dá)BDNF的腺相關(guān)病毒后發(fā)現(xiàn),損傷創(chuàng)面體積變小,損傷神經(jīng)元胞體萎縮被抑制,與反應(yīng)軸突再生密切相關(guān)的GAP43和 Tα1 tubulin表達(dá)明顯上調(diào),成功促進(jìn)了軸突的再生
總之,BDNF可以通過促進(jìn)再生相關(guān)基因GAP43和T-alpha-1-tubulin的表達(dá)以及通過ERK增加第二信使cAMP的表達(dá)水平等途徑促進(jìn)軸突再生,以上途徑是條件性損傷中促進(jìn)軸突克服髓磷脂抑制的重要機(jī)制。BDNF介導(dǎo)的軸突再生一般反映在延伸進(jìn)移植物的纖維數(shù)量和濃度,然而,最終引起功能學(xué)恢復(fù)需要再生的軸突穿過移植材料進(jìn)入損傷尾端,并且形成有意義的神經(jīng)連接。所以,軸突再生尤其是CST的再生在運(yùn)動(dòng)功能恢復(fù)中如何發(fā)揮其作用有待進(jìn)一步深入探討。
軸突再生和運(yùn)動(dòng)功能恢復(fù)之間的直接聯(lián)系已在大量實(shí)驗(yàn)中得到證實(shí),包括頸髓和低位胸髓損傷后皮質(zhì)脊髓束的再生以及胸髓損傷后網(wǎng)狀脊髓束側(cè)枝的生長(zhǎng)。增強(qiáng)這些再生纖維的自發(fā)性重整將有利于再生軸突建立有效連接,進(jìn)而成為具有功能性的再生連接。BDNF促進(jìn)軸突再生的同時(shí),其在神經(jīng)可塑性、興奮性以及促進(jìn)突觸適當(dāng)生長(zhǎng)方面的作用也有大量的報(bào)道。
BDNF可以有效地調(diào)節(jié)神經(jīng)突觸的生長(zhǎng),并且可以增強(qiáng)神經(jīng)可塑性。BDNF可以降低鈣離子通道的活性包括P/Q型通道,并抑制因短暫去極化或信號(hào)激活動(dòng)作電位引起的鈣離子的胞外轉(zhuǎn)運(yùn)。BDNF對(duì)鈣離子釋放的突觸前調(diào)節(jié)可能是其在突觸可塑性調(diào)解中的重要機(jī)制[28]。SCI后塌車訓(xùn)練可以提高鉀離子-氯離子共轉(zhuǎn)運(yùn)蛋白-2(KCC2)的翻譯后修飾,并能顯著改善損傷引起的痙攣,而應(yīng)用TrkB-IgG對(duì)BDNF/TrkB途徑進(jìn)行抑制后則完全抵消了上述改善作用[29]。向運(yùn)動(dòng)皮層神經(jīng)元注射BDNF可以顯著促進(jìn)皮質(zhì)脊髓束的代償性生長(zhǎng),并可以增加皮質(zhì)脊髓束纖維和脊髓固有神經(jīng)元之間的連接,兩者之間連接數(shù)量與運(yùn)動(dòng)功能的改善是正相關(guān)的。頸髓損傷后紅核區(qū)局部應(yīng)用BDNF可以顯著上調(diào)再生相關(guān)基因的表達(dá),并且可以增加紅核脊髓神經(jīng)元的再生,并且移植經(jīng)BDNF基因修飾的成纖維細(xì)胞后,BDA順行示蹤顯示紅核脊髓束再生軸突可以穿過移植細(xì)胞并長(zhǎng)距離生長(zhǎng),同時(shí)明顯促進(jìn)運(yùn)動(dòng)功能恢復(fù)[30]。定向誘導(dǎo)神經(jīng)再生只是BDNF神經(jīng)可塑性的一個(gè)方面,除去解剖結(jié)構(gòu)上改變,BDNF還可以影響神經(jīng)元的興奮性并且改變突觸傳遞。
脊髓損傷后軸突的脫髓鞘是功能缺失的重要原因之一,而髓鞘再生是脊髓損傷修復(fù)面臨的又一大難題。研究顯示BDNF不僅可以促進(jìn)神經(jīng)纖維的再生,而且還可以減少二次損傷中殘余軸突的脫髓鞘反應(yīng)[31-32]。在對(duì)少突膠質(zhì)細(xì)胞TrkB條件性敲除小鼠的研究中顯示:TrkB敲除會(huì)下調(diào)髓鞘堿性蛋白(myelin basic protein,MBP)的表達(dá),并阻礙少突膠質(zhì)細(xì)胞的髓鞘形成,需要注意的是敲除鼠的正常成熟的少突膠質(zhì)細(xì)胞的數(shù)量是正常的,并且髓鞘化的軸突數(shù)量也是正常,差異主要表現(xiàn)在,發(fā)育過程中髓鞘厚度顯著減少,同時(shí)增加了少突膠質(zhì)細(xì)胞前體細(xì)胞的密度[33]。脊髓挫傷后在損傷位點(diǎn)移植BDNF基因修飾的成纖維細(xì)胞可以明顯增加少突膠質(zhì)細(xì)胞和施萬細(xì)胞的增殖,并且促進(jìn)髓鞘再生和軸突再生。此外,BDNF還可以通過抑制少突膠質(zhì)細(xì)胞的死亡以及上調(diào)MBP的表達(dá)來影響髓鞘再生。例如:脊髓挫傷后MBP表達(dá)明顯下降,通過鞘內(nèi)注射BDNF2周后,MBP的表達(dá)已接近正常水平且明顯抑制了少突膠質(zhì)細(xì)胞的死亡,并促進(jìn)了運(yùn)動(dòng)功能修復(fù)[34]。將轉(zhuǎn)染了BDNF或NT-3的成纖維細(xì)胞移植到損傷脊髓局部,并通過Brdu對(duì)增殖細(xì)胞進(jìn)行標(biāo)記顯示,BDNF或NT-3移植細(xì)胞組Brdu陽性的少突細(xì)胞明顯增多,且與髓鞘再生程度是正相關(guān)的[35]。Chan等[36]在體外通過BDNF與施萬細(xì)胞/背根神經(jīng)節(jié)神經(jīng)元共培養(yǎng)發(fā)現(xiàn)BDNF可以促進(jìn)髓鞘形成,而加入BDNF受體TrkB-Fc融合蛋白后抑制成熟髓鞘節(jié)間的形成,并且皮下注射BDNF后可以顯著促進(jìn)損傷坐骨神經(jīng)髓鞘的形成。此外,在與膠質(zhì)前體細(xì)胞聯(lián)合治療過程中,可以明顯促進(jìn)電生理功能的恢復(fù)和運(yùn)動(dòng)功能的改善,在此過程中BDNF可能在促進(jìn)膠質(zhì)前體細(xì)胞的存活和增殖過程中發(fā)揮了一定的間接作用。
炎癥和膠質(zhì)瘢痕增生是SCI后二次損傷的兩個(gè)重要組成因素,盡管在二次損傷中炎癥可以加重脊髓損傷已十分明確,但至今仍對(duì)炎癥的利弊存在爭(zhēng)議。如上所述BDNF在神經(jīng)損傷修復(fù)中發(fā)揮著重要的作用,盡管BDNF在免疫炎癥反應(yīng)過程中的作用并不十分明確,但是仍有一些研究報(bào)道顯示其具有抗炎和抗氧化的作用。TrkB的表達(dá)與T細(xì)胞前體細(xì)胞的成熟狀態(tài)密切相關(guān),其在CD4-CD8-未成熟胸腺細(xì)胞中表達(dá)上調(diào),而在CD4+CD8+的胸腺細(xì)胞中表達(dá)降低,提示BDNF/ TrkB在胸腺細(xì)胞分化過程中起著重要的作用,并且在TrkB敲除鼠中可以觀察到胸腺超微結(jié)構(gòu)發(fā)生改變以及大量T淋巴細(xì)胞的凋亡[37-39]。在對(duì)BDNF淋巴系條件性敲除鼠的研究中顯示,外周淋巴結(jié)器官中T細(xì)胞明顯減少而CD4+CD44+記憶T細(xì)胞顯著增多,并且胸腺發(fā)育過程中總的胸腺細(xì)胞數(shù)量明顯減少,而CD4-/CD8-(DN)性的胸腺細(xì)胞比例明顯增多,胸腺細(xì)胞由DN3向DN4轉(zhuǎn)變成熟過程中部分受阻,其中ERK介導(dǎo)的TCR信號(hào)途徑在此過程中發(fā)揮了一定的作用[40]。通過對(duì)多發(fā)性硬化(MS)患者和正常人群(NHS)的外周血提取的T細(xì)胞進(jìn)行分別顯示,MS患者的MBP/OVA-T細(xì)胞系凋亡明顯降低并與gp145trkB的表達(dá)呈負(fù)相關(guān)[41]。有研究顯示體外培養(yǎng)的人B細(xì)胞和T細(xì)胞中均可在mRNA水平以及蛋白水平上檢測(cè)到gp145trkB的表達(dá)。原位雜交顯示神經(jīng)元和膠質(zhì)細(xì)胞均可以表達(dá)銅/鋅超氧化物歧化酶 (CuZnSOD),SCI后CuZnSOD的表達(dá)在24 h內(nèi)快速下調(diào),而BDNF注射后可以顯著抑制CuZnSOD表達(dá)水平的降低[34]。研究顯示,在脊髓損傷前后應(yīng)用BDNF可以減少一氧化氮合酶的上調(diào),進(jìn)而降低了NO的合成,同時(shí)在此試驗(yàn)中還觀察到了血脊髓膜破壞以及水腫的發(fā)生。還有的研究學(xué)者報(bào)道,局部腦缺血后通過鼻內(nèi)吸入BDNF可以在細(xì)胞因子水平和轉(zhuǎn)錄水平兩個(gè)方面調(diào)節(jié)炎癥反應(yīng),例如,BDNF可以抑制TNF-a的表達(dá)但卻可以上調(diào)IL-10的表達(dá)水平。
如上所述,BDNF在脊髓損傷中發(fā)揮著重要的神經(jīng)保護(hù)作用,包括抑制神經(jīng)元的凋亡,促進(jìn)軸突再生,促進(jìn)髓鞘再生等。這為其在脊髓損傷治療中的應(yīng)用奠定了理論基礎(chǔ)。但是隨后研究發(fā)現(xiàn),BDNF在應(yīng)用過程中會(huì)產(chǎn)生一些人們不愿見到的副作用,其中神經(jīng)疼痛便是主要副作用之一[42]。神經(jīng)性疼痛也稱為疼痛癥,在人群中總體發(fā)病率為1.5%~3%,與糖尿病,皰疹,纖維肌瘤,創(chuàng)傷性神經(jīng)損傷,脊髓損傷,腦損傷(包括腦中風(fēng))。主要癥狀包括:觸摸引起的異常疼痛,疼痛過敏,有研究顯示灼性神經(jīng)痛BDNF在脊髓中可以引起炎性或者神經(jīng)病理性疼痛[43-46]。在炎性疼痛大鼠的前扣帶回皮層(ACC)和第一軀體感覺皮層(S1)可檢測(cè)到BDNF的表達(dá)上調(diào),在ACC中注射重組BDNF或在ACC或S1注射過表達(dá)BDNF的病毒載體均可引起痛覺過敏,而通過在ACC局部注射cyclotraxin(TrkB受體的高效選擇性拮抗劑)阻斷BDNF/TrkB信號(hào)途徑,可以對(duì)痛覺過敏產(chǎn)生明顯抑制性作用[47]。
外周神經(jīng)損傷是如何引起中樞致敏反應(yīng)的目前還不得而知,但是通過大量研究得出了一些可能的假設(shè):損傷區(qū)或炎癥組織釋放了大量的促炎因子,生長(zhǎng)因子或其它介質(zhì),這些介質(zhì)直接作用在殘存的軸突或傳入神經(jīng)元并對(duì)其產(chǎn)生持續(xù)的刺激。這些介質(zhì)包括趨化因子,CCL-21,CCL-2,細(xì)胞因子,CX3CL-1。它們和靜止期小膠質(zhì)細(xì)胞上的相應(yīng)受體相互作用,并促進(jìn)離子型嘌呤型受體P2X4R的表達(dá),有趣的是靜止期小膠質(zhì)細(xì)胞僅表達(dá)少量的P2X4受體,但是神經(jīng)損傷或細(xì)胞因子釋放后 P2X4受體表達(dá)上調(diào)[48]。通過 P2X4R,ATPCa2+流激活了P38-MAPK途徑并促進(jìn)小膠質(zhì)細(xì)胞中BDNF的合成,這些改變最終導(dǎo)致了神經(jīng)興奮性的增加[49]。目前發(fā)現(xiàn)GABA能去抑制和慢性炎癥性疼痛引起的痛覺過敏在中央導(dǎo)水管周圍灰質(zhì)(PAG)-延髓頭端腹內(nèi)側(cè)區(qū)(RVM)-脊髓下行易化系統(tǒng)密切相關(guān),BDNF調(diào)節(jié)的鉀離子-氯離子共轉(zhuǎn)運(yùn)體2(KCC2)的表達(dá)或功能的改變?cè)谄渲衅鹆艘欢ǖ淖饔?。小膠質(zhì)細(xì)胞釋放BDNF引起中樞致敏已被廣泛接受,P2X4-小膠質(zhì)細(xì)胞-BDNF通路持續(xù)的活化可能是其主要機(jī)制。
中樞神經(jīng)系統(tǒng)損傷后BDNF可以通過多種機(jī)制發(fā)揮其神經(jīng)保護(hù)作用,如促進(jìn)神經(jīng)元的存活,抑制神經(jīng)元及少突膠質(zhì)細(xì)胞的凋亡,促進(jìn)神經(jīng)突觸的生長(zhǎng)和軸突再生,促進(jìn)髓鞘再生和調(diào)節(jié)突觸傳遞以及調(diào)解損傷后的免疫炎癥反應(yīng)和神經(jīng)興奮性。這些作用為BDNF在中樞神經(jīng)系統(tǒng)損傷后治療過程中的應(yīng)用提供了廣泛的理論基礎(chǔ),但同時(shí)還要深入認(rèn)識(shí)和了解BDNF在治療過程中可能出現(xiàn)的副反應(yīng),使其在今后應(yīng)用中更為安全可靠。
[1]Hantzopoulos PA,Suri C,Glass DJ,et al.The low affinity NGF receptor,p75,can collaborate with each of the Trks to potentiate functional responses to the neurotrophins[J].Neuron,1994,13 (1):187-201.
[2]Klein R,Nanduri V,Jing SA,et al.The trkB tyrosine protein kinase is a receptor for brain-derived neurotrophic factor and neurotrophin-3[J].Cell,1991,66(2):395-403.
[3]Squinto SP,Stitt TN,Aldrich TH,et al.trkB encodes a functional receptor for brain-derived neurotrophic factor and neurotrophin-3 but not nerve growth factor[J].Cell,1991,65(5):885-893.
[4]Klein R,Smeyne RJ,Wurst W,et al.Targeted disruption of the trkB neurotrophin receptor gene results in nervous system lesions and neonatal death[J].Cell,1993,75(1):113-122.
[5]Lamballe F,Klein R,Barbacid M.The trk family of oncogenes and neurotrophin receptors[J].Princess Takamatsu Symp,1991, 22:153-170.
[6]Soppet D,Escandon E,Maragos J,et al.The neurotrophic factors brain-derived neurotrophic factor and neurotrophin-3 are ligands for the trkB tyrosine kinase receptor[J].Cell,1991,65(5):895-903.
[7]Glass DJ,Nye SH,Hantzopoulos P,et al.TrkB mediates BDNF/ NT-3-dependent survival and proliferation in fibroblasts lacking the low affinity NGF receptor[J].Cell,1991,66(2):405-413.
[8]Marsh HN,Scholz WK,Lamballe F,et al.Signal transduction events mediated by the BDNF receptor gp 145trkB in primary hippocampal pyramidal cell culture[J].J Neurosci,1993,13(10): 4281-4292.
[9]Plotkin JL,Day M,Peterson JD,et al.Impaired TrkB receptor signaling underlies corticostriatal dysfunction in Huntington′s disease[J].Neuron,2014,83(1):178-188.
[10]Dolcet X, Egea J, Soler RM, et al.Activation of phosphatidylinositol3-kinase,butnotextracellular-regulated kinases,is necessary to mediate brain-derived neurotrophic factor-induced motoneuron survival[J].J Neurochem,1999,73(2): 521-531.
[11]Lindholm D,Dechant G,Heisenberg CP,et al.Brain-derived neurotrophic factor is a survival factor for cultured rat cerebellar granule neurons and protects them against glutamate-induced neurotoxicity[J].Eur J Neurosci,1999,5(11):1455-1464.
[12]Kaplan DR,Miller FD.Neurotrophin signal transduction in the nervous system[J].Curr Opin Neurobiol,2000,10(3):381-391.
[13]Curtis R,Adryan KM,Stark JL,et al.Differential role of the low affinity neurotrophin receptor(p75)in retrograde axonal transport of the neurotrophins[J].Neuron,1995,14(6):1201-1211.
[14]McKay SE,Garner A,Caldero J,et al.The expression of trkB and p75 and the role of BDNF in the developing neuromuscular system of the chick embryo[J].Development,1996,122(2):715-724.
[15]Rostami E,Krueger F,Plantman S,et al.Alteration in BDNF and its receptors,full-length and truncated TrkB and p7 5(NTR) following penetrating traumatic brain injury[J].Brain Res,2014, 1542:195-205.
[16]Enomoto M,Bunge MB,Tsoulfas P.A multifunctional neurotrophin with reduced affinity to p75NTR enhances transplanted Schwann cell survival and axon growth after spinal cord injury[J].Exp Neurol,2013,248:170-182.
[17]Brito V,Puigdellívol M,Giralt A,et al.Imbalance of p75(NTR)/ TrkB protein expression in Huntington’s disease:implication for neuroprotective therapies[J].Cell Death Dis,2013,4(18):e595.
[18]Chapleau CA,Pozzo-Miller L.Divergent roles of p75NTR and Trk receptors in BDNF′s effects on dendritic spine density and morphology[J].Neural Plast,2012,2012:578057.
[19]Je HS,Yang F,Ji Y,et al.ProBDNF and mature BDNF as punishment and reward signals for synapse elimination at mouse neuromuscular junctions[J].J Neurosci,2013,33(24):9957-9962.
[20]Yang F,Je HS,JiY,etal.Pro-BDNF-induced synaptic depression and retraction at developing neuromuscular synapses [J].J Cell Biol,2009,185(4):727-741.
[21]Novikova L,Novikov L,Kellerth JO.Brain-derived neurotrophic factor reduces necrotic zone and supports neuronal survival after spinal cord hemisection in adult rats[J].Neurosci Lett,1996,220 (3):203-206.
[22]Kishino A,Ishige Y,Tatsuno T,et al.BDNF prevents and reverses adult rat motor neuron degeneration and induces axonal outgrowth[J].Exp Neurol,1997,144(2):273-286.
[23]Novikova LN,Novikov LN,Kellerth JO.Survival effects of BDNF and NT-3 on axotomized rubrospinal neurons depend on the temporal pattern of neurotrophin administration[J].Eur J Neurosci, 2000,12(2):776-780.
[24]Liu Y1,Himes BT,Murray M,et al.Grafts of BDNF-producing fibroblasts rescue axotomized rubrospinal neurons and prevent their atrophy[J].Exp Neurol,2002,178(2):150-164.
[25]Blits B,Oudega M,Boer GJ,et al.Adeno-associated viral vectormediated neurotrophin gene transfer in the injured adult rat spinal cord improves hind-limb function[J].Neuroscience,2003, 118(1):271-281.
[26]Coumans JV,Lin TT,Dai HN,et al.Axonal regeneration and functional recovery after complete spinal cord transection in rats by delayed treatment with transplants and neurotrophins[J].J Neurosci,2001,21(23):9334-9344.
[27]Kwon BK,Liu J,Messerer C,et al.Survival and regeneration of rubrospinal neurons 1 year after spinal cord injury[J].Proc Natl Acad Sci USA,2002,99(5):3246-3251.
[28]Baydyuk M,Wu XS,He L,et al.Brain-derived neurotrophic factorinhibits calcium channelactivation,exocytosis,and endocytosis at a central nerve terminal[J].J Neurosci,2015,35 (11):4676-4682.
[29]Tashiro S,Shinozaki M,Mukaino M,et al.BDNF Induced by Treadmill Training Contributes to the Suppression of Spasticity and Allodynia After Spinal Cord Injury via Upregulation of KCC2 [J].Neurorehabil Neural Repair,2015,29(7):677-689.
[30]Liu Y,Kim D,Himes BT,et al.Transplants of fibroblasts genetically modified to express BDNF promote regeneration of adult rat rubrospinal axons and recovery of forelimb function[J].J Neurosci,1999,19(11):4370-4387.
[31]de Groot DM,Coenen AJ,Verhofstad A,et al.In vivo inductionof glial cell proliferation and axonal outgrowth and myelination by brain-derived neurotrophic factor[J].Mol Endocrinol,2006, 20(11):2987-2998.
[32]Xiao J,Hughes RA,Lim JY,et al.A small peptide mimetic of brain-derived neurotrophic factor promotes peripheral myelination [J].J Neurochem,2013,125(3):386-398.
[33]Wong AW,Xiao J,Kemper D,et al.Oligodendroglial expression of TrkB independently regulates myelination and progenitor cell proliferation[J].J Neurosci,2013,33(11):4947-4957.
[34]Ikeda O,Murakami M,Ino H,et al.Effects of brain-derived neurotrophic factor(BDNF)on compression-induced spinal cord injury:BDNF attenuates down-regulation of superoxide dismutase expression and promotes up-regulation of myelin basic protein expression[J].J Neuropathol Exp Neurol,2002,61(2):142-153.
[35]McTigue DM,Horner PJ,Stokes BT,et al.Neurotrophin-3 and brain-derived neurotrophic factor induce oligodendrocyte proliferation and myelination ofregenerating axonsin the contused adult rat spinal cord[J].J Neurosci,1998,18(14): 5354-5365.
[36]Chan JR,Cosgaya JM,Wu YJ,et al.Neurotrophins are key mediators of the myelination programin the peripheral nervous system[J].Proc Natl Acad Sci USA,2001,98(25):14661-14668.
[37]Fujimaki H,Win-Shwe TT,Yamamoto S,et al.Role of CD4(+)T cells in the modulation of neurotrophin production in mice exposed to low-level toluene[J].Immunopharmacol Immunotoxicol, 2009,31(1):146-149.
[38]Kerschensteiner M,Gallmeier E,Behrens L,et al.Activated human T cells,B cells,and monocytes produce brain-derived neurotrophic factor in vitro and in inflammatory brain lesions:a neuroprotective role of inflammation?[J].J Exp Med,1999,189 (5):865-870.
[39]Maroder M,Bellavia D,Meco D,et al.Expression of trKB neurotrophin receptor during T cell development.Role of brain derived neurotrophic factor in immature thymocyte survival[J].J Immunol,1996,157(7):2864-2872.
[40]Linker RA,Lee H,Flach AC,et al.Thymocyte-derived BDNF influences T-cell maturation at the DN3/DN4 transition stage[J]. Eur J Immunol,2015,45(5):1326-1328.
[41]De Santi L,Cantalupo L,Tassi M,et al.Higher expression of BDNF receptor gp145trkB is associated with lower apoptosis intensity in T cell lines in multiple sclerosis[J].J Neurol Sci, 2009,277(1-2):65-70.
[42]Ferrini F,Trang T,Mattioli TA,et al.Morphine hyperalgesia gated through microglia-mediated disruption of neuronal Clhomeostasis[J].Nat Neurosci,2013,16(2):183-192.
[43]Ding X,Cai J,Li S,et al.BDNF contributes to the development of neuropathic pain by induction of spinal long-term potentiation via SHP2 associated GluN2B-containing NMDA receptors activation in rats with spinal nerve ligation[J].Neurobiol Dis, 2015,73:428-451.
[44]Almeida C,DeMaman A,Kusuda R,et al.Exercise therapy normalizes BDNF upregulation and glial hyperactivity in a mouse model of neuropathic pain[J].Pain,2014,Epub ahead of print.
[45]Ostenfeld T,Krishen A,Lai RY,et al.Analgesic efficacy and safety of the novel p38 MAP kinase inhibitor,losmapimod,in patients with neuropathic pain following peripheral nerve injury: a double-blind,placebo-controlled study[J].Eur J Pain,2013,17 (6):844-857.
[46]Obata K,Yamanaka H,Dai Y,et al.Differential activation of extracellular signal-regulated protein kinase in primary afferent neurons regulates brain-derived neurotrophicfactor expression after peripheral inflammation and nerve injury[J].J Neurosci, 2003,23(10):4117-4126.
[47]Thibault K,Lin WK,Rancillac A,et al.BDNF-dependent plasticity induced by peripheral inflammation in the primary sensory and the cingulate cortex triggers cold allodynia and reveals a major role for endogenous BDNF as a tuner of the affective aspect of pain[J].J Neurosci,2014,34(44):14739-14751.
[48]Merighi A,Bardoni R,Salio C,et al.Presynaptic functional trkB receptors mediate the release of excitatory neurotransmitters from primary afferent terminals in lamina II(substantia gelatinosa)of postnatal rat spinal cord[J].Dev Neurobiol,2008,68(4):457-475.
[49]Jin SX,Zhuang ZY,Woolf CJ,et al.p38 mitogen-activated protein kinase is activated after a spinal nerve ligation in spinal cord microglia and dorsal root ganglion neurons and contributes to the generation of neuropathic pain[J].J Neurosci,2003,23 (10):4017-4022.
Research progress of multiple neuroprotective effects of brain-derived neurotrophic factor after central nervous system injury and its mechanism
Ji Xinchao,Xu Ruxiang.Department of Neurosurgery,Bayi Brain Hospital Affiliated to the PLA Army General Hospital,Beijing 100700,China
Xu Ruxiang,Email:zjxuruxiang@163.com
Brain-derived neurotrophic factor(BDNF)has multiple neuroprotective effects after central nervous system injury,such as inhibiting apoptosis of neurons and oligodendrocytes,promoting the growth of synapse and the regeneration of axon,promoting the regeneration of myelin sheath, adjusting the immune response and nerve excitability after injury,and so on.This article reviewed the possible molecular mechanisms of the neuroprotective effect of BDNF,in order to indentify its application value in the clinic treatment.
Brain-derived neurotrophic factor;Neuroprotection;Central nervous system
2015-08-17)
(本文編輯:張麗)
10.3877/cma.j.issn.2095-9141.2016.03.012
100700 北京,陸軍總醫(yī)院附屬八一腦科醫(yī)院
徐如祥,Email:zjxuruxiang@163.com
籍新潮,徐如祥.腦源性神經(jīng)營養(yǎng)因子在中樞神經(jīng)系統(tǒng)損傷中的多種神經(jīng)保護(hù)作用及其機(jī)制的研究進(jìn)展[J/CD].中華神經(jīng)創(chuàng)傷外科電子雜志,2016,2(3):168-172.