林蒙蒙,張美玲,王小軍,李功華
(浙江省立同德醫(yī)院藥劑科,浙江 杭州 320012)
·綜 述·
中草藥有效成分對神經(jīng)可塑性的影響及機制研究進展
林蒙蒙,張美玲,王小軍,李功華
(浙江省立同德醫(yī)院藥劑科,浙江 杭州 320012)
情緒和認知障礙(EACD)相關(guān)疾病如抑郁和焦慮等成為現(xiàn)今社會的常見病,嚴重影響人類的生活健康。神經(jīng)可塑性可反映神經(jīng)系統(tǒng)對抗內(nèi)外環(huán)境刺激的抗應(yīng)激能力,具有在結(jié)構(gòu)或功能上出現(xiàn)動態(tài)變化以適應(yīng)環(huán)境變化的特性,常常體現(xiàn)在神經(jīng)損傷的代償和修復(fù)過程中。而EACD患者常伴隨著腦組織宏觀水平和細胞水平上的形態(tài)改變及相應(yīng)的腦功能變化。因此,研究神經(jīng)可塑性作用機制有利于EACD治療。中藥有效成分可通過提高5-羥色胺(5-HT)水平,減少腦細胞的氧化應(yīng)激,提高腦源性營養(yǎng)因子(BDNF)表達等影響神經(jīng)可塑性而發(fā)揮神經(jīng)保護作用。5-HT系統(tǒng)又參與調(diào)節(jié)氧化應(yīng)激及BDNF水平??傊芯匡@示,同一中藥有效成分可通過一種或多種作用機制影響神經(jīng)可塑性,同一中藥有效成分的不同作用機制之間可相互影響;而不同中藥有效成分因其各自不同的作用機制可發(fā)揮協(xié)同增強神經(jīng)可塑性作用。本文綜述了中草藥有效成分對中樞神經(jīng)系統(tǒng)的神經(jīng)可塑性作用,對5-HT系統(tǒng)的影響,及其抗氧化活性和神經(jīng)營養(yǎng)作用等。
中草藥;神經(jīng)可塑性;5-羥色胺;抗氧化劑;神經(jīng)營養(yǎng)
情緒和認知障礙(emotional and cognitive dis?orders,EACD)相關(guān)疾病嚴重影響人類的生活和健康,而從中草藥中提取的有效成分(active compo?nents of Chinese herbal medicine,ACCHM)在中樞神經(jīng)系統(tǒng)(central nervous system,CNS)功能障礙中的神經(jīng)保護作用受到越來越多的關(guān)注。ACCHM,尤其天然抗氧化ACCHM,因其來源廣、生物活性高、系統(tǒng)毒性低及多靶點性而被認為很可能替代傳統(tǒng)的EACD治療藥物,如三環(huán)類抗抑郁藥和單胺氧化酶抑制劑等。神經(jīng)可塑性是CNS對環(huán)境刺激的反應(yīng)及適應(yīng)能力,而這些適應(yīng)的失敗會增加CNS對環(huán)境刺激的易感性,最終導致精神疾病的發(fā)生。神經(jīng)可塑性包括結(jié)構(gòu)可塑性和功能可塑性,前者是后者的形態(tài)學基礎(chǔ),兩者相互影響,調(diào)節(jié)生物體內(nèi)一系列生物進程?,F(xiàn)研究較多的ACCHM如姜黃素(curcumin)、白藜蘆醇(resveratrol)和人參皂苷(ginsenoside)等均具抗氧化性質(zhì),并可顯著調(diào)節(jié)5-羥色胺(5-hydroxytryptamine,5-HT)系統(tǒng),影響神經(jīng)可塑性。本文對近年可調(diào)整神經(jīng)可塑性而發(fā)揮神經(jīng)保護作用的一些ACCHM的研究進展進行總結(jié),其機制涉及5-HT系統(tǒng)、抗氧化和神經(jīng)營養(yǎng)等。
一些腦區(qū)神經(jīng)成像和驗尸報告的形態(tài)學研究表明,EACD患者伴隨著宏觀解剖及細胞水平上的形態(tài)改變,如側(cè)腦室擴增,前額皮質(zhì)體積減少,海馬萎縮和杏仁核體積減少。嚙齒類等動物模型已證實,暴露于應(yīng)激下可導致腦區(qū)神經(jīng)細胞形態(tài)改變,并與一些嚴重EACD患者的結(jié)構(gòu)成像相符合,如應(yīng)激可引起大鼠海馬CA3區(qū)突觸結(jié)構(gòu)損傷,神經(jīng)元萎縮[1],額前葉皮質(zhì)突觸數(shù)量減少,容積縮?。?-3]。多個腦區(qū)間的對比驗證了應(yīng)激引起的EACD與神經(jīng)可塑性密切相關(guān)。臨床藥物可改善EACD患者腦區(qū)的細胞形態(tài)改變,如選擇性5-HT重攝取抑制劑短期治療后,可使海馬CA1區(qū)及齒狀回中的二級樹突的樹突棘密度顯著增加[4],修正神經(jīng)適應(yīng)反應(yīng),即神經(jīng)可塑性而發(fā)揮作用。
姜黃素可改善應(yīng)激引起的大鼠內(nèi)側(cè)前額葉皮質(zhì)萎縮及皮質(zhì)中神經(jīng)細胞和膠質(zhì)細胞數(shù)量的減少而發(fā)揮保護作用[3]。低血清培養(yǎng)條件下,遠志(Po?lygala tenuifolia)水提物可明顯提高PC12細胞分化水平,促進細胞形態(tài)轉(zhuǎn)變?yōu)樗笮渭毎?,并促進突起分支及延伸;石菖蒲(Acorus tatarinowii)水提物可促進PC12細胞增殖,但不促進細胞分化,兩者配合使用可促使神經(jīng)細胞再生分化,增加神經(jīng)細胞可塑性,發(fā)揮協(xié)同神經(jīng)保護作用[5]。三七總皂苷可促進大鼠腦出血后神經(jīng)細胞的成熟,利于神經(jīng)組織修復(fù),增加神經(jīng)元突觸連接,增強神經(jīng)細胞可塑性,恢復(fù)大鼠的神經(jīng)功能[6]。人參皂苷Rg1可促使突觸囊泡密度和突觸后致密物厚度明顯增大,改善慢性溫和不可預(yù)知性應(yīng)激誘導的大鼠抑郁行為和額前皮質(zhì)區(qū)突觸超微結(jié)構(gòu)的異常[7]。遠志提取物遠志皂苷(tenuigenin)還可改善記憶障礙小鼠的學習和記憶功能[8]。此外,中草藥方劑提取物也可改善細胞結(jié)構(gòu),增強神經(jīng)細胞可塑性。如加味溫膽湯可增加抑郁模型大鼠海馬神經(jīng)元再生,恢復(fù)海馬的結(jié)構(gòu)與功能,從而發(fā)揮其抗抑郁作用[9]。黃連解毒湯水提物中的主要有效部位總生物堿、總黃酮和總環(huán)烯醚萜均可促進大鼠梗死灶周圍皮質(zhì)神經(jīng)元樹突生長,總生物堿還可減輕神經(jīng)元軸突損傷,促進神經(jīng)元樹突重塑,抑制星形膠質(zhì)細胞異?;罨?0]。綜上所述,ACCHM可改善應(yīng)激引起的腦組織和細胞形態(tài)改變而發(fā)揮神經(jīng)保護作用。
2.1ACCHM對5-HT系統(tǒng)和神經(jīng)可塑性的影響
5-HT是CNS的重要神經(jīng)遞質(zhì),參與調(diào)節(jié)情緒、認知和多種其他生理功能[11-13]。5-HT在脊核神經(jīng)發(fā)育過程中表達,并在神經(jīng)元突觸形成期間優(yōu)先產(chǎn)生投射于終端的神經(jīng)纖維,說明5-HT不僅影響胚胎神經(jīng)的形態(tài)和活性,也影響神經(jīng)成熟后的神經(jīng)再生及神經(jīng)可塑性[14]。
ACCHM可通過5-HT系統(tǒng)影響神經(jīng)可塑性。如將SD大鼠的大腦皮質(zhì)神經(jīng)暴露于皮質(zhì)酮可導致5-HT1A,5-HT2A和5-HT4受體的mRNA水平降低,進而引起海馬中新生細胞明顯減少,姜黃素可預(yù)防該現(xiàn)象;在同時給予皮質(zhì)酮及姜黃素后,5-HT7受體甚至可在不同腦區(qū)中差異性地調(diào)節(jié)神經(jīng)可塑性。姜黃素還可拮抗皮質(zhì)酮誘導的神經(jīng)元死亡及形態(tài)改變,提高皮質(zhì)神經(jīng)中突觸囊泡蛋白的表達,該作用可被5-HT1A受體拮抗劑或5-HT4受體拮抗劑抑制[15]。白藜蘆醇可提高腦區(qū)中5-HT等遞質(zhì)水平而增強老年大鼠的認知能力[16],電生理研究也證實了白藜蘆醇的神經(jīng)保護作用涉及5-HT系統(tǒng)[17],并可能是通過5-HT3受體的N端影響電流量以調(diào)節(jié)受體活性。人參醇提取物可劑量依賴性地調(diào)整大鼠腦區(qū)中的5-HT等神經(jīng)遞質(zhì)水平和乙酰膽堿酯酶(acetylcholinester?ase,AChE)活性以恢復(fù)內(nèi)穩(wěn)態(tài)而改善莨菪堿誘導的記憶損傷,并對腦的組織學特征有一定影響[18]。銀杏提取物銀杏內(nèi)酯(gingkolide)和白果內(nèi)酯(bi?lobalide)B可抑制5-HT3受體通道,調(diào)節(jié)5-HT神經(jīng)遞質(zhì),影響5-HT系統(tǒng)功能[19],延緩細胞變性。
2.2ACCHM抗氧化應(yīng)激作用及對神經(jīng)可塑性的影響
氧化應(yīng)激是活性氧累積的結(jié)果,由生物系統(tǒng)排除有毒反應(yīng)中間體及對反應(yīng)中間體誘導的損傷的修復(fù)能力降低而引起。氧化應(yīng)激可改變神經(jīng)遞質(zhì)水平,損傷神經(jīng)可塑性,最終導致CNS疾病,如阿爾茨海默?。ˋlzheimer disease,AD)[20]和帕金森病[21]常伴有氧化應(yīng)激相關(guān)因子水平的改變。而ACCHM如白藜蘆醇和姜黃素等均因其在神經(jīng)變性疾病的抗氧化功效而受重視。
白藜蘆醇可減少腦細胞的氧化應(yīng)激,減少自由基和脂質(zhì)過氧化,增強超氧化物歧化酶(superox?ide dismutase,SOD)和谷胱甘肽(glutathione,GSH)過氧化物酶活性,還可抑制腦中單胺氧化酶活性。另有研究指出,沉默信息調(diào)節(jié)因子1可能在白藜蘆醇保護神經(jīng)元免受氧化應(yīng)激中發(fā)揮重要作用[22]。黃芪和丹參的醇提取物的復(fù)方化合制劑可顯著改善東莨菪堿誘導記憶損傷模型小鼠腦組織中的活性氧、丙二醛(malondialdehyde,MDA)和AChE活性的改變,并恢復(fù)模型小鼠的抗氧化能力,包括GSH總含量及GSH還原酶、GSH-S-轉(zhuǎn)移酶和過氧化氫酶的活性,改善小鼠腦中的氧化損傷,改善學習記憶[23]。
MDA是脂質(zhì)過氧化的最終產(chǎn)物之一,常與SOD相互配合測定,其水平高低間接反映機體清除氧自由基的能力和機體細胞受自由基攻擊的嚴重程度。預(yù)知子(Fructus Akebiae)提取物及其主要成分常春藤皂苷(hederagenin)可逆轉(zhuǎn)皮質(zhì)酮誘導的PC12細胞損傷,使細胞存活率顯著提高。常春藤皂苷還可提高小鼠海馬SOD活性,顯著降低MDA含量,從而保護海馬免受氧化應(yīng)激損傷[24],其機制可能與調(diào)節(jié)機體氧化-抗氧化酶活性、降低過氧化損傷相關(guān)。銀杏葉水提物可增加AChE活性,降低MDA含量,改善血管性癡呆大鼠的學習記憶能力[25]。有研究表明,遠志皂苷改善記憶障礙小鼠學習和記憶功能的機制可能是通過抑制海馬中AChE活性,降低MDA水平,提高SOD活性,提高抗氧化能力和突觸可塑性來實現(xiàn)的[8]。
氧化應(yīng)激相關(guān)信號通路的激活可通過表觀遺傳學機制誘導β淀粉樣蛋白(amyloid β-protein,Aβ)生成增加。Aβ在細胞基質(zhì)沉淀聚集后具很強的神經(jīng)毒性,Aβ纖維狀沉淀是AD的主要病理特征。姜黃素可降低AD模型小鼠APPswe/PSENldE9雙轉(zhuǎn)基因小鼠大腦中Aβ42的表達,改善其學習記憶能力[26]。反式白藜蘆醇可通過血腦屏障,對原代培養(yǎng)大鼠腦皮質(zhì)神經(jīng)元氧糖缺失損傷的保護作用比順式強,對海馬損傷模型大鼠起部分保護作用,可能與其抑制Aβ25-35引起的炎癥反應(yīng)、下調(diào)誘導型一氧化氮合酶表達和減輕神經(jīng)元損傷有關(guān)[27]。激活的核轉(zhuǎn)錄相關(guān)因子2核因子E2相關(guān)因子2(nuclear factor erythroid 2-related factor 2,Nrf2)可刺激細胞保護基因參與抗氧化防御,姜黃素保護大鼠紋狀體抵抗喹啉酸誘導的神經(jīng)毒性,與其激活Nrf2細胞保護通路和增加總SOD、谷胱甘肽過氧化物酶活性相關(guān)[28]。
氧化應(yīng)激與5-HT系統(tǒng)密切相關(guān),可干擾5-HT前體色氨酸、活性氧及活性氮,使其快速與色氨酸衍生物反應(yīng)而逐漸消除5-HT[29];5-HT和氧化應(yīng)激在一氧化氮合成中互相抗衡[30];氧化過程中的構(gòu)成元件可與5-HT受體亞型反應(yīng)[31]。天然抗氧化ACCHM的抗氧化活性可能涉及5-HT系統(tǒng),如白藜蘆醇和姜黃素等均具有抗氧化活性,其神經(jīng)保護作用也涉及5-HT系統(tǒng)。銀杏含有保護神經(jīng)元細胞膜的抗氧化化合物[19],銀杏提取物EGb761對小鼠5-HT系統(tǒng)及抑郁的神經(jīng)保護功效依賴于其抗氧化性質(zhì)[32]。常春藤皂苷元也可通過調(diào)節(jié)大鼠5-HT神經(jīng)系統(tǒng),升高5-HT等單胺遞質(zhì)水平,顯著降低5-HT轉(zhuǎn)運體mRNA水平而發(fā)揮抗抑郁作用[24]。色氨酸羥化酶和酪氨酸羥化酶可調(diào)解中樞單胺能神經(jīng)遞質(zhì)合成。也有研究指出,白藜蘆醇對5-HT等單胺遞質(zhì)的影響可能是通過其抗氧化性質(zhì)保護這些酶而發(fā)揮作用的[33]。此外,白藜蘆醇可抵抗1-甲基-4-苯基-1,2,3,6-四氫吡啶注射誘導的小鼠紋狀體和黑質(zhì)致密部中酪氨酸羥化酶免疫活性的降低,并顯著降低膠質(zhì)細胞活化,上調(diào)細胞信號傳導抑制因子的表達,減少相關(guān)炎癥因子水平及其各自受體,發(fā)揮神經(jīng)保護作用[34]。以上說明ACCHM的抗氧化作用可能涉及5-HT系統(tǒng)而發(fā)揮神經(jīng)保護作用。
2.3ACCHM對神經(jīng)細胞營養(yǎng)相關(guān)因子及神經(jīng)可塑性的影響
近年來,對突觸可塑性機制的研究主要集中在突觸相關(guān)蛋白以及神經(jīng)元細胞骨架蛋白等在信號通路中的作用[35]。神經(jīng)營養(yǎng)相關(guān)因子是神經(jīng)元網(wǎng)絡(luò)形成及可塑性的重要調(diào)節(jié)因子,可促進和維持神經(jīng)細胞分化、生長和存活,在改善認知功能方面也具重要作用。目前研究最多的是腦源性神經(jīng)營養(yǎng)因子(brain derived neurotrophic factor,BDNF)。一些研究顯示,抑郁患者的外周血液及海馬組織中BDNF水平顯著下降[36-37]。Park等[38]指出,奎硫平治療可提高精神分裂癥患者的BDNF水平,提高患者的認知功能。BDNF可促進神經(jīng)元的生長發(fā)育[39],維持成年后神經(jīng)元的生存和功能[40],對神經(jīng)元可塑性具一定的影響[41]。在正常腦中,生理劑量的BDNF對學習記憶有促進作用[42]。
BDNF通常需與其他分子共同作用才能影響神經(jīng)形態(tài)學和分子學變化,尤其是影響樹突棘密度和基因表達而調(diào)節(jié)神經(jīng)可塑性[43]。BNDF在生物體中參與多條信號途徑,如BDNF可與5-HT相互影響。5-HT與5-HT受體亞型結(jié)合后可激活5-HT受體介導的腺苷酸環(huán)化酶-環(huán)磷酸腺苷-蛋白激酶A-環(huán)磷酸腺苷反應(yīng)元件結(jié)合蛋白(adenylate cyclase-cyclic adenos?inemonophosphate-proteinkinaseA-CAMP-response element binding protein,AC-CAMPPKA-CREB)信號轉(zhuǎn)導通路,使PKA在T34位點磷酸化,進而使CREB磷酸化,磷酸化CREB的增加又將促進5-HT和BDNF的合成,從而促進神經(jīng)再生。此外,Schildt等[44]發(fā)現(xiàn),BDNF在小鼠大腦中通過酪氨酸激酶B(tyrosine kinase B,TrkB)受體對突觸可塑性發(fā)揮至關(guān)重要的調(diào)節(jié)作用。
研究顯示,常春藤皂苷也可提高大鼠海馬BDNF的表達[24]。遠志提取物3,6′-二芥子?;崽强赏ㄟ^多種通路促進CREB磷酸化,進一步促進BDNF表達,最終影響神經(jīng)細胞的神經(jīng)可塑性、神經(jīng)分化、神經(jīng)營養(yǎng)、細胞的生存與凋亡、細胞氧化應(yīng)激功能等,發(fā)揮抗抑郁作用[45]。石菖蒲揮發(fā)油的主要成分β-細辛醚可上調(diào)大鼠海馬中BDNF水平,繼而產(chǎn)生一系列生物學效應(yīng),增加海馬齒狀回的神經(jīng)再生,完善海馬神經(jīng)重塑[46]。β-細辛醚還可促進大鼠海馬中CREB的蛋白與mRNA的活性和表達,調(diào)節(jié)受體后CAMP-PKA-CREB信號通路以減少神經(jīng)細胞凋亡而發(fā)揮神經(jīng)作用[47]。姜黃素除了上述的可調(diào)節(jié)5-HT水平,具抗氧化活性外,還可上調(diào)6-OH多巴胺誘導的帕金森模型大鼠海馬中的BDNF和TrkB水平,進而激活其下游的信號通路,促使神經(jīng)再生[48]。枳殼提取物可增強大鼠海馬及皮質(zhì)中的BDNF mRNA和海馬中的糖皮質(zhì)激素受體mRNA的表達,抑制下丘腦-垂體-腎上腺軸功能亢進,并調(diào)節(jié)海馬和新皮質(zhì)神經(jīng)元連接可塑性,從而改善抑郁行為[49]。
此外,人參皂苷Rg1可提高AD模型大鼠海馬中組織神經(jīng)生長因子的表達,有利于移植于AD大鼠海馬中的骨髓間充質(zhì)干細胞(bone marrow mesen?chymal stem cells,BMSC)的存活,而存活的BNSC再通過其自分泌的神經(jīng)生長因子發(fā)揮神經(jīng)營養(yǎng)作用,進而改善認知功能[50]。神經(jīng)元生長相關(guān)蛋白43(neuronalgrowthassociatedprotein43,GAP-43)是神經(jīng)細胞膜上一種特異性磷蛋白,與神經(jīng)再生、發(fā)育和可塑性等密切相關(guān)[51-53]。遠志水提物可顯著促進PC12細胞中GAP-43的基因轉(zhuǎn)錄及蛋白表達[5]。麻黃堿可減輕大鼠脊髓損傷,增加GAP-43水平,抑制神經(jīng)膠質(zhì)纖維酸性蛋白表達,使神經(jīng)膠質(zhì)瘢痕緩慢形成,改善了脊髓的內(nèi)環(huán)境,促進脊髓內(nèi)神經(jīng)的再生修復(fù),抑制神經(jīng)膠質(zhì)細胞的活化和增生,促進神經(jīng)系統(tǒng)功能恢復(fù)和神經(jīng)纖維修復(fù)[54]。巢蛋白可促使神經(jīng)干細胞演變生成成熟神經(jīng)元,骨架蛋白Shank1蛋白可促使神經(jīng)元之間的突觸鏈接,兩者協(xié)同可對損傷腦組織進行修復(fù)和重塑。三七總皂苷的各種神經(jīng)保護作用,促使Shank1及巢蛋白表達上升并維持在較高水平,有利于大鼠受損神經(jīng)組織修復(fù)和神經(jīng)功能恢復(fù)[6]。保護AD小鼠突觸,影響突觸后膜相關(guān)蛋白表達也是姜黃素發(fā)揮神經(jīng)保護作用的機制之一[55]。
2.4其他
Ca2+是細胞內(nèi)重要的信使分子之一,胞內(nèi)游離Ca2+濃度的變化是調(diào)節(jié)細胞生理功能的重要物質(zhì)基礎(chǔ)。鈣穩(wěn)態(tài)失衡與細胞凋亡密切相關(guān),鈣超載可破壞神經(jīng)細胞膜功能,影響神經(jīng)元可塑性、蛋白質(zhì)合成、神經(jīng)-膠質(zhì)細胞相互作用等,最終導致細胞凋亡[56-57]。CREB是許多細胞信號轉(zhuǎn)導通路的交匯點,可通過介導細胞內(nèi)的多種通路發(fā)揮作用,Ca2+依賴性蛋白激酶的激活調(diào)節(jié)也可促使CREB第133位的絲氨酸磷酸化而激活。刺五加水提物能減少細胞外的游離鈣內(nèi)流,緩解PC12細胞內(nèi)皮質(zhì)酮所致的鈣超載效應(yīng),上調(diào)CREB蛋白表達,并激活cAMP-CREB信號通路級聯(lián)反應(yīng),提高相關(guān)蛋白表達,從而發(fā)揮神經(jīng)保護作用[58]。當歸多糖可改善腦細胞膜對Ca2+-ATP酶及Ca2+-Mg2+-ATP酶的敏感性,逆轉(zhuǎn)小鼠腦組織鈣超載和減輕膽堿能神經(jīng)系統(tǒng)的損害而發(fā)揮抗老年癡呆作用[59]。
銀杏葉提取物注射液可保護腦缺血、提高神經(jīng)可塑性、改善神經(jīng)退行性疾病以及提高學習記憶功能。進一步的研究指出銀杏提取物EGb761很可能是通過清除自由基、拮抗血小板活化因子產(chǎn)生,抑制血小板聚集來保護神經(jīng)系統(tǒng)[60-61]。鉀電流下降可直接導致細胞內(nèi)Ca2+水平超出正常狀態(tài)下神經(jīng)元去極化的Ca2+水平,即可產(chǎn)生神經(jīng)毒性,銀杏葉提取物中的銀杏內(nèi)酯B可增大鉀電流、降低神經(jīng)元活動,而發(fā)揮神經(jīng)保護、抗AD作用,銀杏內(nèi)酯B還可降低Aβ引起的神經(jīng)毒性反應(yīng)[62]。此外,紅細胞生成素可促進神經(jīng)可塑性,減輕神經(jīng)退行性改變,促進大鼠受損腦區(qū)的神經(jīng)發(fā)生,并恢復(fù)相應(yīng)功能[63],可促進紅細胞生成素生成的ACCHM是治療EACD的潛在藥物。
內(nèi)外環(huán)境應(yīng)激可引起一系列EACD,并伴隨著腦區(qū)形態(tài)學異常和相關(guān)信號分子水平的改變。近幾年,EACD治療藥物的研究從調(diào)節(jié)生物胺神經(jīng)遞質(zhì)水平,轉(zhuǎn)向作用于神經(jīng)系統(tǒng)適應(yīng)性變化,并發(fā)現(xiàn)了更多藥物作用新靶標及新通路。神經(jīng)可塑性是神經(jīng)系統(tǒng)對環(huán)境刺激的適應(yīng)及調(diào)節(jié)能力,是藥物神經(jīng)保護作用的主要機制。天然中草藥有效成分來源廣,具有較好的藥理作用,可同時涉及多個作用靶點或途徑,因而在研究CNS神經(jīng)保護作用中受到越來越多關(guān)注。但目前對ACCHM的進一步研發(fā)比較缺乏,而真正應(yīng)用于臨床的也較少。應(yīng)加強不同學科間的合作,進一步研究具潛在臨床價值的ACCHM的提取或合成,合適的劑型,藥劑穩(wěn)定性,及在人體中的安全性和藥物功效。此外,也可加強研發(fā)同時涉及不同作用機制的ACCHM復(fù)方制劑,以達到協(xié)同或增加的藥理學作用,降低用藥劑量,降低藥物毒性作用。
[1] Xu JW,Sun DH.Effect of ephedrine on growthassociated protein-43 and glial fibrillary acidic pro?tein expression in rats after spinal cord injury[J].J Guangzhou Univ Tradit Chin Med(廣州中醫(yī)藥大學學報),2013,30(5):718-721.
[2] Marsden WN.Synaptic plasticity in depression:molecular,cellular and functional correlates[J].ProgNeuropsychopharmacolBiolPsychiatry,2013,43(2):168-184.
[3] Noorafshan A,Abdollahifar MA,Asadi-Golshan R,Rashidian-RashidabadiA, Karbalay-Doust S. Curcumin and sertraline prevent the reduction of the number of neurons and glial cells and the volume of rats′medial prefrontal cortex inducedby stress[J].Acta Neurobiol Exp(Wars),2014,74(1):44-53.
[4] Norrholm SD,Ouimet CC.Chronic fluoxetine ad?ministration to juvenile rats prevents age-associat?ed dendritic spine proliferation in hippocampus[J].Brain Res,2000,883(2):205-215.
[5] Liang M.Effects ofAcorus tatarinowiiaqueous ex?tract andPolygala tenuifoliaWilld aqueous extract on PC12 cells and the involving mechanisms(遠志、石菖蒲水提物對PC12細胞突起的影響及其機制研究)[D].Beijing:Beijing University of Chinese Medicine(北京中醫(yī)藥大學),2014.
[6] Wang DK,Zhu JH,Dai XW,He LF,Sun Z,Liu HY.The influence of PNS on the neuroplasticity after cerebral hemorrhage in rat[J].Chin J Neu?roanat(神經(jīng)解剖學雜志),2014,30(5):569-574.
[7] Huang Q,Chu SF,Zhang JT,Chen NH.Effects of ginsenoside Rg1 on anti-depression and synap?tic ultrastructure[J].Chin Pharmacol Bull(中國藥理學通報),2013,29(8):1124-1127.
[8] Huang JN,Wang CY,Wang XL,Wu BZ,Gu XY,Liu WX,et al.Tenuigenin treatment improves be?havioral Y-maze learning by enhancing synaptic plasticity in mice[J].Behav Brain Res,2013,246(1):111-115.
[9] Zhang M,Bing YJ,Lei ZH,Zhang LP.Effect of modified Wendan Decoction on neural plasticity of depression model rats[J].J New Med(新中醫(yī)),2013,45(6):157-159.
[10] Long JF,Zhang QX,Zhang J,Wang YL,Zhao H,Wang L,et al.Active fractions of Huanglian Jiedu Decoction on the MAP-2/PGP9.5 expression and the impact of astrocyte activation after cerebral ischemia rats[J].Inform Tradit Chin Med(中醫(yī)藥信息),2014,31(5):49-53.
[11] Bocchio M,F(xiàn)ucsina G,Oikonomidis L,Mchugh SB,Bannerman DM,Sharp T,et al.Increased serotonin transporterexpression reduces fear and recruitment of parvalbumin interneurons of the amygdale[J].Neuropsychopharmacology,2015,40(13):3015-3026.
[12] Benammi H,El Hiba O,Romane A,Gamrani H. A blunted anxiolytic like effect of curcumin against acute lead induced anxiety in rat:Involvement of serotonin[J].Acta Histochem,2014,116(5):920-925.
[13] Choudhary KM,Mishra A,Poroikov VV.Amelio?rative effect of curcumin on seizure severity,de?pression like behavior,learning and memory defi?cit in post-pentylenetetrazole-kindled mice[J].Eur J Pharmacol,2013,704(1-3):33-40.
[14] Veenstra-Vanderweele J,Anderson GM,Cook EH.Pharmacogenetics and the serotonin system:initial studies and future directions[J].Eur J Pharmacol,2000,410(2-3):165-181.
[15] Xu Y,Li S,Vernon MM,Pan JC,Chen L,Bar?ish PA,et al.Curcumin prevents corticosteroneinduced neurotoxicity and abnormalities of neuro?plasticity via 5-HT receptor pathway[J].J Neuro?chem,2011,118(5):784-795.
[16] Sarubbo F,Ramis MR,Aparicio S,Ruiz L,Este?ban S,Miralles A,et al.Improving effect of chron?ic resveratrol treatment on central monoamine synthesis and cognition in aged rats[J].Age,2015,37(3):9777.
[17] Lee BH,Hwang SH,Choi SH,Shin TJ,Kang J,Lee SM,et al.Resveratrol enhances 5-hydroxy?tryptamine type 3a receptor-mediated ion cur?rents:the role of arginine 222 residue in pre-trans?membrane domain I[J].Biol Pharm Bull,2011,34(4):523-527.
[18] Al-Hazmi MA,Rawi SM,Arafa NM,Montasser AO.The potent effects of ginseng root extract and memantine on cognitive dysfunction in male albino rats[J].Toxicol Ind Health,2015,31(6):494-509.
[19] Thompson AJ,Jarvis GE,Duke RK,Johnston GA,Lummis SC.Ginkgolide B and bilobalide block the pore of the 5-HT3receptor at a location that overlaps the picrotoxin binding site[J].Neu?ropharmacology,2011,60(2-3):488-495.
[20] Zuo L,Motherwell MS.The impact of reactive ox?ygen species and genetic mitochondrial mutations in Parkinson′s disease[J].Gene,2013,532(1):18-23.
[21] Sochocka M,Koutsouraki ES,Gasiorowski K,Leszek J.Vascular oxidative stress and mitochon?drial failure in the pathobiology of Alzheimer's dis?ease:a new approach to therapy[J].CNS Neu?rol Disord Drug Targets,2013,12(6):870-881.
[22] Li J,F(xiàn)eng L,Xing YH,Wang Y,Du LQ,Xu C,et al.Radioprotective and antioxidant effect of res?veratrol in hippocampus by activating Sirt1[J].Int J Mol Sci,2014,15(4):5928-5939.
[23] Lee JS,Kim HG,Han JM,Kim DW,Yi MH,Son SW,et al.Ethanol extract ofAstragali RadixandSalviae MiltiorrhizaeRadix,Myelophil,exerts antiamnesic effect in a mouse model of scopolamineinduced memory deficits[J].J Ethnopharmacol,2014,153(3):782-792.
[24] Liang BF.Antidepressant pharmacological mecha?nisms of hederagenin from Fructus Akebiae extract(預(yù)知子提取物活性成分常春藤皂苷的抗抑郁藥理作用機制研究)[D].Guanhzhou:Southern Medi?cal University(南方醫(yī)科大學),2013.
[25] Li JD.Effects of Ginkgo biloba extract on spatial learning and memory in Alzheimer's disease rats[J].Hubei J Tradit Chin Med(湖北中醫(yī)雜志),2013,35(9):26-27.
[26] Sun JY,Li D,Wang C,Tian MY,Zhang X,Li Y. Effect of curcumin on ability of learning and mem?ory and expression of Aβ42 in brain of APPswe/ PS1dE9 double transgenic mice[J].Chin Phar?macol Bull(中國藥理學通報),2013,29(8):1084-1088.
[27] Wang SW,Xu P,Liu HJ,Chen Q,Yf L,Zhang L,et al.Effects of trans-resveratrol on expression of iNOS mRNA after injury in rats hippocampus by Aβ25-35[J].Chongqing Med(重慶醫(yī)學),2010,39(18):2400-2405.
[28] Carmona-RamírezI,SantamaríaA,Tobón-Velasco JC,Orozco-Ibarra M,González-Herrera IG,Pe?draza-Chaverrí J,et al.Curcumin restores Nrf2 levels and prevents quinolinic acid induced neuro?toxicity[J].J Pineal Res,2008,45(3):235-246.
[29] Peyrot F,Ducrocq C.Potential role of tryptophan derivatives in stress responses characterized by the generation of reactive oxygen and nitrogen species[J].J Pineal Res,2008,45(3):235-246.
[30] Michel T,Vanhoutte PM.Cellular signaling and NO production[J].Pflugers Arch,2010,459(6):807-816.
[31] MacFarlane PM,Vinit S,Mitchell GS.Serotonin 2A and 2B receptor-induced phrenic motor facilita?tion:differential requirement for spinal NADPH oxi?dase activity[J].Neuroscience,2011,178:45-55.
[32] Rojas P,Serrano-Garcia N,Medina-Campos ON,Ogren SO,Rojas C.Antidepressant-like ef?fect of aGinkgo bilobaextract(EGb761)in the mouse forced swimming test:role of oxidative stress[J].Neurochem Int,2011,59(5):628-636.
[33] Rose KM,Parmar MS,Cavanaugh JE.Dietary supplementation with resveratrol protects against striatal dopaminergic deficits produced byin uteroLPS exposure[J].Brain Res,2014,1573:37-43.
[34] Lofrumento DD,Nicolardi G,Cianciulli A,De NF,LaPV,Carofiglio V,etal.Neuroprotective effects of resveratrol in an MPTP mouse model of Parkinson′s-like disease:possible role of SOCS-1 in reducing pro-inflammatory responses[J].Innate Immun,2014,20(3):249-260.
[35] Guo M,Li G.An update on key proteins involved in synaptic plasticity[J].Acta Neuropharmacol,2013,3(6):57-64.
[36] Vinberg M,Bukh JD,Bennike B,Kessing LV. Are variations in whole blood BDNF level associ?ated with the BDNF Val66Met polymorphism in patients with first episode depression?[J].Psychi?atry Res,2013,210(1):102-108.
[37] Banerjee R,Ghosh AK,Ghosh B,Bhattacharyya S,Mondal AC.Decreased mRNA and protein ex?pression of BDNF,NGF,and their receptors in the hippocampus from suicide:an analysis in human postmortem brain[J].Clin Med Insights Pathol,2013,6:1-11.
[38] Park SW,Lee CH,Cho HY,Seo MK,Lee JG,Lee BJ,et al.Effects of antipsychotic drugs on the expression of synaptic proteins and dendritic outgrowth in hippocampal neuronal cultures[J].Synapse,2013,67(5):224-234.
[39] TzengWY,ChuangJY,LinLC,CherngCG,LinKY,Chen LH,et al.Companions reverse stressorinduced decreases in neurogenesis and cocaine conditioning possibly by restoring BDNF and NGF levels in dentate gyrus[J].Psychoneuroendocri?nology,2013,38(3):425-437.
[40] Castren E,Hen RE.Neuronal plasticity and anti?depressant actions[J].Trends Neurosci,2013,36(5):259-267.
[41] Yang J,Harte-Hargrove LC,Siao CJ,Marinic T,Clarke R,Ma Q,et al.ProBNDF negatively regu?lates neuronal remodeling,synaptic transmission,and synaptic plasticity in hippocampus[J].Cell Rep,2014,7(3):796-806.
[42] Zhen YF,Zhang J,Liu XY,F(xiàn)ang H,Tian LB,Zhou DH,et al.Low BDNF is associated with cognitive deficits in patients with type 2 diabetes[J].Psychopharmacology(Berl),2013,227(1):93-100.
[43] Gray JD,Milner TA,Mcewen BS.Dynamic plas?ticity:the role of glucocorticoids,brain-derived neurotrophic factor and other trophic factors[J].Neuroscience,2013,239(1):214-227.
[44] Schildt S,Endres T,Lessmann V,Edelmann E. Acute and chronic interference with BDNF/TrkB-signaling impair LTP selectively at mossy fiber synapses in the CA3 region of mouse hippocam?pus[J].Neuropharmacology,2013,71:247-254.
[45] Liu MY.Study on the neuroprotection mecha?nisms of Kaixin-San and 3,6′-disinapoyl sucrose based on the CREB phosphorylation pathway(基于CREB-BDNF信號轉(zhuǎn)導通路研究開心散及其主要成分3,6′-二芥子酰基蔗糖促神經(jīng)保護和抗抑郁的作用機制)[D].Hebei:Hebei North College(河北北方學院),2013.
[46] Rong H,Dong HY,Gao ZY,Jy Z,Zhang XJ.Ef?fects of β-asarone on neuroplasticity-related fac?tors in hippocampus of rat model of depression[J].Chin J New Drugs(中國新藥雜志),2014,23(18):2185-2194.
[47] Gao ZY,Zhang C,Dong HY,Liu DS,Li GQ,Zhang YJ,et al.Neuroprotective effects of effec?tive components ofAcorus tatarinowiiin hippo?campus of rat model of depression[J].Chin J Gerontol(中國老年學雜志),2014,4:1000-1002.
[48] Yang JQ,Song SL,Li J,Liang T.Neuroprotec?tive effect of curcumin on hippocampal injury in 6-OHDA-induced Parkinson′s disease rat[J].Pathol Res Pract,2014,210(6):357-362.
[49] Xu Y,F(xiàn)eng J,Guo JY.Mechanism underlying the antidepressant effect of Fructus Aurantii[J].Chin J Clin Pharmacol Ther(中國臨床藥理學與治療學),2013,18(10):1086-1092.
[50] Wu W,Chen XH,Yang JQ,Wang XT.Study on the effect and mechanism of ginsenoside Rg1 on survival and differentiation of implanted BMSCs in dementia model rats[J].J Wenzhou Med Univ(溫州醫(yī)科大學學報),2014,44(9):637-640.
[51] Huang R,Zhao J,Ju L,Wen Y,Xu Q.The influ?ence of GAP-43 on orientation of cell division through G proteins[J].Int J Dev Neurosci,2015,5748(15):30011-30013.
[52] Kuruppu DK,Matthews BR.Young-onset demen?tia[J].Semin Neurol,2013,33(4):365-385.
[53] Chen MM,Zq Y,Zhang LY,Liao H.Quercetin promotes neurite growth through enhancing intra?cellular cAMP level and GAP-43 expression[J].Chin J Nat Med(中國天然藥物),2015,13(9):667-672.
[54] Xu JW,Sun DH.Effect of ephedrine on growthassociated protein-43 and glial fibrillary acidic pro?tein expression in rats after spinal cord injury[J].J Guangzhou Univ Tradit Chin Med(廣州中醫(yī)藥大學學報),2013,30(5):718-721.
[55] Wei P.Effects of curcumin on the expression of synapses related protein Shank1 and PSD95 in the AD mice(姜黃素對AD小鼠突觸相關(guān)蛋白Shank1、PSD95表達的影響)[D].Beijing:Beijing University of Chinese Medicine(北京中醫(yī)藥大學),2013.
[56] Charies A.Teaching resources glial intercellular waves[J].Eur J Biochem,2000,267(2):5291-5297.
[57] Liu Z,Xu J,Shen XJ,Lv C′,Xu TJ,Pei DS. CaMKⅡantisense oligodeoxynucleotides protect against ischemia-induced neuronal death in the rat hippocampus[J].J Neurol Sci,2012,314(1-2):104-110.
[58] Jiang Q.Studies on anti-depressant effects of aqueous extract ofAcanthopanax senticosusand its mechanism of action(刺五加水提物抗抑郁作用及其機制研究)[D].Dalian:Dalian University of Technology(大連理工大學),2010.
[59] Li XY,An FY,Li SG,Chen KB,Zhang LY.Ef?fects of Angelica sinensispolysaccharide on the calcium overload and cholinergic nerve damage in brain tissue of aging Alzheimer's model mice[J].Tradit Chin Med Res(中醫(yī)研究),2013,26(3):68-70.
[60] Zhu XY.Ginkgo bilobaextract injection combined random parallel control study Western medicine treatment of cerebral infarction[J].J Pract Tradit Chin Intern Med(實用中醫(yī)內(nèi)科雜志),2013,27(8):65-67.
[61] Wang SJ,Kang A,Di LQ,Zhang SJ,Tian L,Zhou W,et al.Progress in pharmacokinetic study on main active ingredients ofGinkgo bilobaleaf extract[J].Chin Tradit Herb Drugs(中草藥),2013,44(5):626-631.
[62] Yao Y,Liu K,Yang Y,Wu MF,Zhang LY,Liang Y.Effect of ginkgolide B on delayed rectifier potassium current in SH-SY5Y cells[J].J Chin Med Univ(中國醫(yī)科大學學報),2013,42(11):982-984.
[63] Gonzalez FF,Larpthaveesarp A,Mcquillen P,Derugin N,Wendland M,Spadafora RA.Erythro?poietin increases neurogenesis and oligodendro?gliosis of subventricular zone precursor cells after neonatal stroke[J].Stroke,2013,44(3):753-758.
Research progress in effects and mechanisms of active components of Chinese herbal medicine on neural plasticity
LIN Meng-meng,ZHANG Mei-lin,WANG Xiao-jun,LI Gong-hua
(Department of Pharmacy,Zhejiang Provincial Tongde Hospital,Hangzhou 320012,China)
Emotional and cognitive disorders(EACD),such as depression and anxiety,have become very common in today′s society,seriously affecting human lives and health.Neural plasticity can reflect the anti-stress ability of the nervous system to the internal and external stimulation,and is capable of dynamic changes in structure or function to adapt to environmental changes,as is often manifested in the process of compensation and repair of nerve injuries.EACD is often accompanied by macroscopic and cellular morphological changes in brain tissues and functions.Thus,studies on the mechanisms of neural plasticity will contribute to the treatment of EACD.In this paper,the role of neural plasticity in the active components of Chinese herbal medicine(ACCHM)is reviewed.The effects of ACCHM on 5-hydroxytryptamine(5-HT)system,and the antioxidant activities and neurotrophic effects of ACCHM are described.ACCHM can affect neural plasticity,playing a neuroprotective role by improving 5-HT levels,reducing oxidative stress in brain cells,and increasing the expression of brain derived neurotrophic factor(BDNF).In summary,one ACCHM could affect neural plasticity through one or more mechanisms.There are interactions between different mechanisms of the same ACCHM.Different ACCHM can play a synergistic effect on the enhancement of neural plasticity because of their different mechanisms.
Chinese herbal;neural plasticity;5-hydroxytryptamine;antioxidants;neuronutrition
R285.5
A
1000-3002-(2016)07-0754-08
10.3867/j.issn.1000-3002.2016.07.008
Foundation item:The project supported by Clinical Pharmacy Research Special Found of Zhejiang Provincical Associa?tionofChineseIntegrativeMedicine(2014LYZD013);andNaturalScienceFoundationofZhejiangProvince(LQ14H280003)
2015-06-12 接受日期:2015-11-17)
(本文編輯:喬 虹)
浙江省中西醫(yī)結(jié)合學會臨床藥學科研專項基金(2014LY2D013);浙江省自然科學基金(LQ14H280003)
林蒙蒙(1987-),女,碩士,藥師,主要從事神經(jīng)藥理學研究,E-mail:linmengmeng@163.com
李功華,E-mail:ligonghua@medmail.com.cn,Tel:(0571)89972239
Corresponding auhtor:LI Gong-hua,Tel:(0571)89972239,E-mail:ligonghua@medmail.com.cn