歐麗婷,許迎科,李漢兵
(1.浙江工業(yè)大學(xué)藥學(xué)院藥理學(xué)科,浙江杭州 310014;2.浙江大學(xué)生儀學(xué)院生物醫(yī)學(xué)工程系,浙江杭州 310027)
Rab蛋白調(diào)控葡萄糖轉(zhuǎn)運(yùn)蛋白4轉(zhuǎn)運(yùn)機(jī)制的研究進(jìn)展
歐麗婷1,許迎科2,李漢兵1
(1.浙江工業(yè)大學(xué)藥學(xué)院藥理學(xué)科,浙江杭州 310014;2.浙江大學(xué)生儀學(xué)院生物醫(yī)學(xué)工程系,浙江杭州 310027)
胰島素通過刺激葡萄糖轉(zhuǎn)運(yùn)蛋白4(GLUT4)的轉(zhuǎn)運(yùn)調(diào)節(jié)脂肪細(xì)胞和肌細(xì)胞攝取葡萄糖,維持機(jī)體內(nèi)的血糖平衡。Rab蛋白是GTP結(jié)合蛋白。近幾年研究表明,Rab蛋白是影響GLUT4轉(zhuǎn)運(yùn)到細(xì)胞膜的重要調(diào)控因子,參與GLUT4囊泡的形成轉(zhuǎn)運(yùn)以及融合等過程。本文綜述了幾種不同的Rab蛋白以及Rab蛋白的GTP酶激活蛋白即分子質(zhì)量160 ku蛋白激酶B底物蛋白(AS160)對于GLUT4轉(zhuǎn)運(yùn)的調(diào)控機(jī)制。對Rab蛋白調(diào)控GLUT4轉(zhuǎn)運(yùn)機(jī)制的研究,有助于解釋2型糖尿病的胰島素耐受機(jī)制,并可為糖尿病治療提供新的方向。
葡萄糖轉(zhuǎn)運(yùn)體4型;胰島素類;Rab蛋白;胰島素受體底物蛋白質(zhì)類
在脂肪細(xì)胞和肌細(xì)胞中,胰島素的刺激使葡萄糖轉(zhuǎn)運(yùn)蛋白4(glucose transporter 4,GLUT4)在質(zhì)膜上重新分布,從而將血液中的葡萄糖攝入到細(xì)胞中,降低血糖含量[1]。GLUT4主要在胰島素敏感的骨骼肌、心肌和脂肪細(xì)胞中表達(dá)。運(yùn)動或進(jìn)食后,GLUT4轉(zhuǎn)運(yùn)葡萄糖的能力比平時高10 ~40倍,以便滿足肌肉運(yùn)動時向骨骼肌細(xì)胞快速提供能量以及進(jìn)食后快速把血液中的葡萄糖轉(zhuǎn)運(yùn)到細(xì)胞內(nèi)[2]。在基礎(chǔ)狀態(tài)時,90%GLUT4位于細(xì)胞儲存囊泡內(nèi);受胰島素刺激后,該囊泡向質(zhì)膜轉(zhuǎn)移,然后與質(zhì)膜錨定、融合。GLUT4轉(zhuǎn)位到質(zhì)膜后活性增加,與葡萄糖結(jié)合并使其構(gòu)象發(fā)生改變,此時葡萄糖被轉(zhuǎn)運(yùn)至細(xì)胞內(nèi)。胰島素抵抗主要表現(xiàn)為GLUT4膜轉(zhuǎn)位能力受損,同時也是2型糖尿病的主要病因[3]。因此,了解GLUT4的轉(zhuǎn)位以及調(diào)控其轉(zhuǎn)位的機(jī)制極為重要。Rab蛋白是GTP結(jié)合蛋白,作為分子開關(guān),是小分子GTP結(jié)合蛋白家族中最大的亞家族,參與一系列生物進(jìn)程,包括信號傳導(dǎo)、膜轉(zhuǎn)運(yùn)及細(xì)胞骨架形成等,它們都涉及細(xì)胞GLUT4的轉(zhuǎn)位[4]。本文總結(jié)了Rab蛋白和Rab蛋白的GTP酶激活蛋白(Rab GTPase activating protein,Rab-GAP)即分子質(zhì)量為160 ku的蛋白激酶B的底物蛋白(Akt substrate of 160 ku,AS160)在胰島素刺激情況下GLUT4從胞內(nèi)轉(zhuǎn)位至胞膜中所起的作用。
在脂肪細(xì)胞和肌細(xì)胞中,GLUT4在細(xì)胞內(nèi)和質(zhì)膜間循環(huán)。在基礎(chǔ)狀態(tài)下>90%GLUT4位于細(xì)胞內(nèi),約10%存在于細(xì)胞表面?;A(chǔ)狀態(tài)下GLUT4的穩(wěn)態(tài)分布主要由快胞吞和慢胞吐所維持[5]。胰島素通過大幅加快GLUT4的胞吐速度改變GLUT4的穩(wěn)態(tài)分布,使其在質(zhì)膜中的比例增加。GLUT4主要存在于細(xì)胞內(nèi)的儲器中,包括反式高爾基體網(wǎng)絡(luò)(trans Golgi network,TGN)和內(nèi)吞循環(huán)體(endo?cytic recycling compartment,ERC)。然而,約50%的GLUT4分子位于特殊的囊泡結(jié)構(gòu)中,即GLUT4特異性囊泡,或GLUT4儲存囊泡(GLUT4 storage vesicles,GSV),從TGN和ERC中分離出來[6]。對于GSV的生化和結(jié)構(gòu)性質(zhì)尚未完全了解,但研究人員已普遍認(rèn)可胰島素刺激會導(dǎo)致GLUT4儲存囊泡的胞外分泌,主要步驟為:①從TGN和ERC中形成GSV;②GSV沿細(xì)胞骨架從細(xì)胞內(nèi)運(yùn)動到質(zhì)膜附近;③錨定到質(zhì)膜上;④與質(zhì)膜發(fā)生融合[7]。盡管我們對GLUT4轉(zhuǎn)位的分子機(jī)制已有較深了解,但對于胰島素調(diào)控GLUT4胞外分泌的具體步驟尚不明確,存在許多爭議。推測Rab蛋白可能是胰島素信號應(yīng)答的調(diào)節(jié)子,從而連接了信號轉(zhuǎn)導(dǎo)和囊泡轉(zhuǎn)運(yùn)。
AS160所含GAP結(jié)構(gòu)域,能維持靶細(xì)胞Rab-GDP形成,影響Rab蛋白的活性,進(jìn)而抑制GLUT4轉(zhuǎn)運(yùn)[8]。而胰島素刺激能緩解AS160的這種抑制作用,促進(jìn)GLUT4轉(zhuǎn)位。使用磷酸化突變體過表達(dá)及基因沉默技術(shù),確定了AS160能把胰島素信號傳遞到Rab蛋白上,實現(xiàn)脂肪細(xì)胞和肌細(xì)胞中GLUT4的轉(zhuǎn)運(yùn)[9]。
2.1脂肪細(xì)胞中AS160對葡萄糖轉(zhuǎn)運(yùn)蛋白4轉(zhuǎn)運(yùn)的影響
蛋白激酶B(protein kinase B,PKB/Akt)是磷脂酰肌醇3-激酶信號通路下游胰島素信號通路中非常重要的蛋白[10]。Lienhard等的研究顯示,Akt和Rab蛋白對GLUT4轉(zhuǎn)運(yùn)調(diào)控之間的聯(lián)系主要是通過AS160實現(xiàn)的[8]。他們發(fā)現(xiàn)胰島素調(diào)節(jié)AS160磷酸化作用對于3T3-L1脂肪細(xì)胞中Rab蛋白調(diào)控GLUT4的轉(zhuǎn)運(yùn)極為重要。AS160包含一個Rab-GAP結(jié)構(gòu)域,2個磷酸酪氨酸結(jié)合域(phos?photyrosine-binding,PTB)以及1個鈣調(diào)蛋白結(jié)合域(calmodulin-binding domain,CBD)和5個典型的Akt磷酸化位點(diǎn)〔分別為精氨酸(A)973,絲氨酸(S)318,絲氨酸(S)588,蘇氨酸(T)642,絲氨酸(S)751〕[11]。正常情況下,胰島素刺激使AS160中的5個Akt磷酸化位點(diǎn)中的4個位點(diǎn)(S318,S588,T642,S751)突變成丙氨酸后(AS160-4P),經(jīng)3T3-L1脂肪細(xì)胞中過表達(dá)能抑制GLUT4的轉(zhuǎn)位[12]。Sano等[13]研究并報道,AS160突變體(絲氨酸或蘇氨酸突變成丙氨酸)的過表達(dá)會抑制胰島素刺激下GLUT4在3T3-L1脂肪細(xì)胞中的轉(zhuǎn)運(yùn),因其會阻止S588或T642的磷酸化作用(T642突變體比S588有一個更強(qiáng)的抑制作用),并且S588和T642同時突變的突變體會比單個突變有更強(qiáng)的抑制作用,還指出A(rg)973被賴氨酸取代的AS160突變體〔A(rg)973-AS160〕會失去Rab-GAP結(jié)構(gòu)活性,阻止脂肪細(xì)胞中GLUT4轉(zhuǎn)運(yùn)。這些實驗結(jié)果都顯示含Rab-GAP活性區(qū)域的AS160的選擇性Akt磷酸化對胰島素刺激GLUT4的轉(zhuǎn)運(yùn)是必不可少的。由此總結(jié)出胰島素刺激Akt磷酸化進(jìn)而導(dǎo)致AS160選擇性磷酸化位點(diǎn)磷酸化,同時抑制其GAP結(jié)構(gòu)域,使附著在GSV上的Rab蛋白結(jié)合的GTP不能水解成GDP,從而使Rab蛋白處于與GTP結(jié)合的高活性狀態(tài),有利于Rab-GTP的累積,進(jìn)而促進(jìn)GLUT4囊泡的胞吐過程[14]。以后的實驗又隨之證明了14-3-3蛋白對磷酸化的T642位點(diǎn)吸引力高而14-3-3蛋白對磷酸化的S341吸引力低,說明胰島素刺激GLUT4的轉(zhuǎn)運(yùn)過程涉及14-3-3蛋白綁定到AS160上[15-16]。
2.2肌細(xì)胞中AS160對葡萄糖轉(zhuǎn)運(yùn)蛋白4轉(zhuǎn)運(yùn)的影響
在L6肌細(xì)胞中,野生型AS160的過表達(dá)不能改變胰島素刺激GLUT4的轉(zhuǎn)運(yùn),但4P-AS160的表達(dá)會抑制GLUT4的轉(zhuǎn)運(yùn)[17]。4P-AS160以及A(rg)973-AS160會阻止AS160磷酸化作用,繼而緩解因AS160磷酸化而導(dǎo)致的GAP區(qū)域活性受抑制的過程,從而抑制了Rab-GTP的累積,最終抑制GLUT4的轉(zhuǎn)運(yùn)[18]。這就證明了在肌細(xì)胞中,具有活性的GAP區(qū)域?qū)τ贏S160抑制胰島素刺激下GLUT4的轉(zhuǎn)運(yùn)是必不可少的。胰島素刺激的小鼠脛骨前肌過表達(dá)4P-AS160,機(jī)體內(nèi)葡萄糖的攝取比對照組約<50%[19]。T649A-AS160突變型小鼠中(阻止AS160的T649位點(diǎn)磷酸化,相當(dāng)于人類AS160的T642位點(diǎn))在脛骨前肌和四頭肌中攝取葡萄糖能力降低約<20%[20]。此外,T649A-AS160突變型小鼠體內(nèi),胰島素刺激下GLUT4的膜轉(zhuǎn)運(yùn)也顯著低于野生型小鼠[21]。這些實驗結(jié)果都說明在肌細(xì)胞中胰島素刺激GLUT4的轉(zhuǎn)運(yùn)也需要AS160在Akt作用下磷酸化,抑制其GAP區(qū)域活性,影響Rab蛋白活性[22]。
在人體內(nèi),已知的Rab家族蛋白有70多種。在離體狀態(tài)中,AS160的GAP區(qū)域?qū)τ赗ab2A,Rab8A,Rab10和Rab14都有活性[23]。在3T3-L1脂肪細(xì)胞中,Rab10在胰島素刺激下GLUT4轉(zhuǎn)運(yùn)中起了至關(guān)重要的作用[24]。但在L6肌細(xì)胞中,胰島素刺激GLUT4轉(zhuǎn)運(yùn)需要Rab8和Rab13作為AS160的調(diào)控蛋白。目前,AS160調(diào)控GLUT4的移位的具體步驟仍有爭議。有一種假設(shè)是AS160主要調(diào)節(jié)GLUT4囊泡的胞內(nèi)滯留與釋放,并不影響囊泡的栓系,錨定以及融合在細(xì)胞質(zhì)膜上[25]。另一種假設(shè)是GLUT4囊泡在滯留處釋放后,磷酸化的AS160與14-3-3蛋白結(jié)合,AS160的N端PTB區(qū)域有利于GLUT4囊泡和質(zhì)膜的錨定與融合[26]。
Rab蛋白,是小G蛋白家族最大的一個分支,共有60多種亞基,大約由200個氨基酸組成,分子質(zhì)量為(20 ~30)ku,是胰島素刺激下GSV轉(zhuǎn)運(yùn)到細(xì)胞膜的一種重要調(diào)控因子[27]。Rab蛋白主要存在于細(xì)胞內(nèi)膜組分中,控制2個鄰近細(xì)胞器之間的膜轉(zhuǎn)運(yùn),不同的Rab蛋白具有不同的分子特異性,在不同內(nèi)膜組分中造成特異的融合[28]。Rab蛋白與其他小G蛋白一樣,有未活化的Rab-GDP形式以及活化的Rab-GTP形式[29]。當(dāng)Rab蛋白被活化處于Rab-GTP形式時,能激活下游效應(yīng)蛋白,調(diào)控膜轉(zhuǎn)運(yùn)過程的許多步驟:囊泡轉(zhuǎn)運(yùn)、栓系、錨定以及融合。與質(zhì)膜融合后,Rab蛋白又回到Rab-GDP的形式,從膜上分離出來,進(jìn)入下一次循環(huán)[30]。已有很多關(guān)于特異性Rab蛋白對GLUT4轉(zhuǎn)運(yùn)影響的研究,在富含GLUT4的脂肪細(xì)胞和肌細(xì)胞的內(nèi)膜中已檢測到Rab2,Rab4,Rab8,Rab10,Rab11和Rab14[31]。在這些Rab蛋白中,Rab4和Rab11的突變體能抑制GLUT4的轉(zhuǎn)運(yùn),Rab5參與GLUT4的內(nèi)吞轉(zhuǎn)運(yùn)[4]。
3.1Rab4調(diào)控葡萄糖轉(zhuǎn)運(yùn)蛋白4轉(zhuǎn)運(yùn)以及融合
Rab4位于早期/再循環(huán)內(nèi)涵體中,有助于物質(zhì)的分選和循環(huán)過程。Rab4也出現(xiàn)在脂肪細(xì)胞和骨骼肌的GLUT4儲存囊泡中,胰島素的刺激會引起脂肪細(xì)胞和肌細(xì)胞囊泡中Rab4蛋白含量降低[32]。有研究顯示,脂肪細(xì)胞和肌細(xì)胞中,GLUT4和Rab4共定位于低密度微粒體組分中[33]。胰島素激活了Rab4,后者從胞漿移動到這些微粒組分中,同時GLUT4轉(zhuǎn)運(yùn)到質(zhì)膜上[34]。并且,向細(xì)胞內(nèi)導(dǎo)入相當(dāng)于Rab4的C端片段或過表達(dá)野生型Rab4和過表達(dá)C端缺失的突變體都會抑制胰島素刺激下GLUT4的轉(zhuǎn)運(yùn)[35]。而且,胰島素刺激Rab4和驅(qū)動蛋白間的相互作用,激活下游的非典型蛋白激酶C。這個作用是GLUT4囊泡移動到質(zhì)膜上所必須的[36]。此外,研究表明,Rab4可通過GTP/GDP的形式直接與突觸融合蛋白4(syntaxin4,STX4)作用,調(diào)節(jié)SNARE復(fù)合體中蛋白與蛋白的相互作用,促使GLUT4囊泡融合到質(zhì)膜中[37]。綜上所述,Rab4在GLUT4囊泡的運(yùn)動以及囊泡的融合中發(fā)揮重要的作用。
3.2Rab10促進(jìn)葡萄糖轉(zhuǎn)運(yùn)蛋白4的轉(zhuǎn)運(yùn)
在脂肪細(xì)胞中,目前認(rèn)為AS160最主要的底物是Rab10蛋白。在基礎(chǔ)狀態(tài)下,脂肪細(xì)胞中過表達(dá)持續(xù)激活的Rab10突變體,能增加細(xì)胞表面GLUT4的水平[38]。與此相反的是,Rab10基因敲除會降低胰島素刺激下的GLUT4的轉(zhuǎn)運(yùn)。關(guān)鍵是基礎(chǔ)狀態(tài)下由于敲除AS160導(dǎo)致細(xì)胞表面GLUT4的增加會由于Rab10的敲除而局部受阻,也會由于Rab10的過表達(dá)而進(jìn)一步增加[39]。這表明在基礎(chǔ)狀態(tài)下的細(xì)胞中,Rab10通過AS160的作用保持在活化的Rab-GTP形式,使GLUT4滯留在細(xì)胞內(nèi)。Rab10可能作用于GSV,因為無論是敲除還是過表達(dá)的Rab10都不能對細(xì)胞表面的轉(zhuǎn)鐵蛋白受體(transferrin receptor,TfR)水平起作用[40]。同時研究發(fā)現(xiàn)在胰島素作用下能移動到質(zhì)膜上的含GLUT4不含TfR的囊泡,即GSV(GSV含GLUT4不含TfR,核內(nèi)體含GLUT4也含TfR)中富含Rab10[41]。最近,已確定Dennd4C(DENN/MADD區(qū)域含4C,是一種蛋白質(zhì)編碼基因)與鳥嘌呤核苷酸交換因子(guanine nucleotide exchange factor,GEF)一樣對Rab10蛋白起作用(激活Rab10蛋白形成Rab10-GTP形式)影響GLUT4轉(zhuǎn)運(yùn),但胰島素的刺激并不能激活DenndC基因[42]。這意味著胰島素調(diào)節(jié)Rab10蛋白完全是通過AS160磷酸化的作用?;A(chǔ)狀態(tài)下的細(xì)胞表面GLUT4水平由于Rab10的過表達(dá),AS160的敲除而增加,同時Rab10過表達(dá)以及AS160敲除兩者結(jié)合在胰島素刺激下會進(jìn)一步增加細(xì)胞表面GLUT4的水平[43],由此推測,Rab10持續(xù)激活的突變體可不依賴于胰島素信號通路導(dǎo)致GSV向細(xì)胞膜移動。全內(nèi)角反射熒光顯微鏡的研究進(jìn)一步支持了這個結(jié)論[35]。由此推測,Rab10蛋白在GLUT4轉(zhuǎn)運(yùn)中所起的作用主要是基礎(chǔ)狀態(tài)下提高細(xì)胞內(nèi)GLUT4水平,激活狀態(tài)下促進(jìn)GSV移動到細(xì)胞外圍。
3.3Rab14調(diào)控葡萄糖轉(zhuǎn)運(yùn)蛋白4從早期的核內(nèi)體到高爾基體轉(zhuǎn)運(yùn)
盡管Rab10蛋白是迄今唯一被確定的作用于GSV上的蛋白,但其他Rab蛋白也參與GLUT4的轉(zhuǎn)運(yùn)過程。用4P-AS160持續(xù)激活L6肌細(xì)胞,GLUT4的轉(zhuǎn)位受到抑制,Reed等[44]發(fā)現(xiàn)過表達(dá)野生型Rab14可改善此抑制作用。與此相反的是,不管是野生型的還是持續(xù)激活的Rab10都不能恢復(fù)L6肌細(xì)胞中GLUT4的轉(zhuǎn)位。由此猜測,在離體條件下,Rab14可能是AS160的靶點(diǎn),會引起細(xì)胞中GLUT4的轉(zhuǎn)位。研究表明,Rab14蛋白的敲除會通過早期核內(nèi)體抑制囊泡和細(xì)胞核周圍區(qū)域的微管中的GLUT4的轉(zhuǎn)運(yùn)[45]。Ishikura等[46]提出Rab14在GLUT4轉(zhuǎn)運(yùn)過程中起作用就是控制內(nèi)化的GLUT4從早期的核內(nèi)體到高爾基體的運(yùn)輸,推測Rab14激活的突變體通過將GLUT4留在對胰島素不敏感的TGN和ERC中,進(jìn)而降低基礎(chǔ)狀態(tài)和胰島素刺激下細(xì)胞表面的GLUT4含量。
3.4Rab8A調(diào)控葡萄糖轉(zhuǎn)運(yùn)蛋白4的錨定
Rab8調(diào)控囊泡在TGN和質(zhì)膜間的轉(zhuǎn)運(yùn)。通過單個基因敲除發(fā)現(xiàn),在肌肉細(xì)胞中,只有Rab8A參與胰島素刺激導(dǎo)致的GLUT4轉(zhuǎn)運(yùn)過程,其他2個亞型均未涉及[47]。在肌細(xì)胞中,過表達(dá)Rab8A會部分緩解因AS160-4P引起的GLUT4轉(zhuǎn)運(yùn)受阻。更進(jìn)一步的研究顯示,Rab8A蛋白的敲除會減少胰島素依賴的GLUT4出現(xiàn)在肌肉細(xì)胞的膜表面[48]。在肌細(xì)胞中用相似的方法處理Rab10蛋白,即敲除Rab10蛋白,不會減少肌細(xì)胞膜表面GLUT4的含量[49],盡管在脂肪細(xì)胞中Rab10作為AS160的靶點(diǎn)基因敲除會降低脂肪細(xì)胞膜表面的GLUT4含量[50]。因此,Rab8A被認(rèn)為是肌細(xì)胞中GLUT4轉(zhuǎn)運(yùn)的特異性調(diào)控者。已有實驗證明Rab8A調(diào)控囊泡在TGN和質(zhì)膜之間的轉(zhuǎn)運(yùn)[51]。Rab8A與Sec4P高度同源,通過與Sec10P和Sec15P相互作用形成胞外復(fù)合體錨定囊泡使其從TGN移動到質(zhì)膜上[52],由此推測AS160可能通過Rab8A調(diào)控胰島素刺激下GSV轉(zhuǎn)運(yùn)中錨定的步驟。
3.5Rab13促進(jìn)葡萄糖轉(zhuǎn)運(yùn)蛋白4囊泡和質(zhì)膜融合
Rab13和Rab8A以及Rab10在進(jìn)化上密切相關(guān),盡管它們有著不同的C端區(qū)域,仍表現(xiàn)出高度的同源性。在肌細(xì)胞中,Rab13和Rab8A在細(xì)胞中過表達(dá)都可修復(fù)因AS160-4P的持續(xù)激活引起的GLUT4轉(zhuǎn)運(yùn)受阻[53]。由此可見在肌細(xì)胞中,Rab13和Rab8A都作用于AS160的下游,是AS160的靶點(diǎn),參與胰島素刺激GLUT4轉(zhuǎn)運(yùn)的過程。但是Sun等[54]研究發(fā)現(xiàn),Rab13和Rab8A兩者調(diào)控胰島素的轉(zhuǎn)運(yùn)過程中有著不同的激活時間(Rab8A約在2 min被胰島素激活;Rab13約在5 min)。并且它們的亞細(xì)胞定位也不同,Rab13蛋白主要出現(xiàn)在細(xì)胞外圍,而Rab8A主要在細(xì)胞核周圍[18]。推測Rab8A在胰島素敏感的GLUT4囊泡上起作用主要在細(xì)胞核周圍,而Rab13在GLUT4轉(zhuǎn)運(yùn)中更多在細(xì)胞外圍起作用。也有研究證實,Rab13可通過與t-SNARE STX4作用促進(jìn)細(xì)胞外圍形態(tài)發(fā)生變化[55]。在脂肪細(xì)胞和肌細(xì)胞中,STX4可調(diào)節(jié)GLUT4囊泡融合到質(zhì)膜上[56]。由此推測,Rab13主要在GLUT4囊泡融合到質(zhì)膜過程中起作用。
Rab蛋白和AS160與胰島素的信號傳導(dǎo)及GLUT4的轉(zhuǎn)運(yùn)密切相關(guān),包括連接胰島素信號與GLUT4轉(zhuǎn)運(yùn)、GLUT4移位、錨定及與質(zhì)膜融合等。新型的顯微成像技術(shù)對細(xì)胞內(nèi)的轉(zhuǎn)運(yùn)過程有了更深的了解,通過TIRFM顯微鏡觀察到GLUT4轉(zhuǎn)運(yùn)到質(zhì)膜附近,但仍不明確GLUT4是如何穿過內(nèi)膜系統(tǒng)到達(dá)質(zhì)膜附近的。新的顯微成像技術(shù)對了解GSV的形成以及如何停留在細(xì)胞內(nèi)提供了一個可能的途徑。同樣,同一個Rab蛋白在肌肉細(xì)胞和脂肪細(xì)胞中有著不同的表現(xiàn)也有待進(jìn)一步的研究。
綜上所述,Rab蛋白和AS160可能是阻止糖尿病進(jìn)程的強(qiáng)有力的靶點(diǎn),發(fā)現(xiàn)抑制AS160的藥物并闡明其分子機(jī)制可能是糖尿病及其并發(fā)癥治療的重要突破。
[1]Zeigerer A,Lampson MA,Karylowski O,Sabatini DD,Adesnik M,Ren M,et al.GLUT4 Retention in adipocytes requires two intracellular insulin-regu?lated transport steps[J].Mol Biol Cell,2002,13(7):2421-2435.
[2]Bogan JS.Regulation of glucose transporter trans?location in health and diabetes[J].Annu Rev Bio?chem,2012,81(1):507-532.
[3] Mcbrayer SK,Cheng JC,Singhal S,Krett NL,Rosen ST,Shanmugam M.Multiple myeloma exhibits novel dependence on GLUT4,GLUT8,and GLUT11:implications for glucose transporterdirected therapy[J].Blood,2012,119(20):4686-4697.
[4]Huang J,Imamura T,Olefsky JM.Insulin can reg?ulate GLUT4 internalization by signaling to Rab5 and the motor protein dynein[J].Proc Natl Acad Sci USA,2001,98(23):13084-13089.
[5] Satoh T.Molecular mechanisms for the regulation of insulin-stimulated glucose uptake by small gua?nosine triphosphatases in skeletal muscle and adi?pocytes[J].Int J Mol Sci,2014,15(10):18677-18692.
[6] St?ckli J,F(xiàn)azakerley DJ,James DE.GLUT4 Exo?cytosis[J].J Cell Sci,2011,124(Pt 24):4147-4159.
[7] Vanhaesebroeck B,Stephens L,Hawkins P.PI3K Signalling:the path to discovery and understand?ing[J].Nat Rev Mol Cell Biol,2012,13(3):195-203.
[8] Kane S,Sano H,Liu SC,Asara JM,Lane WS,Garner CC,et al.A method to identify serine kinase substrates.Akt Phosphorylates a novel adipocyte protein with a Rab GTPase-activating protein(GAP)domain[J].J Biol Chem,2002,277(25):22115-22118.
[9] Thong FS,Bilan PJ,Klip A.The Rab GTPaseactivating protein AS160 integrates Akt,protein kinase C,and AMP-activated protein kinase signals regulating GLUT4 traffic[J].Diabetes,2007,56(2):414-423.
[10] Cartee GD.Roles of TBC1D1 and TBC1D4 in insulin-and exercise-stimulated glucose transport of skeletal muscle[J].Diabetologia,2015,58(1):19-30.
[11] Larance M,Ramm G,St?ckli J,Van Dam EM,Winata S,Wasinger V,et al.Characterization of the role of the Rab GTPase-activating protein AS160 in insulin-regulated GLUT4 trafficking[J].J Biol Chem,2005,280(45):37803-37813.
[12] BrewerPD,RomenskaiaI,KanowMA,MastickCC. Loss of AS160 Akt substrate causes Glut4 protein to accumulate in compartments that are primed for fusion in basal adipocytes[J].J Biol Chem,2011,286(30):26287-26297.
[13] Sano H,Kane S,Sano E,M?inea CP,Asara JM,Lane WS,et al.Insulin-stimulated phosphoryla?tion of a Rab GTPase-activating protein regulates GLUT4 translocation[J].J Biol Chem,2003,278(17):14599-14602.
[14] Geraghty KM,Chen S,Harthill JE,Ibrahim AF,Toth R,Morrice NA,et al.Regulation of multisite phosphorylation and 14-3-3 binding of AS160 in response to IGF-1,EGF,PMA and AICAR[J].Biochem J,2007,407(2):231-241.
[15] Chen S,Synowsky S,Tinti M,Mackintosh C. The capture of phosphoproteins by 14-3-3 pro?teins mediates actions of insulin[J].Trends Endo?crinol Metab,2011,22(11):429-436.
[16] Ramm G,Larance M,Guilhaus M,James DE.A role for 14-3-3 in insulin-stimulated GLUT4 trans?location through its interaction with the RabGAP AS160[J].J Biol Chem,2006,281(39):29174-29180.
[17] Hargett SR,Walker NN,Keller SR.Rab GAPs AS160 And tbc1d1 play nonredundant roles in the regulation of glucose and energy homeosta?sis in mice[J].Am J Physiol Endocrinol Metab,2016,310(4):E276-E288.
[18] Ishikura S,Bilan PJ,Klip A.Rabs 8A And 14 are targets of the insulin-regulated Rab-GAP AS160 regulating GLUT4 traffic in muscle cells[J].Bio?chem Biophys Res Commun,2007,353(4):1074-1079.
[19] Kramer HF,Taylor EB,Witczak CA,F(xiàn)ujii N, Hirshman MF,Goodyear LJ.Calmodulin-binding domain of AS160 regulates contraction-but not in?sulin-stimulated glucose uptake in skeletal muscle[J].Diabetes,2007,56(12):2854-2862.
[20] Chen S,Wasserman DH,Mackintosh C,Sakamoto K.Mice with AS160/TBC1D4-Thr649Ala knockin mutation are glucose intolerant with reduced insu?lin sensitivity and altered GLUT4 trafficking[J].Cell Metab,2011,13(1):68-79.
[21] Mccurdy CE,Cartee GD.Akt2 Is essential for the full effect of calorie restriction on insulin-stimulated glucose uptake in skeletal muscle[J].Diabetes,2005,54(5):1349-1356.
[22] Kramer HF,Witczak CA,F(xiàn)ujii N,Jessen N,Taylor EB,Arnolds DE,et al.Distinct signals regulate AS160 phosphorylation in response to insulin,AICAR,and contraction in mouse skeletal muscle[J].Diabetes,2006,55(7):2067-2076.
[23] M?inea CP,Sano H,Kane S,Sano E,F(xiàn)ukuda M,Per?nen J,et al.AS160,The Akt substrate regu?lating GLUT4 translocation,has a functional Rab GTPase-activating protein domain[J].Biochem J,2005,391(Pt 1):87-93.
[24] Chen Y,Lippincott-Schwartz J.Insulin triggers surface-directed trafficking of sequestered GLUT4 storage vesicles marked by Rab10[J].Small GTPases,2014,4(3):193-197.
[25] Brewer PD,Habtemichael EN,Romenskaia I,Mastick CC,Coster AC.Insulin-regulated Glut4 translocation:membrane protein trafficking with six distinctive steps[J].J Biol Chem,2014,289(25):17280-17298.
[26] Tan SX,Ng Y,Burchfield JG,Ramm G,Lambright DG,St?ckli J,et al.The Rab GTPase-activating protein TBC1D4/AS160 contains an atypical phos?photyrosine-binding domain that interacts with plasma membrane phospholipids to facilitate GLUT4 trafficking in adipocytes[J].Mol Cell Biol,2012,32(24):4946-4959.
[27]Uno T,F(xiàn)urutani M,Watanabe C,Sakamoto K,Uno Y,Kanamaru K,et al.Rab Proteins in the brain and corpus allatum ofBombyx mori[EB/OL].(2016-03-15)[2016-03-29]http://www.ncbi.nlm. nih.gov/pubmed/26976000
[28]Klip A,Sun Y,Chiu TT,F(xiàn)oley KP.Signal trans?duction meets vesicle traffic:the software and hardware of GLUT4 translocation[J].Am J Physiol Cell Physiol,2014,306(10):C879-C886.
[29]Kern A,Dikic I,Behl C.The integration of autopha?gy and cellular trafficking pathways via RAB GAPs[J].Autophagy,2015,11(12):2393-2397.
[30]Foley K,Boguslavsky S,Klip A.Endocytosis,recycling,and regulated exocytosis of glucose transporter 4[J].Biochemistry,2011,50(15):3048-3061.
[31]Rowland AF,F(xiàn)azakerley DJ,James DE.Mapping insulin/GLUT4 circuitry[J].Traffic,2011,12(6):672-681.
[32]Zerial M,Mcbride H.Rab Proteins as membrane organizers[J].Nat Rev Mol Cell Biol,2001,2(2):107-117.
[33]Vollenweider P,Martin SS,Haruta T,Morris AJ,Nelson JG,Cormont M,et al.The small guano?sine triphosphate-binding protein Rab4 is involved in insulin-induced GLUT4 translocation and actin filament rearrangement in 3T3-L1 cells[J].Endo?crinology,1997,138(11):4941-4949.
[34] Cormont M,Tanti JF,Zahraoui A,Van Obber?ghen E,Tavitian A,Le Marchand-Brustel Y.Insu?lin and okadaic acid induce Rab4 redistribution in adipocytes[J].J Biol Chem,1993,268(26):19491-19497.
[35]Shibata H,Omata W,Kojima I.Insulin stimulates guanine nucleotide exchange on Rab4 via a wort?mannin-sensitive signaling pathway in rat adipo?cytes[J].JBiolChem,1997,272(23):14542-14546.
[36]Cormont M,Gautier N,Ilc K,Le Marchand-Brus?tel Y.Expression of a prenylation-deficient Rab4 in?hibits the GLUT4 translocation induced by active phosphatidylinositol 3-kinase and protein kinase B[J].Biochem J,2001,356(Pt 1):143-149.
[37]Li L,Omata W,Kojima I,Shibata H.Direct inter?action of Rab4 with syntaxin 4[J].J Biol Chem,2001,276(7):5265-5273.
[38]Sano H,Peck GR,Kettenbach AN,Gerber SA,Lienhard GE.Insulin-stimulated GLUT4 protein translocation in adipocytes requires the Rab10 guanine nucleotide exchange factor Dennd4C[J].J Biol Chem,2011,286(19):16541-16545.
[39]Sadacca LA,Bruno J,Wen J,Xiong W,Mcgraw TE.Specialized sorting of GLUT4 and its recruit?ment to the cell surface are independently regulat?ed by distinct Rabs[J].Mol Biol Cell,2013,24(16):2544-2557.
[40] Chen Y,Lippincott-Schwartz J.Rab10 Delivers GLUT4 storage vesicles to the plasma membrane[J].Commun Integr Biol,2013,6(3):e23779.
[41] Chen Y,Wang Y,Zhang J,Deng Y,Jiang L,Song E,et al.Rab10 And myosin-Ⅴa mediate in?sulin-stimulated GLUT4 storage vesicle transloca? tion in adipocytes[J].J Cell Biol,2012,198(4):545-560.
[42]Govers R.Molecular mechanisms of GLUT4 regu?lation in adipocytes[J].Diabetes Metab,2014,40(6):400-410.
[43]Karunanithi S,Xiong T,Uhm M,Leto D,Sun J,Chen XW,et al.A Rab10:RalA G protein cascade regulates insulin-stimulated glucose uptake in adi?pocytes[J].Mol Biol Cell,2014,25(19):3059-3069.
[44]Reed SE,Hodgson LR,Song S,May MT,Kelly EE,Mccaffrey MW,et al.A role for Rab14 in the endocytic trafficking of GLUT4 in 3T3-L1 adipo?cytes[J].J Cell Sci,2013,126(Pt 9):1931-1941.
[45]Junutula JR,De Maziére AM,Peden AA,Ervin KE,Advani RJ,Van Dijk SM,et al.Rab14 Is in?volved in membrane trafficking between the Golgi complex and endosomes[J].Mol Biol Cell,2004,15(5):2218-2229.
[46]Ishikura S,Koshkina A,Klip A.Small G proteins in insulin action:Rab and Rho families at the crossroads of signal transduction and GLUT4 vesi?cle traffic[J].Acta Physiol(Oxf),2008,192(1):61-74.
[47]Huber LA,Pimplikar S,Parton RG,Virta H,Zerial M,Simons K.Rab8,A small GTPase involved in vesicular traffic between the TGN and the basolat?eral plasma membrane[J].J Cell Biol,1993,123(1):35-45.
[48] Samovski D,Su X,Xu Y,Abumrad NA,Stahl PD.Insulin and AMPK regulate FA translocase/ CD36 plasma membrane recruitment in cardiomyo?cytes via Rab GAP AS160 and Rab8a Rab GTPase[J].J Lipid Res,2012,53(4):709-717.
[49]Sano H,Roach WG,Peck GR,F(xiàn)ukuda M,Lien?hard GE.Rab10 In insulin-stimulated GLUT4 trans?location[J].Biochem J,2008,411(1):89-95.
[50]Ang AL,F(xiàn)?lsch H,Koivisto UM,Pypaert M,Mell?man I.The Rab8 GTPase selectively regulates AP-1B-dependent basolateral transport in polarized Madin-Darby canine kidney cells[J].J Cell Biol,2003,163(2):339-350.
[51]Sztul E,Lupashin V.Role of tethering factors in se?cretory membrane traffic[J].Am J Physiol Cell Physiol,2006,290(1):C11-C26.
[52]Ewart MA,Clarke M,Kane S,Chamberlain LH,Gould GW.Evidence for a role of the exocyst in in?sulin-stimulated Glut4 trafficking in 3T3-L1 adipo?cytes[J].J Biol Chem,2005,280(5):3812-3816.
[53] Ishikura S,Klip A.Muscle cells engage Rab8Aand myosin Vb In insulin-dependent GLUT4 trans?location[J].Am J Physiol Cell Physiol,2008,295(4):C1016-C1025.
[54]Sun Y,Bilan PJ,Liu Z,Klip A.Rab8A And Rab13 are activated by insulin and regulate GLUT4 trans?location in muscle cells[J].Proc Natl Acad Sci USA,2010,107(46):19909-19914.
[55]K?hler K,Zahraoui A.Tight junction:a co-ordina?tor of cell signalling and membrane trafficking[J].Biol Cell,2005,97(8):659-665.
[56] Foster LJ,Klip A.Mechanism and regulation of GLUT-4 vesicle fusion in muscle and fat cells[J].Am J Physiol Cell Physiol,2000,279(4):C877-C890.
Role of Rab proteins in glucose transporter 4 translocation:research advances
OU Li-ting1,XU Ying-ke2,LI Han-bing1
(1.Department of Pharmacology,College of Pharmaceutical Science,Zhejiang University of Technology,Hangzhou 310014,China;2.Department of Biomedical Engineering,College of Biomedical Engineering&Instrument Science,Zhejiang University,Hangzhou 310027,China)
Insulins maintain blood glucose homeostasis in the body by stimulating glucose uptake into muscle and adipose tissues through glucose transporter type 4(GLUT4)translocation.Recent studies have showed that Rab proteins,as a key regulatory factor for the translocation of GLUT4 to the cell membrane,participate in the formation,translocation and fusion of GLUT4 vesicles.This paper describes several types Rab proteins and the Rab GTPase activating protein,protein kinase B substrate of 160 kU(AS160)in terms of regulatory mechanisms for GLUT4 translocation.Studies on the translocation mechanism by which GLUT4 is regulated by Rabs aim to explain the mechanism of insulin resistance in type 2 diabetes,and provide a new approach to diabetes.
glucose transporter type 4;insulins;Rab proteins;insulin receptor substrate proteins
LI Han-bing,E-mail:hanbing.li@163.com,Tel:(0571)88320535
R963
A
1000-3002-(2016)07-0770-07
10.3867/j.issn.1000-3002.2016.07.010
Foundation item:The project supported by Natural Science Foundation of Zhejiang Province(LY14H310003);Natural Science Foundation of Zhejinag Province(LY13C050001);and Doctoral Fund of Ministry of Education of China(20130101120172).
2016-01-04 接受日期:2016-04-07)
(本文編輯:賀云霞)
浙江省自然科學(xué)基金(LY14H310003),浙江省自然科學(xué)基金(LY13C050001);教育部博士點(diǎn)基金(20130101120172)
歐麗婷,女,碩士研究生,主要從事糖尿病及并發(fā)癥病理機(jī)制研究。
李漢兵,E-mail:hanbing.li@163.com