馬守國,盧才義
心室重構(gòu)藥物防治的新進展
馬守國1,盧才義2
目前認為心室重構(gòu)是心力衰竭(心衰)發(fā)生發(fā)展的最主要機制,有效控制心室重構(gòu)的發(fā)生發(fā)展,是減少心臟病患者心衰發(fā)生率和死亡率的重要環(huán)節(jié)。如何延緩和逆轉(zhuǎn)心室重構(gòu)是心衰研究領(lǐng)域的熱點,也是防治心衰的難點。從藥物的應(yīng)用、干細胞移植、輔助裝置、生物制劑到基因修飾等,都曾用于心室重構(gòu)的防治,并取得了一定的成就?,F(xiàn)就近年來心室重構(gòu)藥物防治方面的新進展作一綜述。
血管緊張素轉(zhuǎn)化酶抑制劑(ACEI)、血管緊張素Ⅱ受體拮抗劑(ARB)及醛固酮受體拮抗劑(MRA)是RAAS不同環(huán)節(jié)的阻滯劑,可有效控制血壓、減少心衰患者發(fā)病率及死亡率。β-腎上腺素受體阻滯劑,ACEI,ARB和MRA目前作為治療左心功能不全心衰患者的指南用藥[1,2]。研究表明,降壓藥物ACEI和ARB能夠減輕心肌肥厚及抗細胞外基質(zhì)增生,還能減輕心肌梗死后心室重構(gòu)。其作用機制為:減輕心臟的前、后負荷,抑制血管緊張素Ⅱ(Ang Ⅱ)的產(chǎn)生和直接阻斷其受體,抑制心肌細胞肥大,減少細胞外基質(zhì)的增生和間質(zhì)纖維化,改善血管內(nèi)皮細胞的結(jié)構(gòu)和功能等,延緩和逆轉(zhuǎn)心室重構(gòu)。目前常用的ARB為1型AngⅡ受體拮抗劑,2型受體在正常成人表達很低,但在心衰時明顯增加。在某些情況下,激活1型和2型受體作用相反,激活2型受體舒張血管和抑制心肌肥厚。新藥2型血管緊張素Ⅱ受體激動劑復(fù)合物21,在嚙齒類動物試驗中有減少心肌梗死面積的療效[3,4]。
阿利吉侖是新一代非肽類腎素抑制劑,通過抑制腎素分泌,減少Ang Ⅱ和醛固酮的分泌,起到降壓和治療心血管疾病的作用。近年來在ALOFT試驗和ASPITE試驗中觀察到阿利吉侖有改善梗死后心室重構(gòu)和抗心衰的作用[5,6]。在ASTRONAUT試驗中,阿利吉侖在急性心衰患者中的療效與ACEI相近[7]。阿利吉侖與依那普利在心衰患者的療效對比試驗中,阿利吉侖抗心室重構(gòu)的潛在價值值得期待[8]。醛固酮是腎上腺皮質(zhì)分泌的鹽皮質(zhì)激素,可阻斷NO合酶活性、促進心肌炎癥和纖維化以及凋亡等。低劑量的醛固酮受體拮抗劑有抗心衰、抑制心室重構(gòu)和降低心衰患者死亡率的作用,依普利酮可顯著減少心衰患者死亡率和再住院率[9]。而安體舒通因代謝、內(nèi)分泌副作用及其它不良反應(yīng),臨床應(yīng)用受限,且TOPCAT研究顯示其對左心功能保留患者的心衰并無益處[10]。慢性心衰患者由于醛固酮合成酶活性的增加,可引起非鹽皮質(zhì)激素受體介導(dǎo)的反應(yīng),如氧化應(yīng)激等。而醛固酮受體拮抗劑對鹽皮質(zhì)激素受體的阻斷,增加了血漿醛固酮合成酶活性,醛固酮水平升高。醛固酮合成酶抑制劑FAD286可通過抑制醛固酮合成最后一步所需催化酶,減少醛固酮的合成,從而可減輕大鼠心衰的左心室重構(gòu)[11]。
血管緊張素受體-腦啡肽酶抑制劑(ARNI)LCZ696由血管緊張素Ⅱ受體拮抗劑纈沙坦和腦啡肽酶抑制劑sacubitril兩部分組成,其Ⅲ期臨床試驗(PARADIGM-HF試驗)顯示,LCZ696與經(jīng)典ACEI藥物依那普利對比,慢性心衰患者住院率、心源性死亡率降低了21%。研究納入了8442例心功能分級Ⅱ~Ⅳ級且左室射血分數(shù)低于40%的心衰患者,LCZ686和依那普利干預(yù)后,隨訪27個月,兩組心源性死亡或因心衰住院發(fā)生率均降低,提示LCZ686療效與安全性較好[12]。
β-腎上腺素受體阻滯劑除了應(yīng)用于降壓抗心律失常外,已廣泛應(yīng)用于心衰的治療,實驗和臨床研究都證實β-ARB可減少心肌的負性重構(gòu)和增加心衰患者的生存率[13],其機制為阻斷交感神經(jīng)系統(tǒng)、RAAS系統(tǒng),改善心臟功能,減慢心率,減少心肌氧耗,改善心肌氧供需平衡,延緩和逆轉(zhuǎn)心室重構(gòu)。G蛋白偶聯(lián)受體激酶(GRKs)是與G蛋白偶聯(lián)受體(GPCRs)快速失活相關(guān)的激酶,心肌內(nèi)的GRKs主要為GRK2、GRK3、GRK4、GRK5等,又稱為β腎上腺受體激酶(β-ARK)。持續(xù)刺激心肌β-腎上腺素受體,會導(dǎo)致GRK2、GRK5磷酸化β-腎上腺素受體,造成其失活,最終導(dǎo)致心輸出量減少。心衰時GRK2和GRK5表達和活性均增高,加重心衰。因此,GRK2、GRK5的靶向抑制可能是挽救心衰的潛在治療途徑[14-16]。
調(diào)脂藥物在缺血性心臟疾病患者中廣泛應(yīng)用,降低血脂,還可抑制和逆轉(zhuǎn)心室重構(gòu)。近年來的研究發(fā)現(xiàn),他汀類藥物能夠抗心肌纖維化,抗氧化,抑制炎癥細胞因子,降低交感神經(jīng)活性及改善血管內(nèi)皮功能等,從而改善心功能,抑制和逆轉(zhuǎn)心室重構(gòu)。但有些臨床試驗結(jié)果顯示,他汀類藥物對抗心衰無明顯作用[17,18]。
正性肌力藥物用于失代償性心衰和終末期心衰患者,改善臨床癥狀。常用的正性肌力藥物有洋地黃類和非洋地黃類。雖然長期應(yīng)用地高辛對死亡率無明顯影響,但長期應(yīng)用正性肌力藥物能夠增加患者死亡風(fēng)險。左西孟旦為新型正性肌力藥物,是鈣增敏劑的一種,通過與心肌細肌絲上的肌鈣蛋白C氨基末端結(jié)合,增加肌鈣蛋白C和Ca2+復(fù)合物的構(gòu)象穩(wěn)定性。增加心肌收縮力,而對心肌的舒張功能影響較小。Istaroxime通過抑制鈉鉀ATP酶和激活肌漿網(wǎng)Ca2+ATP酶,提高心肌收縮力和加速心肌舒張,具有增加心肌收縮和舒張功能的雙向調(diào)節(jié)作用。大量的動物實驗及前期臨床試驗已經(jīng)證實,Istaroxime治療心衰安全有效,且不影響收縮壓和心率,不增加心肌氧耗,未誘發(fā)致命性心律失常[19,20]。Istaroxime抗心衰的應(yīng)用前景非常廣闊。心肌肌球蛋白激活劑Omecamtiv mecarbil(CK-1827452)可以延長左心室收縮持續(xù)時間,增加每搏輸出量,而不影響Ca2+通道的穩(wěn)定性和增加心肌氧耗。有研究表明[21],CK-1827452在缺血性心肌病、心絞痛患者治療中較安全。
內(nèi)皮素是由血管內(nèi)皮、心肌、平滑肌細胞等合成分泌的21個氨基酸的多肽,有三個異構(gòu)體,其中ET-1具有強烈而持久的收縮血管作用,同時促進細胞有絲分裂和增殖,是引起肺動脈高壓、心衰等多種疾病的炎癥因子。目前已經(jīng)上市的內(nèi)皮素受體拮抗劑有波生坦、恩拉生坦、替唑生坦、西他生坦、阿曲生坦及安倍生坦等。替唑生坦與安慰劑比較,能明顯改善急性心衰患者的血液動力學(xué)[22,23]。其在改善心室重構(gòu)及抗心衰治療中的作用尚需進一步研究。
GLP-1是由小腸合成并分泌的腸降血糖素,有促進胰島素分泌等作用,用于2型糖尿病的治療。胰島素抵抗和脂毒性是擴張型心肌病和代謝性心肌病的特點,也即是心衰患者有明顯的代謝異常[24,25]。GLP-1通過P38-絲裂原活化蛋白激酶途徑刺激擴張型心肌病患者的心肌對葡萄糖的攝取,以增加心衰大鼠左室的收縮功能和延長生存時間[26]。
磷酸二酯酶V(PDE5)選擇性抑制劑西地那非,通過釋放生物活性物質(zhì)NO舒張血管平滑肌。有研究表明[27],西地那非改善左室功能保留心衰患者血液動力學(xué),提高左室舒張功能和右室收縮功能。RELAX試驗中,射血分數(shù)保留的心衰患者,24周西地那非治療后,運動耐力和臨床特征均未有顯著改善[28]。血管內(nèi)皮細胞合成的一氧化氮(NO),有抑制心肌肥厚,抗細胞凋亡,抗纖維化作用,從而改善心室重構(gòu)[29]。增加內(nèi)皮細胞NO合成酶活性藥物AVE9488,有改善心室重構(gòu)的作用,包括抑制心肌肥厚,抑制纖維化和心室擴張,增加心肌收縮力,而并未增加心肌重量[30]。
總之,近年來對心室重構(gòu)的病理生理機制的認識逐漸深入,促進了抗心室重構(gòu)藥物的研發(fā)。尤其是ACEI、ARB、醛固酮受體拮抗劑及β-受體阻滯劑已經(jīng)成為改善心室重構(gòu)的標準藥物。隨著對心室負性重構(gòu)機制的進一步了解,可以逆轉(zhuǎn)和改善心室重構(gòu)的藥物逐漸或已經(jīng)開始臨床應(yīng)用。血管緊張素受體-腦啡肽酶抑制劑、新型的鈣增敏劑、內(nèi)皮素受體拮抗劑、胰高血糖素樣肽-1、NO合成酶激活劑等,是潛在的可以有效改善心室重構(gòu)的新藥。
[1] Hunt SA,Abraham WT,Chin MH,et al. 2009 Focused update incorporated into the ACC/AHA 2005 guidelines for the diagnosis and management of heart failure in adults: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines: developed in collaboration with the International Society for Heart and Lung Transplantation[J]. Circulation,2009,119(14):e391-e479.
[2] Xie M,Burchfield JS,Hill JA. Pathological ventricular remodeling: therapies: part 2 of 2[J]. Circulation,2013,128(9):1021-30.
[3] Unger T,Paulis L,Sica DA. Therapeutic perspectives in hypertension: novel means for renin-angiotensin-aldosterone system modulation and emerging device-based approaches[J]. Eur Heart J,2011,32(22):2739-47.
[4] Unger T,Dahlof B. Compound 21, the first orally active, selective agonist of the angiotensin type 2 receptor (AT2): implications for AT2 receptor research and therapeutic potential[J]. J Renin Angiotensin Aldosterone Syst,2010,11(1):75-7.
[5] McMurray JJ,Pitt B,Latini R,et al. Aliskiren Observation of Heart Failure Treatment(ALOFT) Investigators. Effects of the oral direct renin inhibitor aliskren in patients with symptomatic heart failure[J]. Circ Heart Fail,2008,1(1):17-24.
[6] Solomon SD,Shin SH,Shah A,et al. Effect of the direct renin inhibitor aliskiren on left ventricular remodelling following myocardial infarction with systolic dysfunction[J]. Eur Heart J,2011,32(10):1227-34.
[7] Gheorghiade M,Albaghdadi M,Zannad F,et al. Rationale and design of the multicentre, randomized, double-blind, placebo-controlled Aliskiren Trial in Acute Heart Failure Outcomes(ASTRONAUT)[J]. Eur J Heart Fail,2011,13(1):100-6.
[8] Krum H,Massie B,Abreham WT,et al. Direct renin inhibition in addition to or as an alternative to angiotensin converting enzyme inhibition in patients with chronic systolic heart failure: rationale and design of the Aliskiren Trial to Minimize Outcomes in Patients With Heart Failure(ATMOSPHERE) study[J]. Eur J HeartFail,2011,13(1):107-14.
[9] Zannad F,McMurray JJ,Krum H,et al. Eplerenone in patients with systolic heart failure and mild symptoms[J]. N Engl J Med,2011,364(1):11-21.
[10] Sica DA. Pharmacokinetics and pharmacodynamics of mineralocorticoid blocking agents and their effects on potassium honmeostasis[J]. Heart Fail Rev,2005,10(1):23-9.
[11] Mulder P,Mellin V,F(xiàn)aver J,et al. Aldosterone synthase inhibition improves cardiovascular function and structure in rats with heart failure: a comparison with spironolactone[J]. Eur Heart J,2008,29(17):2171-9.
[12] Gu J,Noe A,Chandra P,et al. Pharmacokinetics and pharmacodynamics of LCZ696, a novel dual-acting angiotensin receptor-neprilysin inhibitor(ARNI)[J]. J Clin Pharmacol,2010,50(4):401-14.
[13] Lechat P,Packer M,Chalon S,et al. Clinical effefcts of beta-adrenergic blockade in chronic heart failure: a meta-analysis of double-blind,placebo-controlled, randomized trails[J]. Circulation,1998,98(12): 1184-91.
[14] Reinkober J,Tschechner H,Pleger ST,et al. Targeting grk2 by gene therapy for heart failure: benefits above beta-blockade[J]. Gene Ther,2012,19(6):686-93.
[15] Williams ML,Hata JA,Schroder J,et al. Targeted beta-adrenergic receptor kinase(beta-ARK1) inhibition by gene transfer in failing human hearts[J]. Circulation,2004,109(13):1590-3.
[16] Talameh JA,Mcleod HL,Adams KF,et al. Genetic tailoring of pharmacotherapy in heart failure: optimize the old, while we wait for something new[J]. J Card Fail,2012,18(4):338-49.
[17] Kjekshus J,Apetrei E,Barrios V,et al. Rosuvastatin in older patients with systolic heart failure[J]. N Engl J Med,2007,357(22):2248-61.
[18] Tavazzi L,Maggioni AP,Marchioli R,et al. Effect of rosuvastatin in patients with chronic heart failure (the GISSI-HF trial): a randomised, double-blind, placebo-controlled trial[J]. Lancet,2008,372(9645):1231-9.
[19] Jessup M,Greenberg B,Mancini D,et al. Calcium Upregulation by Percutaneous Administration of Gene Therapy in Cardiac Diaease (CUPID): a phase 2 trial of intracoronary gene therapy of sarcoplasmic reticulum Ca2+-ATPase in patients with advanced heart failure[J]. Circulation,2011,124(3):304-13.
[20] Gheorghiade M,Blair JE,F(xiàn)ilippatos GS,et al. Hemodynamic,echocardiographic, and neurohormonal effects of istaroxime, a novel intravenous inotropic and lusitropic agent: a randomized controlled trial in patients hospitalized with heart failure[J]. J Am Coll Cardiol,2008,51(23):2276-85.
[21] Cleland JG,Teerlink JR,Senior R,et al. The effects of the cardiac myosin activator, omecamtiv mecarbil, on cardiac function in systolic heart failure: a double-blind, placebo-controlled trial, crossover,dose-ranging phase 2 trial[J]. Lancet,2011,378(9792):676-83.
[22] Prased SK,Dargiel J,Smith GC,et al. Comparison of the dual receptor endothelin antagonist enrasentan with enalapril in asymptomatic left ventricular systolic dysfunction: a cardiovascular magnetic resonance study[J]. Heart,2006,92(6):798-803.
[23] Cotter G,Kaluski E,Stangle K,et al. The hemodynamie and neurohormonal effects of low doses of tezosentan( an endothelin A/B receptor antagonist) in patients with acute heart failure[J]. Eur J Heart Fail,2004,6(5):601-9.
[24] Fields AV,Patterson B,Karnik AA,et al. Glucagon-like peptide-1 and myocardial protection: more than glycemic control[J]. Clin Cardiol,2009,32(5):236-43.
[25] Battiprolu PK,Lopez-Crisosto C,Wang ZV,et al. Diabetic cardiomyopathy and metabolic remodeling of the heart[J]. Life Sci,2013,92(11):609-15.
[26] Bhashyam S,F(xiàn)ields AV,Petterson B,et al. Glucagon-like peptide-1 increases myocardial glucose uptake via p38alpha MAP kinasemediated, nitric oxide-dependent mechanisms in consious dogs with dilated cardiomyopathy[J]. Circ Heart Fail,2010,3(4):512-21.
[27] Guazzi M,Vicenzi M,Arena R,et al. PDE5 inhibition with sildenafil improves left ventricular diastolic function, cardiac geometry, and clinical status in patients with stable systolic heart failure: results of a 1-year, prospective, randomized, placebo-controlled study[J]. Circ Heart Fail,2011,4(1):8-17.
[28] Redfield MM,Chen HH,Borlaug BA,et al. Effect of phosphodiesterase-5 inhibition on exercise capacity and clinical status in heart falure with preserved ejection fraction: a randomized clinical trial[J]. JAMA,2013,309(12):1268-77.
[29] Prabhu SD. Nitric oxide protects against pathological ventricular remodeling: reconsideration of the role of NO in the failure heart[J]. Circ Res,2004,94(9):1155-7.
[30] Fraccarollo D,Widder JD,Galuppo P,et al. Improvement in left ventricular remodeling by the endothelial nitric oxide synthase enchancer AVE9488 after experimental myocardial infarction[J]. Circulation,2008,118(8):818-27.
本文編輯:姚雪莉
馬守國,E-mail:shouguoma@126.com
R541.4
A
1674-4055(2016)01-0117-03
1463000 駐馬店,解放軍159中心醫(yī)院心內(nèi)科;2100853北京,解放軍總醫(yī)院心內(nèi)科
10.3969/j.issn.1674-4055.2016.01.35