国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

MicroRNAs通過BMP/TGF-β信號通路調(diào)節(jié)骨形成的研究進(jìn)展

2016-01-23 23:19張靜,龔逸明
中國臨床醫(yī)學(xué) 2016年1期
關(guān)鍵詞:成骨軟骨干細(xì)胞

?

綜述

MicroRNAs通過BMP/TGF-β信號通路調(diào)節(jié)骨形成的研究進(jìn)展

張靜龔逸明

(復(fù)旦大學(xué)附屬中山醫(yī)院口腔科,上海200032)

The Progress of microRNAs in Osteogenisis by Regulating BMP/TGF-β Signaling Pathway

ZHANGJingGONGYiming

DepartmentofStomatology,ZhongshanHospital,FudanUniversity,Shanghai200032,China

1microRNAs在骨形成中的作用

microRNAs(miRNAs)是一類內(nèi)源性單鏈小分子(~22nt)非編碼RNA序列,通過抑制靶基因轉(zhuǎn)錄及下調(diào)蛋白表達(dá)在多種生理和病理過程中起到重要的調(diào)控作用[1]。越來越多的研究表明,miRNAs在干細(xì)胞工程中具有潛在的應(yīng)用價值,同時參與并調(diào)節(jié)骨形成和骨重建[2],如:miR-96促進(jìn)MC3T3-E1細(xì)胞成骨分化,而miR-125 b可以通過下調(diào)Cbfβ表達(dá)抑制C3H10T1/2 細(xì)胞增殖和成骨分化[3-4], miR-21過表達(dá)的骨髓間充質(zhì)干細(xì)胞可以加速大鼠閉合性股骨骨折愈合[5],轉(zhuǎn)染miR-26a的脂肪來源干細(xì)胞結(jié)合羥基磷灰石(HA)支架能夠顯著促進(jìn)大鼠脛骨骨缺損中的新骨形成,因此結(jié)合miR-26a的骨替代體在骨缺損修復(fù)中具有可觀的治療潛能[6]。基質(zhì)干細(xì)胞具有自我更新和多分化潛能,在不同條件下可以分化多種細(xì)胞,包括成骨細(xì)胞、軟骨細(xì)胞和脂肪細(xì)胞[5]。miRNAs具有調(diào)節(jié)并決策基質(zhì)干細(xì)胞分化方向的能力。過表達(dá)miRNA-22能夠抑制靶基因HDAC6,進(jìn)而促進(jìn)人脂肪來源基質(zhì)干細(xì)胞成骨分化而抑制其成脂分化[7]。miR-146a過表達(dá)促進(jìn)胎兒股骨干細(xì)胞成骨分化而抑制其成軟骨分化[8]。以上研究均表明,miRNAs具有嚴(yán)格的調(diào)控機(jī)制,在成骨分化及骨形成方面發(fā)揮重要的調(diào)節(jié)作用。

2骨形成蛋白/轉(zhuǎn)化生長因子β(BMP/TGF-β)信號通路調(diào)節(jié)骨形成

2.1BMP/TGF-β信號通路組成及作用機(jī)制BMP/TGF-β信號通路廣泛參與多種生物學(xué)過程,在哺乳類動物骨形成中起到重要的調(diào)控作用[9]。BMP/TGF-β信號轉(zhuǎn)導(dǎo)包括經(jīng)典的Smads蛋白依賴的信號通路(包括BMP/TGF-β配體、受體和Smads)及不依賴Smads的非經(jīng)典通路(如p38MAPKs)。經(jīng)典的BMP/TGF-β信號通路首先與相應(yīng)的BMP或TGF受體結(jié)合,分別激活Smad 1/5/8或Smad 2/3,磷酸化的Smad 1/5/8或Smad 2/3與Smad 4蛋白結(jié)合形成復(fù)合體,該復(fù)合體進(jìn)入細(xì)胞核以直接或間接方式活化成骨特異性轉(zhuǎn)錄因子如(Runx2),繼而促進(jìn)成骨分化和骨形成[9-10]。此外,BMP/TGF-β通路還可通過與其他成骨相關(guān)通路如 Wnt、MAPK、Notch、Hedgehog (Hh)等交互作用在骨組織代謝中發(fā)揮調(diào)節(jié)作用[11]。

2.2BMP/TGF-β信號通路對骨形成的影響B(tài)MP/TGF-β信號通路參與并精細(xì)調(diào)節(jié)骨形成過程,同時任何干擾BMP/TGF-β信號通路及相關(guān)調(diào)節(jié)因子的因素都可能造成骨形成障礙及發(fā)育不全。已有研究[12]表明, BMPs (BMP 2、BMP 4、BMP 6、BMP 7、BMP 9)能夠誘導(dǎo)干細(xì)胞成骨分化,促進(jìn)骨和軟骨形成,在骨愈合、生物工程及再生醫(yī)學(xué)方面具有重要的應(yīng)用潛能。其中,BMP 2和BMP 4缺失可導(dǎo)致小鼠四肢嚴(yán)重發(fā)育不全[13]。而TGF-β受體(TGFβR1和TGFβR2)的缺失造成小鼠長骨、軟骨缺陷;Smads蛋白如Smad 1敲除的小鼠則異位軟骨形成,成骨細(xì)胞增殖、分化受損[14-15]。

3miRNAs經(jīng)BMP/TGF-β信號通路對骨形成的調(diào)控作用

3.1調(diào)節(jié)Smads蛋白Smads蛋白在經(jīng)典的BMP/TGF-β信號通路中發(fā)揮重要的功能。Wu等[16]研究發(fā)現(xiàn),在BMP 2誘導(dǎo)的成骨分化中,miR-30家族成員顯著下調(diào);進(jìn)一步研究表明,miR-30家族成員直接作用于Smad 1和Runx2,進(jìn)而抑制骨形成。同樣,miR-199a可通過顯著抑制Smad 1的表達(dá)而抑制C3H10T1/2干細(xì)胞的早期軟骨分化[17]。而Li等[18]在BMP 2誘導(dǎo)的C2C12細(xì)胞成骨分化中發(fā)現(xiàn),miR-133和miR-135表達(dá)下調(diào),兩者分別作用于Runx2和Smad 5,協(xié)同抑制骨形成。miR-21通過抑制 Smad 7(BMP信號通路抑制劑),促進(jìn)BMP 9誘導(dǎo)的小鼠多能細(xì)胞成骨分化[12]。Cheung等[8]發(fā)現(xiàn),miR-146a過表達(dá)后,Smad 2/3下調(diào),而Smad 2/3的抑制促進(jìn)Smad 1/5/8上調(diào),進(jìn)而上調(diào)轉(zhuǎn)錄因子Runx2,促進(jìn)胎兒股骨干細(xì)胞成骨分化,但軟骨相關(guān)基因SOX9表達(dá)下調(diào),導(dǎo)致軟骨形成被抑制。

3.2調(diào)節(jié)BMPs及其受體miRNAs可以通過調(diào)節(jié)BMPs及其受體調(diào)控骨形成。Liao等[19]研究發(fā)現(xiàn),BMP-2 和miR-148b共表達(dá)的脂肪來源干細(xì)胞可以促進(jìn)其自身成骨分化,加速裸鼠顱骨缺損(直徑達(dá) 4 mm)的骨愈合和骨改建。在對Satb 2誘導(dǎo)小鼠骨髓基質(zhì)干細(xì)胞成骨分化的研究中發(fā)現(xiàn),miR-27表達(dá)下降而其靶基因BMP 2、 BMPR1A等升高,過表達(dá)miR-27則顯著抑制骨形成,說明miR-27可能通過BMP/TGF-β信號通路調(diào)節(jié)骨形成[20]。同樣,miR-140-5p 和miR-654-5p 可通過直接抑制靶點BMP-2的表達(dá)而抑制基質(zhì)干細(xì)胞的成骨分化[21-22]。miR-542-3p 則可通過抑制BMP 7及其調(diào)控信號通路而抑制成骨細(xì)胞增殖和分化[23]。

miRNAs也可以通過調(diào)節(jié)BMP信號通路抑制因子調(diào)控骨形成。Zhang等[24]研究表明,miR-20a能下調(diào)抑制劑PPARγ、 Bambi 、 crim 1,進(jìn)而增強(qiáng)BMP/Runx2 信號通路,促進(jìn)人基質(zhì)干細(xì)胞成骨分化。miR-15b直接作用于Smurf 1,通過抑制其降解成骨轉(zhuǎn)錄因子Runx2而促進(jìn)成骨細(xì)胞分化[25]。

3.3調(diào)節(jié)TGF-β相關(guān)因子Mizuno等[26]發(fā)現(xiàn),miR-210能夠促進(jìn)BMP-4誘導(dǎo)的成骨細(xì)胞分化。其機(jī)制是: miR-210通過抑制ACVR1B的表達(dá)而抑制TGF-β/activin信號通路,從而促進(jìn)ST2細(xì)胞骨形成。miR-29b 能直接下調(diào)TGFβ-3、 ACVR2A等成骨抑制因子,進(jìn)而促進(jìn)MC3T3細(xì)胞成骨分化[27]。miR-181a能通過抑制TGF-βI和TβR-I/Alk5而促進(jìn)C2C12和MC3T3細(xì)胞成骨分化[28]。以上研究表明,多種miRNAs可以參與調(diào)節(jié)BMP/TGF-β信號通路而對骨形成起到重要的調(diào)控作用。

4小結(jié)

綜上所述,在骨形成這一復(fù)雜、精細(xì)的調(diào)控網(wǎng)絡(luò)中,miRNAs發(fā)揮著不可或缺的重要調(diào)節(jié)作用。miRNAs通過參與并調(diào)節(jié)BMP/TGF-β信號通路影響骨形成,但其僅限于細(xì)胞和動物實驗研究中,而臨床應(yīng)用尚未得到證實。隨著研究的不斷深入,許多問題尚待解決:成骨相關(guān)miRNAs如何被啟動并作用于骨相關(guān)特異性轉(zhuǎn)錄因子? LncRNAs等非編碼RNAs是否參與調(diào)控骨形成過程?過表達(dá)或沉默的相關(guān)miRNAs對成骨調(diào)節(jié)的起效時間和維持時間及其在臨床骨缺損或發(fā)育異常上的應(yīng)用如何?總之,miRNAs的研究還處于起步階段,其在骨形成方面及其他領(lǐng)域都需要進(jìn)行更深入的研究和探索,進(jìn)而更好地服務(wù)于臨床。

參考文獻(xiàn)

[ 1 ]Xu JF, Yang Gh, Pan XH, et al. Altered microRNA expression profile in exosomes during osteogenic differentiation of human bone marrow-derived mesenchymal stem cells[J]. PloS One,2014,9(12):e114627.

[ 2 ]Arfat Y, Xiao WZ, Ahmad M, et al. Role of micrornas in osteoblasts differentiation and bone disorders[J]. Curr Med Chem,2015,22(6): 748-758.

[ 3 ]Huang K, Fu J, Zhou W, et al. MicroRNA-125b regulates osteogenic differentiation of mesenchymal stem cells by targeting Cbfβ in vitro[J]. Biochimie,2014,102:47-55.

[ 4 ]Yang M, Pan Y, Zhou Y. miR-96 promotes osteogenic differentiation by suppressing HBEGF-EGFR signaling in osteoblastic cells[J]. FEBS Lett, 2014,588(24):4761-4768.

[ 5 ]Sun Y, Xu L, Huang S, et al. Mir-21 overexpressing mesenchymal stem cells accelerate fracture healing in a rat closed femur fracture model[J]. Biomed Res Int,2015:412327.

[ 6 ]Wang Z, Zhang D, Hu Z, et al. MicroRNA-26a-modified adipose-derived stem cells incorporated with a porous hydroxyapatite scaffold improve the repair of bone defects[J]. Mol Med Rep,2015,12:3345-3350.

[ 7 ]Huang S, Wang S, Bian C, et al. Upregulation of miR-22 promotes osteogenic differentiation and inhibits adipogenic differentiation of human adipose tissue-derived mesenchymal stem cells by repressing HDAC6 protein expression[J]. Stem Cells Dev, 2012, 21(13): 2531-2540.

[ 8 ]Cheung KS, Sposito N, Stumpf PS, et al. MicroRNA-146a regulates human foetal femur derived skeletal stem cell differentiation by down-regulating SMAD2 and SMAD3[J]. PloS One,2014,9(6):e98063.

[ 9 ]Chen G, Deng C, Li YP. TGF-β and BMP signaling in osteoblast differentiation and bone formation[J]. Int J Biol Sci,2012,8(2):272.

[10]Rahman MS, Akhtar N, Jamil HM, et al. TGF-β/BMP signaling and other molecular events: regulation of osteoblastogenesis and bone formation[J]. Bone Res,2015,3: 15005.

[11]Lin GL, Hankenson KD. Integration of BMP, Wnt, and notch signaling pathways inosteoblast differentiation[J]. J Cell Biochem,2011,112(12): 3491-3501.

[12]Song Q, Zhong L, Chen C, et al. miR-21 synergizes with BMP9 in osteogenic differentiation by activating the BMP9/Smad signaling pathway in murine multilineage cells[J]. Int J Mol Med,2015,36(6):1497-1506.

[13]Bandyopadhyay A, Tsuji K, Cox K, et al. Genetic analysis of the roles of BMP2, BMP4, and BMP7 in limb patterning and skeletogenesis[J]. PLoS Genet,2006,2(12):e216.

[14]Matsunobu T, Torigoe K, Ishikawa M, et al. Critical roles of the TGF-β type I receptor ALK5 in perichondrial formation and function, cartilage integrity, and osteoblast differentiation during growth plate development[J]. Dev Biol,2009,332(2):325-338.

[15]Wang M, Jin H, Tang D, et al. Smad1 plays an essential role in bone development and postnatal bone formation[J]. Osteoarthr Cartilage,2011, 19(6):751-762.

[16]Wu T, Zhou H, Hong Y, et al. miR-30 family members negatively regulateosteoblast differentiation[J]. J Biol Chem,2012,287(10):7503-7511.

[17]Lin EA, Kong L, Bai XH, et al. miR-199a, a bone morphogenic protein 2-responsive microRNA, regulates chondrogenesis via direct targeting to Smad1[J]. J Biol Chem,2009,284(17):11326-11335.

[18]Li Z, Hassan MQ, Volinia S, et al. A microRNA signature for a BMP2-induced osteoblast lineage commitment program[J]. PNatl Acad Sci USA,2008,105(37):13906-13911.

[19]Liao YH, Chang YH, Sung LY, et al. Osteogenic differentiation of adipose-derived stem cells and calvarial defect repair using baculovirus-mediated co-expression of BMP-2 and miR-148b[J]. Biomaterials,2014,35(18): 4901-4910.

[20]Gong Y, Xu F, Zhang L, et al.MicroRNA expression signature for Satb2-induced osteogenic differentiation in bone marrow stromal cells[J]. Mol Cell Biochem,2014,387(1-2):227-239.

[21]Hwang S, Park SK, Lee HY, et al. miR-140-5p suppresses BMP2-mediated osteogenesis in undifferentiated human mesenchymal stem cells[J]. FEBS Lett,2014,588(17):2957-2963.

[22]Wei JQ, Chen H, Zheng XF, et al. Hsa-miR-654-5p regulates osteogenic differentiation of human bone marrow mesenchymal stem cells by repressing bone morphogenetic protein 2[J]. Journal of Southern Medical University, 2012,32(3): 291-295.

[23]Kureel J, Dixit M, Tyagi AM, et al. miR-542-3p suppresses osteoblast cell proliferation and differentiation, targets BMP-7 signaling and inhibits bone formation[J]. Cell Death Dis,2014,5(2):e1050.

[24]Zhang JF, Fu WM, He ML, et al. MiRNA-20a promotes osteogenic differentiation of human mesenchymal stem cells by co-regulating BMP signaling[J]. RNA Biol,2011,8(5):829-838.

[25]Vimalraj S, Partridge NC, Selvamurugan N. A Positive Role of MicroRNA‐15b on Regulation of Osteoblast Differentiation[J]. J Cell Physiol,2014,229(9):1236-1244.

[26]Mizuno Y, Tokuzawa Y, Ninomiya Y, et al. miR-210 promotes osteoblastic differentiation through inhibition of AcvR1b[J]. FEBS Lett,2009,583(13): 2263-2268.

[27]Li Z, Hassan MQ, Jafferji M, et al. Biological functions of miR-29b contribute to positive regulation of osteoblast differentiation[J]. J Biol Chem,2009,284(23):15676-15684.

[28]Bhushan R, Grünhagen J, Becker J, et al. miR-181a promotes osteoblastic differentiation through repression of TGF-β signaling molecules[J]. Int J Biochem Cell B,2013,45(3):696-705.

中圖分類號R783

文獻(xiàn)標(biāo)志碼A

通訊作者龔逸明,E-mail: gongymingi@aliyun.com

猜你喜歡
成骨軟骨干細(xì)胞
干細(xì)胞:“小細(xì)胞”造就“大健康”
SOX9在SD大鼠胚胎發(fā)育髁突軟骨與脛骨生長板軟骨中的時間表達(dá)研究
經(jīng)典Wnt信號通路與牙周膜干細(xì)胞成骨分化
間充質(zhì)干細(xì)胞治療老年衰弱研究進(jìn)展
鞍區(qū)軟骨黏液纖維瘤1例
髓外硬膜內(nèi)軟骨母細(xì)胞瘤1例
左、右歸丸對去卵巢大鼠BMSCs成骨、成脂分化后Caspase-3/Bcl-2的影響
糖尿病大鼠Nfic與成骨相關(guān)基因表達(dá)的研究
BMP-2誘導(dǎo)軟骨細(xì)胞凋亡及增殖的研究
微小RNA與腫瘤干細(xì)胞的研究進(jìn)展
房山区| 神池县| 克拉玛依市| 灌云县| 玛多县| 巨野县| 天峻县| 铜山县| 株洲县| 镇康县| 彰化市| 马边| 读书| 安国市| 吉安县| 南澳县| 绥宁县| 曲阜市| 于都县| 武乡县| 五峰| 监利县| 张家口市| 大理市| 固始县| 睢宁县| 金川县| 宁河县| 汕头市| 孙吴县| 刚察县| 梁山县| 铜川市| 交城县| 德兴市| 惠东县| 刚察县| 新竹市| 马龙县| 炎陵县| 嘉兴市|