戰(zhàn) 昊, 朱 凱, 胡志強(qiáng), 王鵬程, 代 智, 黃曉武, 周 儉
復(fù)旦大學(xué)附屬中山醫(yī)院肝癌研究所,上海 200032
?
環(huán)狀RNA: 非編碼RNA研究新方向
戰(zhàn) 昊, 朱 凱, 胡志強(qiáng), 王鵬程, 代 智, 黃曉武, 周 儉*
復(fù)旦大學(xué)附屬中山醫(yī)院肝癌研究所,上海 200032
環(huán)狀RNA(Circular RNAs,circRNAs)是一類新型的非編碼RNA,其首尾通過共價鍵形成閉合的環(huán),表現(xiàn)出與線性RNA不同的特性。circRNA大量存在于真核細(xì)胞轉(zhuǎn)錄組中,在物種間具有保守性,表達(dá)穩(wěn)定且具有組織及發(fā)展階段特異性。circRNA不易被核酸外切酶RNase R降解,在體液中較線性RNA更穩(wěn)定,因而具有作為臨床診斷及預(yù)后標(biāo)志物的潛在應(yīng)用價值。目前的研究發(fā)現(xiàn)環(huán)狀RNA能夠發(fā)揮miRNA分子海綿作用,調(diào)控基因轉(zhuǎn)錄過程。CircRNA在心血管系統(tǒng)疾病、神經(jīng)系統(tǒng)疾病、朊蛋白疾病及癌癥等疾病中發(fā)揮重要作用,有望成為RNA領(lǐng)域研究新的熱點(diǎn)。
環(huán)狀RNA;非編碼RNAs;miRNA分子海綿;癌癥;生物標(biāo)記
環(huán)狀 RNA(Circular RNAs,circRNAs)是一類通過共價鍵形成的閉合環(huán)狀非編碼 RNA。circRNA不具備5′→3′極性及3′ polyA末端,表現(xiàn)出與線性RNA不同的特性。circRNA不易被核酸外切酶 RNase R 降解。在體液如血漿[1]及唾液[2]里較線性RNA更穩(wěn)定。大部分circRNA有外顯子編碼(exonic circular RNA, ecircRNA),主要存在于細(xì)胞質(zhì)中。circRNA分子富含miRNA應(yīng)答元件(microRNA response elements, MRE)[3-5],能通過這些MRE吸附特定的miRNAs,充當(dāng)miRNAs的分子“海綿”,從而調(diào)控miRNA的功能[5-6];還有一部分circRNA由內(nèi)含子編碼(circular intronic RNA, ciRNA),或外顯子與內(nèi)含子共同編碼(circular exon-intron circRNAs, EIciRNAs),位于細(xì)胞核內(nèi),參與調(diào)控基因轉(zhuǎn)錄[7-8]。研究發(fā)現(xiàn)circRNA在動脈粥樣硬化[9]、神經(jīng)系統(tǒng)紊亂[5]、朊病毒疾病[10]和腫瘤等疾病[11-14]中發(fā)揮重要作用。通過研究circRNA與疾病之間的關(guān)系能夠為疾病診治提供新的發(fā)展方向。
1979 年科學(xué)家們利用電子顯微鏡第一次在真核細(xì)胞的細(xì)胞質(zhì)中觀察到 RNA以環(huán)狀的形式存在[15]。隨后在酵母的線粒體中也發(fā)現(xiàn)了circRNA的存在[16]。1993 年,科學(xué)家們在人體細(xì)胞的轉(zhuǎn)錄本中也發(fā)現(xiàn)了一些由外顯子編碼的circRNA[17]。然而這些circRNA 僅僅被認(rèn)為是可變剪切過程中產(chǎn)生的中間產(chǎn)物或錯誤剪切產(chǎn)物[17-19],被歸為轉(zhuǎn)錄“噪聲”,因而沒有得到廣泛關(guān)注。近年來,隨著測序技術(shù)和生物信息學(xué)技術(shù)的發(fā)展,科學(xué)家們通過高通量RNA測序(RNA-sequencing,RNA-seq)對circRNA進(jìn)行了深入研究。2012年,Salzman等[20]通過 RNA-seq首次證實circRNA在人類體細(xì)胞中廣泛表達(dá)。此后大量研究證實circRNA在哺乳動物細(xì)胞內(nèi)含量豐富,其序列具有進(jìn)化保守性,通常還具有組織及發(fā)育階段的特異性表達(dá)[3-5,7-8,21-22]。Zhang等[7]又在人類細(xì)胞內(nèi)發(fā)現(xiàn)了內(nèi)含子編碼的circRNA。Li等[8]還發(fā)現(xiàn)了環(huán)狀外顯子-內(nèi)含子RNA。但是EIciRNA的形成機(jī)制目前還不清楚。
在真核細(xì)胞內(nèi),mRNA前體(pre-mRNA)的外顯子區(qū)域被內(nèi)含子隔斷。經(jīng)典剪接通過剪接體(spliceosome)去除pre-mRNA中的內(nèi)含子并連接外顯子。經(jīng)過5′加帽及3′ polyA等轉(zhuǎn)錄及轉(zhuǎn)錄后修飾形成具有5′→3′極性的線性RNA轉(zhuǎn)錄本[23]。與經(jīng)典線性剪接不同的是,circRNA的形成通過反向剪接(back-splicing)將下游剪接供體與上游剪接受體反向連接,形成閉合circRNA轉(zhuǎn)錄本。Jeck等[4]提出circRNA環(huán)化的兩種模型。第一種叫做“套索驅(qū)動的環(huán)化”模型;第二種叫做“內(nèi)含子配對驅(qū)動的環(huán)化”模型。先發(fā)生經(jīng)典剪接還是反向剪接是兩者的主要區(qū)別?!疤姿黩?qū)動的環(huán)化”先發(fā)生經(jīng)典剪接,產(chǎn)生一個線性RNA和一個包含外顯子的內(nèi)含子套索,后者通過反向剪接生成circRNA[3-4,20,24]?!皟?nèi)含子配對驅(qū)動的環(huán)化”則先發(fā)生反向剪接,直接生成circRNA[3-4,20,24]?!皟?nèi)含子配對驅(qū)動”較“套索驅(qū)動”更常見[24]。
3.1 circRNA的生成主要受circRNA前體中的內(nèi)含子序列及RNA結(jié)合蛋白(RNA binding proteins, RBP)的調(diào)控 大量研究證實內(nèi)含子區(qū)域的反向互補(bǔ)序列(如Alu元件)對circRNA的生成起重要作用[25-32]。Liang等[27]對Alu元件進(jìn)行了研究,發(fā)現(xiàn)外顯子兩側(cè)內(nèi)含子中30~40 核苷酸的反向重復(fù)序列即可有效促進(jìn)circRNA的產(chǎn)生。特異的互補(bǔ)序列及堿基配對的穩(wěn)定性對circRNA的生成至關(guān)重要。另外一些內(nèi)含子不含有反向互補(bǔ)序列,也能形成circRNA。這提示除反向互補(bǔ)序列外,還有其他因素影響circRNA的生成[28]。Westholm等[33]研究發(fā)現(xiàn)果蠅的circRNA缺乏Alu元件,但是這些circRNA兩側(cè)的內(nèi)含子較一般線性產(chǎn)物長,在哺乳動物[4]及新桿狀線蟲內(nèi)亦發(fā)現(xiàn)這一現(xiàn)象[28],提示內(nèi)含子長度也能影響circRNA生成。
3.2 RBP參與circRNA前體剪接過程,也能調(diào)控circRNA的生成 研究發(fā)現(xiàn) RBP Quaking(QKI)[34]和Muscleblind(MBL)[30]能夠結(jié)合外顯子兩側(cè)的RBP(位于內(nèi)含子序列)結(jié)合模序,通過RBP之間的相互作用拉近外顯子的距離,促進(jìn)反向剪接的形成[30,34]。RBP還可能通過增加互補(bǔ)序列的穩(wěn)定性或抑制經(jīng)典剪接,促進(jìn)環(huán)化的發(fā)生。Conn等[34]證實,在細(xì)胞中敲除RBP QKI后,含有QKI結(jié)合模序的circRNA表達(dá)發(fā)生下調(diào)。在某些外顯子兩側(cè)加入QKI結(jié)合模序,可誘導(dǎo)原本不發(fā)生環(huán)化的基因產(chǎn)生circRNA。Ashwal-Fluss等[30]對果蠅細(xì)胞的研究發(fā)現(xiàn)MBL能夠與其同源pre-mRNA結(jié)合,拉近內(nèi)含子,上調(diào)circMbl的表達(dá)。此外,Ivanov等[28]發(fā)現(xiàn)敲除RBP ADAR1能夠上調(diào)部分circRNA,提示ADAR1可能抑制circRNA的生成。
4.1 circRNA 充當(dāng)ceRNA或miRNA sponges ceRNA 全稱為“competitive endogenous RNA”,又稱 microRNA sponges。 Seitz等[35]于2009 年首次提出了 ceRNA 的概念:“不同蛋白的 mRNA 通過競爭性結(jié)合同一種 miRNA,從而調(diào)節(jié)相互的表達(dá),這些 mRNA 之間互為 ceRNA?!?ceRNA(如mRNA,lncRNA)含有共同的MRE,ceRNA通過這些MRE競爭性結(jié)合miRNA,從而影響miRNA的活性,進(jìn)一步影響miRNA靶基因的表達(dá)[36]。目前的研究證實circRNA亦含有MRE,能夠發(fā)揮miRNA sponges 或ceRNA 的作用[5-6,11,37]。如ciRS-7含有70個miR-7結(jié)合位點(diǎn),能與miR-7特異性結(jié)合,發(fā)揮了天然miRNA sponges的功能[14]。Memczak等[5]發(fā)現(xiàn)在斑馬魚體內(nèi)過表達(dá)ciRS-7,其作用效果與miR-7敲除類似,證實了ciRS-7在體內(nèi)發(fā)揮miR-7 sponges的作用。
Y染色體性別決定區(qū) (sex-determining region Y, SRY) 基因在成年小鼠睪丸組織內(nèi)表達(dá)環(huán)狀轉(zhuǎn)錄產(chǎn)物SRY circRNA[19]。SRY circRNA含有16個miR-138結(jié)合位點(diǎn),Hansen等[38]通過熒光素報告酶實驗證實SRY circRNA能夠抑制miR-138活性。免疫共沉淀實驗證實SRY circRNA與miR-138能發(fā)生共沉淀特異性結(jié)合,由此推斷SRY circRNA發(fā)揮miR-138 sponges的作用[38]。
4.2 circRNA調(diào)控基因表達(dá) Li等[8]發(fā)現(xiàn)某些基因編碼的circRNA能夠通過順式調(diào)節(jié)作用,促進(jìn)其自身基因的表達(dá)。研究人員們敲低EIF3J circRNA和PAIP2 circRNA后,發(fā)現(xiàn)其自身基因EIF3J和PAIP2的表達(dá)相應(yīng)發(fā)生下調(diào)[8]。盡管在基因轉(zhuǎn)錄的過程中circRNA與其線性RNA(mRNA, lncRNA等)可能發(fā)生競爭性抑制,但是細(xì)胞核內(nèi)已存在的circRNA可能同時促進(jìn)circRNA及mRNA的表達(dá)。
Zhang等[7]發(fā)現(xiàn)在細(xì)胞核內(nèi),內(nèi)含子來源的circRNA ci-ankrd52在其自身基因轉(zhuǎn)錄的位置聚集,并對Pol II依賴的轉(zhuǎn)錄起促進(jìn)作用。敲低ci-ankrd52后,其自身基因的表達(dá)發(fā)生下調(diào)。此外,EIciRNA還可能順式調(diào)控其他基因的表達(dá)[7]。
4.3 circRNA與RBP相互作用 有研究發(fā)現(xiàn)Argonaute[6]、Pol II[7]及MBL[30]等RBP能夠與circRNA相互作用。circRNA存貯并轉(zhuǎn)運(yùn)RBP,與RBP底物競爭其結(jié)合位點(diǎn),從而調(diào)節(jié)RBP活性。
4.4 翻譯生成蛋白質(zhì) 基于EcircRNAs具有開放閱讀框架(open reading frames, ORF)結(jié)構(gòu),已有研究證實EcircRNAs可以通過胞內(nèi)核糖體插入位點(diǎn)(internal ribosome entry sites, IRESs)在體外生成蛋白質(zhì)[39-40],或通過原核核糖體結(jié)合位點(diǎn)(prokaryotic ribosome-binding sites)在體內(nèi)生成蛋白質(zhì)[41]。然而,目前尚無證據(jù)顯示真核細(xì)胞來源的circRNAs能夠在體內(nèi)翻譯生成蛋白質(zhì)。
隨著研究者對circRNA結(jié)構(gòu)及功能的研究不斷深入,越來越多證據(jù)顯示circRNA可能在人類疾病的發(fā)生及發(fā)展過程中發(fā)揮重要作用。
由于circRNA參與miRNA的調(diào)控,circRNA可能通過miRNA參與多種疾病的發(fā)生發(fā)展[42]。其中研究最多的是ciRS-7及其對應(yīng)的miR-7。MiR-7涉及帕金森病[43]、糖尿病[44]和腫瘤等多種疾病及相關(guān)通路中的關(guān)鍵蛋白,如α-synuclein[43]、mTOR[44]、EGFR、IRS-1、IRS-2[45]、Pak1[46]、Raf1[47]、Ack1[48]及PIK3CD[49]。ciRS-7作為miRNA的sponges,具有募集 miR-7 的能力,通過間接調(diào)控 miR-7 靶標(biāo)的表達(dá),影響疾病的發(fā)生和發(fā)展[14]。最近的一項研究發(fā)現(xiàn),ciRS-7在阿爾茨海默病(Alzheimer disease,AD)患者的海馬區(qū)發(fā)生下調(diào),導(dǎo)致ciRS-7的sponges效應(yīng)缺失,導(dǎo)致miR-7表達(dá)上調(diào)及其靶mRNA的表達(dá)下調(diào)[50]。
另有研究發(fā)現(xiàn)circMbl與肌強(qiáng)直性營養(yǎng)不良的發(fā)生發(fā)展相關(guān)[4]。Hansen等[14]發(fā)現(xiàn)在HEK293細(xì)胞中高表達(dá)朊蛋白 (prion protein, PrPC)可上調(diào) ciRS-7,提示ciRS-7可能與朊病毒相關(guān)疾病的發(fā)病相關(guān)。此外,circRNA cANRIL的表達(dá)與動脈硬化性疾病的發(fā)病風(fēng)險相關(guān)[9]。
越來越多的研究證實circRNA與腫瘤的發(fā)生及發(fā)展密切相關(guān)。Li等[11]發(fā)現(xiàn)Cir-ITCH在食管鱗狀細(xì)胞癌組織中表達(dá)下調(diào),Cir-ITCH通過吸附miR-7、miR-17和miR-124上調(diào)ITCH,從而抑制Wnt信號通路,在食管鱗狀細(xì)胞癌中發(fā)揮抑癌作用。Bachmayr-Heyda等[12]在結(jié)直腸癌的研究中發(fā)現(xiàn)circRNA表達(dá)發(fā)生廣泛下調(diào),且circRNA的表達(dá)豐度與細(xì)胞增殖呈負(fù)相關(guān)。最近的一項研究發(fā)現(xiàn)血清外泌體中包含大量circRNAs[51]。這些circRNAs的表達(dá)受到母細(xì)胞內(nèi)相關(guān)miRNA的調(diào)控,在外泌體中富集,并向受體細(xì)胞傳遞生物學(xué)信息。腫瘤來源的circRNAs隨外泌體進(jìn)入外周循環(huán)血,而血清外泌體circRNA表達(dá)的差異,能夠用來區(qū)分結(jié)腸癌患者與健康人群。該研究為腫瘤的外周血外泌體-circRNA診斷奠定了基礎(chǔ)。另一項研究通過轉(zhuǎn)錄組測序發(fā)現(xiàn)circRNAs在7種惡性腫瘤與正常組織間存在顯著差異。進(jìn)一步研究發(fā)現(xiàn),circHIPK3在肝癌組織中顯著上調(diào)。作為miRNA的分子海綿,circHIPK3能夠吸附至少9個具有腫瘤抑制作用的miRNA,并且對腫瘤細(xì)胞的增殖起到調(diào)控作用[52]。circRNAs能夠調(diào)控腫瘤相關(guān)的多種miRNA,并通過circRNA-miRNA-mRNA軸參與腫瘤相關(guān)的多種信號通路,從而促進(jìn)/抑制腫瘤的發(fā)生發(fā)展及復(fù)發(fā)轉(zhuǎn)移。
隨著高通量測序技術(shù)及生物信息學(xué)技術(shù)的不斷發(fā)展,circRNA的生成、功能及其與疾病之間的聯(lián)系逐漸引起科學(xué)界的關(guān)注[53]。然而與mRNA、miRNA和lncRNA相比,我們對circRNA的認(rèn)識才剛剛開始。對circRNA的研究將進(jìn)一步增加我們對基因組非編碼序列的認(rèn)知。基于 circRNA對基因轉(zhuǎn)錄的調(diào)控作用及其對疾病相關(guān)miRNA的吸附作用,circRNA為疾病的治療提供了新的靶點(diǎn)。由于具有環(huán)狀閉合結(jié)構(gòu),circRNAs在體液中具有更高的穩(wěn)定性,在無創(chuàng)性疾病診斷領(lǐng)域具有巨大的應(yīng)用前景。環(huán)狀RNA有望成為非編碼RNA研究領(lǐng)域新的熱點(diǎn),未來的研究將進(jìn)一步揭示環(huán)狀RNA在人類生理及病理學(xué)中發(fā)揮的重要作用。
[ 1 ] Koh W, Pan W, Gawad C, et al. Noninvasive in vivo monitoring of tissue-specific global gene expression in humans [J]. Proc Natl Acad Sci U S A, 2014,111(20): 7361-7366.
[ 2 ] Bahn JH, Zhang Q, Li F, et al. The landscape of microRNA, Piwi-interacting RNA, and circular RNA in human saliva [J]. Clin Chem,2015, 61(1): 221-230.
[ 3 ] Salzman J, Chen RE, Olsen MN, et al. Cell-type specific features of circular RNA expression [J]. PLoS Genet, 2013, 9(9): e1003777.
[ 4 ] Jeck WR, Sorrentino JA, Wang K, et al. Circular RNAs are abundant, conserved, and associated with ALU repeats [J]. RNA, 2013, 19(2): 141-157.
[ 5 ] Memczak S, Jens M, Elefsinioti A, et al. Circular RNAs are a large class of animal RNAs with regulatory potency [J]. Nature, 2013, 495(7441): 333-338.
[ 6 ] Hansen TB, Jensen TI, Clausen BH, et al. Natural RNA circles function as efficient microRNA sponges [J]. Nature, 2013, 495(7441): 384-388.
[ 7 ] Zhang Y, Zhang XO, Chen T, et al. Circular intronic long noncoding RNAs [J]. Mol Cell, 2013, 51(6): 792-806.
[ 8 ] Li Z, Huang C, Bao C, et al. Exon-intron circular RNAs regulate transcription in the nucleus [J]. Nat Struct Mol Biol, 2015, 22(3): 256-264.
[ 9 ] Burd CE, Jeck WR, Liu Y, et al. Expression of linear and novel circular forms of an INK4/ARF-associated non-coding RNA correlates with atherosclerosis risk [J]. PLoS Genet, 2010, 6(12): e1001233.
[10] Satoh J, Yamamura T. Gene expression profile following stable expression of the cellular prion protein [J]. Cell Mol Neurobiol, 2004, 24(6): 793-814.
[11] Li F, Zhang L, Li W, et al. Circular RNA ITCH has inhibitory effect on ESCC by suppressing the Wnt/beta-catenin pathway [J]. Oncotarget, 2015, 6(8): 6001-6013.
[12] Bachmayr-Heyda A, Reiner AT, Auer K, et al. Correlation of circular RNA abundance with proliferation-exemplified with colorectal and ovarian cancer, idiopathic lung fibrosis, and normal human tissues [J]. Sci Rep, 2015, 5: 8057.
[13] Li P, Chen S, Chen H, et al. Using circular RNA as a novel type of biomarker in the screening of gastric cancer [J]. Clin Chim Acta, 2015, 444: 132-136.
[14] Hansen TB, Kjems J, Damgaard CK. Circular RNA and miR-7 in cancer [J]. Cancer Res, 2013,73(18): 5609-5612.
[15] Hsu MT, Coca-Prados M. Electron microscopic evidence for the circular form of RNA in the cytoplasm of eukaryotic cells [J]. Nature, 1979, 280(5720): 339-340.
[16] Arnberg AC, Van Ommen GJ, Grivell LA, et al. Some yeast mitochondrial RNAs are circular [J]. Cell, 1980, 19(2): 313-319.
[17] Cocquerelle C, Mascrez B, Hétuin D, et al. Mis-splicing yields circular RNA molecules [J]. FASEB J, 1993, 7(1): 155-160.
[18] Nigro JM, Cho KR, Fearon ER, et al. Scrambled exons [J]. Cell, 1991, 64(3): 607-613.
[19] Capel B, Swain A, Nicolis S, et al. Circular transcripts of the testis-determining gene Sry in adult mouse testis [J]. Cell, 1993, 73(5): 1019-1030.
[20] Salzman J, Gawad C, Wang PL, et al. Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types [J]. PloS one, 2012, 7(2): e30733.
[21] Rybak-Wolf A, Stottmeister C, Gla?ar P, et al. Circular RNAs in the Mammalian Brain Are Highly Abundant, Conserved, and Dynamically Expressed [J]. Mol Cell, 2015, 58(5): 870-885.
[22] Guo JU, Agarwal V, Guo H, et al. Expanded identification and characterization of mammalian circular RNAs [J]. Genome Biol, 2014, 15(7): 409.
[23] Matera AG, Wang Z. A day in the life of the spliceosome [J]. Nat Rev Mol Cell Biol, 2014, 15(2): 108-121.
[24] Jeck WR, Sharpless NE. Detecting and characterizing circular RNAs [J]. Nat Biotechnol, 2014, 32(5): 453-461.
[25] Dubin RA, Kazmi MA, Ostrer H. Inverted repeats are necessary for circularization of the mouse testis Sry transcript [J]. Gene, 1995, 167(1-2): 245-248.
[26] Zhang XO, Wang HB, Zhang Y, et al. Complementary sequence-mediated exon circularization [J]. Cell, 2014, 159(1): 134-147.
[27] Liang D, Wilusz JE. Short intronic repeat sequences facilitate circular RNA production [J]. Genes Dev, 2014, 28(20): 2233-2247.
[28] Ivanov A, Memczak S, Wyler E, et al. Analysis of intron sequences reveals hallmarks of circular RNA biogenesis in animals [J]. Cell Rep, 2015, 10(2): 170-177.
[29] Starke S, Jost I, Rossbach O, et al. Exon circularization requires canonical splice signals [J]. Cell Rep, 2015, 10(1): 103-111.
[30] Ashwal-Fluss R, Meyer M, Pamudurti NR, et al. circRNA biogenesis competes with pre-mRNA splicing [J]. Mol Cell, 2014, 56(1): 55-66.
[31] Vicens Q, Westhof E. Biogenesis of Circular RNAs [J]. Cell, 2014, 159(1): 13-14.
[32] Petkovic S, Muller S. RNA circularization strategies in vivo and in vitro [J]. Nucleic Acids Res, 2015, 43(4): 2454-2465.
[33] Westholm JO, Miura P, Olson S, et al. Genome-wide analysis of drosophila circular RNAs reveals their structural and sequence properties and age-dependent neural accumulation [J]. Cell Rep, 2014, 9(5): 1966-1980.
[34] Conn SJ, Pillman KA, Toubia J, et al. The RNA binding protein quaking regulates formation of circRNAs [J]. Cell, 2015, 160(6): 1125-1134.
[35] Seitz H. Redefining microRNA targets [J]. Curr Biol, 2009,19(10): 870-873.
[36] Shi X, Sun M, Liu H, et al. Long non-coding RNAs: a new frontier in the study of human diseases [J]. Cancer Lett, 2013, 339(2): 159-166.
[37] Taulli R, Loretelli C, Pandolfi PP. From pseudo-ceRNAs to circ-ceRNAs: a tale of cross-talk and competition [J]. Nat Struct Mol Biol, 2013, 20(5): 541-543.
[38] Hansen TB, Wiklund ED, Bramsen JB, et al. miRNA-dependent gene silencing involving Ago2-mediated cleavage of a circular antisense RNA [J]. EMBO J, 2011, 30(21): 4414-4422.
[39] Chen CY, Sarnow P. Initiation of protein synthesis by the eukaryotic translational apparatus on circular RNAs[J]. Science, 1995, 268(5209): 415-417.
[40] AbouHaidar MG, Venkataraman S, Golshani A, et al. Novel coding, translation, and gene expression of a replicating covalently closed circular RNA of 220 nt[J]. Proc Natl Acad Sci USA, 2014, 111(40): 14542-14547.
[41] Perriman R, Ares M Jr. Circular mRNA can direct translation of extremely long repeating-sequence proteins in vivo[J]. RNA, 1998, 4(9): 1047-1054.
[42] Yu X, Li Z. The role of MicroRNAs expression in laryngeal cancer [J]. Oncotarget, 2015,6(27):23297-23305.
[43] Junn E, Lee KW, Jeong BS, et al. Repression of alpha-synuclein expression and toxicity by microRNA-7 [J]. Proc Natl Acad Sci U S A, 2009, 106(31): 13052-13057.
[44] Wang Y, Liu J, Liu C, et al. MicroRNA-7 regulates the mTOR pathway and proliferation in adult pancreatic beta-cells [J]. Diabetes, 2013, 62(3): 887-895.
[45] Kefas B, Godlewski J, Comeau L, et al. microRNA-7 inhibits the epidermal growth factor receptor and the Akt pathway and is down-regulated in glioblastoma [J]. Cancer Res, 2008, 68(10): 3566-3572.
[46] Reddy SD, Ohshiro K, Rayala SK, et al. MicroRNA-7, a homeobox D10 target, inhibits p21-activated kinase 1 and regulates its functions [J]. Cancer Res, 2008, 68(20): 8195-8200.
[47] Webster RJ, Giles KM, Price KJ, et al. Regulation of epidermal growth factor receptor signaling in human cancer cells by microRNA-7 [J]. J Biol Chem, 2009, 284(9): 5731-5741.
[48] Saydam O, Senol O, Wurdinger T, et al. miRNA-7 attenuation in Schwannoma tumors stimulates growth by upregulating three oncogenic signaling pathways [J]. Cancer Res, 2011, 71(3): 852-861.
[49] Fang Y, Xue JL, Shen Q, et al. MicroRNA-7 inhibits tumor growth and metastasis by targeting the phosphoinositide 3-kinase/Akt pathway in hepatocellular carcinoma [J]. Hepatology, 2012, 55(6): 1852-1862.
[50] Lukiw WJ. Circular RNA (circRNA) in Alzheimer′s disease (AD) [J]. Front Genet, 2013, 4: 307.
[51] Li Y, Zheng Q, Bao C, et al. Circular RNA is enriched and stable in exosomes: a promising biomarker for cancer diagnosis [J]. Cell Res, 2015, 25(8): 981-984.
[52] Zheng Q, Bao C, Guo W, et al. Circular RNA profiling reveals an abundant circHIPK3 that regulates cell growth by sponging multiple miRNAs [J]. Nat Commun, 2016, 7: 11215.
[53] Fang XY, Pan HF, Leng RX, et al. Long noncoding RNAs: novel insights into gastric cancer [J]. Cancer Lett, 2015, 356 (2 Pt B): 357-366.
[本文編輯] 葉 婷, 賈澤軍
Circular RNA: a new research trend of noncoding RNAs
ZHAN Hao, ZHU Kai, HU Zhi-qiang, WANG Peng-cheng, DAI Zhi, HUANG Xiao-wu, ZHOU Jian*
Department of Liver Cancer Institute, Zhongshan Hospital,F(xiàn)udan University, Shanghai 200032, China
Circular RNAs (circRNAs) are the new type of noncoding RNAs characterized by their circular shape resulting from covalently closed continuous loops and they showed different characteristic with linear RNAs. The majority of circRNAs is conserved across species and with stable expression, and often exhibit tissue and specificity in developmental stage. They are resistant to RNase R, and thus more stable than linear RNAs in fluid. They have significant potential in clinical diagnosis and prognosis biomarker of different diseases. Recent research has revealed that circRNAs can function as microRNA (miRNA) sponges, and modifiers of genetic transcription. Emerging evidence indicates that circRNAs might play important roles in disease of cardiovascular system, neurological disorders, prion diseases and cancer. CircRNA is becoming a new star in the research of RNAs.
circular RNA; noncoding RNAs;miRNA sponge; cancer; biomarker
2016-03-22 [接受日期] 2016-08-11
十二五國家肝病重大專項課題(2012ZX10002-016),國家自然科學(xué)杰出青年基金(81225019),國家重點(diǎn)研發(fā)計劃精準(zhǔn)醫(yī)學(xué)研究專項(2016YFC0902400),國家自然科學(xué)基金青年科學(xué)基金項目(81402376). Supported by the National Key Sci-Tech Special Project of China (2012ZX10002-016), National Science Fund for Distinguished Young Scholar (81225019), National Key Research and Development Plan(2016YFC0902400) and Youth Science Fund Project(81402376).
戰(zhàn) 昊,博士生. E-mail: zhanhao860930@hotmail.com
*通信作者(Corresponding author). Tel: 021-64041990, E-mail: zhou.jian@zs-hospital.sh.cn
10.12025/j.issn.1008-6358.2016.20160316
綜 述
Q 522
A