牛志國(guó) 黃青松 曹 旗
(新鄉(xiāng)醫(yī)學(xué)院醫(yī)學(xué)檢驗(yàn)學(xué)院免疫學(xué)研究中心 河南省分子診斷與醫(yī)學(xué)檢驗(yàn)技術(shù)協(xié)同創(chuàng)新中心,新鄉(xiāng)453000)
·專題綜述·
巨噬細(xì)胞與腎臟損傷的研究進(jìn)展①
牛志國(guó) 黃青松 曹 旗②
(新鄉(xiāng)醫(yī)學(xué)院醫(yī)學(xué)檢驗(yàn)學(xué)院免疫學(xué)研究中心 河南省分子診斷與醫(yī)學(xué)檢驗(yàn)技術(shù)協(xié)同創(chuàng)新中心,新鄉(xiāng)453000)
巨噬細(xì)胞在腎臟炎癥損傷與纖維化過(guò)程中發(fā)揮重要作用。巨噬細(xì)胞具有高度異質(zhì)性,腎病類型不同,腎內(nèi)局部微環(huán)境不同,巨噬細(xì)胞的表型與功能也不同。腎臟壞死組織、炎癥損傷或病原相關(guān)模式分子誘導(dǎo)的促炎型巨噬細(xì)胞可加重腎臟的炎癥損傷和纖維化;而炎癥組織中的凋亡細(xì)胞和抗炎因素則可誘導(dǎo)抗炎型巨噬細(xì)胞產(chǎn)生,調(diào)節(jié)腎臟的修復(fù)與再生。本文論述了幾種急性和慢性腎病中,不同表型的巨噬細(xì)胞在腎臟炎癥損傷和纖維化過(guò)程中的作用。了解腎臟局部微環(huán)境的改變及決定巨噬細(xì)胞表型和功能改變的因素,可為腎病患者提供一條新的以細(xì)胞或細(xì)胞因子治療為基礎(chǔ)的生物替代療法。
巨噬細(xì)胞屬于單核吞噬細(xì)胞家族,起源于骨髓中的髓系祖細(xì)胞。巨噬細(xì)胞不僅是固有免疫的重要成員,而且也參與適應(yīng)性免疫應(yīng)答,其在體內(nèi)平衡、免疫監(jiān)視、組織損傷與修復(fù)中發(fā)揮重要功能[1]。研究證明胚胎期巨噬細(xì)胞可分化為組織固有巨噬細(xì)胞[2,3],根據(jù)解剖位置,巨噬細(xì)胞又被稱為朗格漢斯細(xì)胞、枯否細(xì)胞、小膠質(zhì)細(xì)胞和破骨細(xì)胞等[4]。腎臟一旦發(fā)育,腎內(nèi)即出現(xiàn)巨噬細(xì)胞,并且集落刺激因子1(CSF-1)可加速腎單位的形成,說(shuō)明胚胎期巨噬細(xì)胞能促進(jìn)腎臟的發(fā)育。腎臟感染或損傷時(shí),隨著局部微環(huán)境的改變,巨噬細(xì)胞的表型和功能也發(fā)生改變[5]。
根據(jù)功能,巨噬細(xì)胞分為M1型和M2型。M1型巨噬細(xì)胞即經(jīng)典激活的巨噬細(xì)胞,由LPS或IFN-γ誘導(dǎo)生成,可產(chǎn)生大量的促炎介質(zhì),調(diào)解機(jī)體的抗菌和抗腫瘤免疫;M2型巨噬細(xì)胞即選擇性激活的巨噬細(xì)胞,由Th2細(xì)胞因子(如IL-4或IL-10)誘導(dǎo)生成,具有抗炎、抗寄生蟲感染、促進(jìn)創(chuàng)傷修復(fù)以及纖維化形成的作用[6]。M2型巨噬細(xì)胞分為三個(gè)亞型:M2a型,主要由IL-4或IL-13誘導(dǎo)產(chǎn)生;M2b型,由IL-1β或LPS誘導(dǎo)產(chǎn)生;M2c型,由IL-10、TGF-β或糖皮質(zhì)激素誘導(dǎo)產(chǎn)生[7]。根據(jù)激活方式和功能,巨噬細(xì)胞分為經(jīng)典激活型(M1型)、創(chuàng)傷修復(fù)型(M2a型)和調(diào)節(jié)型(M2c型)。然而,體外巨噬細(xì)胞的分類并不能完全反映它們?cè)隗w內(nèi)的真實(shí)表型。最近,Anders等[8]根據(jù)巨噬細(xì)胞在腎病不同階段的作用提出體內(nèi)巨噬細(xì)胞分為4種類型:即促炎型、抗炎型、促纖維型和纖維水解型。體內(nèi)巨噬細(xì)胞的表型僅代表特定階段局部微環(huán)境內(nèi)激活的表型,在腎臟炎癥損傷、纖維化和修復(fù)的不同階段,為了適應(yīng)局部微環(huán)境的改變,巨噬細(xì)胞的功能可能發(fā)生改變,從而表現(xiàn)出不同的表型。腎固有巨噬細(xì)胞和單核細(xì)胞衍生的巨噬細(xì)胞在腎臟免疫力、穩(wěn)態(tài)和修復(fù)等方面的功能不同,最近研究證明組織內(nèi)固有巨噬細(xì)胞能在局部微環(huán)境中維持自我平衡,而不需單核細(xì)胞的浸潤(rùn)[9]。腎臟病變時(shí)腎內(nèi)固有巨噬細(xì)胞表現(xiàn)出異質(zhì)性,M1型巨噬細(xì)胞存在于各種類型腎病中[8],而M2型巨噬細(xì)胞僅存在于急性腎損傷(如缺血性的腎臟),不存在于慢性腎病[10]。在肥胖相關(guān)性炎癥模型中,脂肪組織內(nèi)的M2a型巨噬細(xì)胞可轉(zhuǎn)變?yōu)镸1型[11];修復(fù)階段把IFN-γ誘導(dǎo)的M1型巨噬細(xì)胞回輸給小鼠后可轉(zhuǎn)變?yōu)镸2型;體外共培養(yǎng)表明,腎小管細(xì)胞衍生因子可誘導(dǎo)巨噬細(xì)胞表型的改變,以上結(jié)果表明腎臟局部微環(huán)境決定了巨噬細(xì)胞的表型。
2.1 促炎型巨噬細(xì)胞加重腎臟炎癥損傷 巨噬細(xì)胞在腎臟炎癥損傷中具有致病作用。研究發(fā)現(xiàn),腎小球腎炎患者腎損傷的嚴(yán)重程度與巨噬細(xì)胞滲透的多少有關(guān),表明巨噬細(xì)胞在人類腎病中具有致病作用[12]。急性缺血再灌注損傷(IRI)和單側(cè)輸尿管梗阻(UUO)小鼠,用氯膦酸二鈉脂質(zhì)體(LC)損耗巨噬細(xì)胞能顯著減輕腎損傷,表明巨噬細(xì)胞在動(dòng)物腎病中也具有致病作用[13]。急性腎損傷早期,中性粒細(xì)胞和NK細(xì)胞滲透顯著增加,隨即單核細(xì)胞也滲入腎內(nèi)并分化為巨噬細(xì)胞,加重腎小管損傷[14]。感染期間,腎間質(zhì)微環(huán)境由微生物病原體相關(guān)分子模式(PAMPs)和壞死細(xì)胞釋放的損傷相關(guān)分子模式(DAMPs)所調(diào)控[15]。模式識(shí)別受體識(shí)別PAMPs,激活腎內(nèi)巨噬細(xì)胞和腎實(shí)質(zhì)細(xì)胞,分泌促炎性細(xì)胞因子和趨化因子,抵御病原體,但同時(shí)也使非特異性組織受損;而DAMPs主要參與無(wú)菌性腎損傷巨噬細(xì)胞的滲透[16]。Toll樣受體(Toll-like receptor,TLR)作為PRR的一種,同時(shí)調(diào)節(jié)固有免疫應(yīng)答和適應(yīng)性免疫應(yīng)答,TLRs可識(shí)別多種病原體成分,如脂多糖、肽聚糖和病毒RNA等,激發(fā)巨噬細(xì)胞吞噬病原體,隨之激活補(bǔ)體,并產(chǎn)生多種細(xì)胞因子,如IL-1β、IL-6、TNF-α,從而介導(dǎo)腎組織損傷。IRI早期腎細(xì)胞釋放的雙糖鏈蛋白多糖(富含亮氨酸),通過(guò)TLR4和TLR2激活巨噬細(xì)胞,活化NF-κB,從而促進(jìn)炎癥因子的表達(dá)[17]。體內(nèi)浸潤(rùn)性Th1細(xì)胞和NK細(xì)胞分泌的IFN-γ、TNF-α和粒細(xì)胞-巨噬細(xì)胞集落刺激因子等炎癥因子激活促炎型巨噬細(xì)胞,其活化后分泌TNF-α、IL-1β、IL-6、IL-23、ROS和其他炎癥介質(zhì)[18],TNF-α又可誘導(dǎo)細(xì)胞凋亡,激活腎臟中的細(xì)胞因子和趨化因子,加重腎損傷[19];IFN-γ、TNF-α和脂多糖(LPS)在體外也可誘導(dǎo)M1型巨噬細(xì)胞活化,這一正反饋見(jiàn)于腎臟IRI、抗腎小球基底膜腎小球腎炎、順鉑腎毒性、阿霉素腎病、狼瘡性腎炎、腎移植損傷等[20]。
2.2 巨噬細(xì)胞在幾種常見(jiàn)腎病中的作用 腎臟IRI是由固有免疫和適應(yīng)性免疫參與的炎癥性疾病[21]。巨噬細(xì)胞是腎缺血后滲入外髓部的主要細(xì)胞,表達(dá)單核細(xì)胞趨化因子受體[22]。單核細(xì)胞表面的C-C趨化因子受體2(CCR2)是單核細(xì)胞趨化蛋白1(MCP-1/CCL2)的受體。CCL2/CCR2是單核細(xì)胞向炎癥部位遷移的主要通路。CCR2敲除小鼠腎臟IRI 24 h后,單核細(xì)胞向腎臟的遷移明顯減少,腎損傷明顯減弱,表明巨噬細(xì)胞可加重急性期腎臟IRI[22]。在IRI早期,腎血管內(nèi)皮細(xì)胞和腎小管上皮細(xì)胞產(chǎn)生細(xì)胞因子和趨化因子,活化樹(shù)突狀細(xì)胞(Dendritic cell,DC),啟動(dòng)固有免疫和適應(yīng)性免疫,導(dǎo)致巨噬細(xì)胞、自然殺傷細(xì)胞(NK細(xì)胞)、淋巴細(xì)胞等免疫細(xì)胞遷移到缺血后腎臟[22]。促炎型巨噬細(xì)胞通過(guò)分泌促炎因子、招募中性粒細(xì)胞、誘導(dǎo)上皮細(xì)胞凋亡而促進(jìn)IRI。小鼠腎臟IRI早期,給藥LC損耗巨噬細(xì)胞可保護(hù)腎臟,表明LC治療后,腎內(nèi)可能出現(xiàn)保護(hù)型巨噬細(xì)胞[23]。體外誘導(dǎo)的M1型巨噬細(xì)胞回輸給小鼠,可加重腎損傷,顯示M1型巨噬細(xì)胞在IRI中具有致病作用[24]。Lee等[24]發(fā)現(xiàn),在腎臟IRI 48 h內(nèi)聚集在腎臟的巨噬細(xì)胞是M1型,48 h以后則為M2型,即在腎臟IRI修復(fù)期,M1型將轉(zhuǎn)換成M2型;IRI早期M1型巨噬細(xì)胞的損耗減輕腎臟損傷,而修復(fù)階段活化的M2型巨噬細(xì)胞產(chǎn)生IL-10和TGF-β等抗炎因子,誘導(dǎo)Foxp3+Treg細(xì)胞分化,增加腎臟基質(zhì)合成,參與腎臟IRI修復(fù)??鼓I小球基底膜(GBM)腎炎中,巨噬細(xì)胞顯示促炎性,加重腎小球腎炎。研究證實(shí),巨噬細(xì)胞在腎小球的聚集是與抗GBM抗體直接反應(yīng)的結(jié)果,抗巨噬細(xì)胞血清可抑制巨噬細(xì)胞的聚集,從而抑制腎小球腎炎的進(jìn)展[25]。氯膦酸鹽可引起抗GBM腎炎中巨噬細(xì)胞損耗,致使其分泌的TNF-α和IL-1β大量減少,從而減輕腎損傷,表明促炎型巨噬細(xì)胞是通過(guò)釋放促炎因子引起腎小球損傷的。促炎型巨噬細(xì)胞的作用通過(guò)過(guò)繼轉(zhuǎn)移得到了進(jìn)一步證實(shí)。Ikezumi等[26]發(fā)現(xiàn),過(guò)繼轉(zhuǎn)移IFN-γ刺激的促炎型巨噬細(xì)胞可調(diào)節(jié)細(xì)胞增殖,引起蛋白尿;而過(guò)繼轉(zhuǎn)移Jun氨基末端激酶(JNK)抑制劑刺激的巨噬細(xì)胞能顯著減輕蛋白尿和腎小球細(xì)胞的增殖。慢性抗GBM腎炎模型中,早期或晚期使用JNK抑制劑治療均可改善腎功能,減輕腎小球與腎小管間質(zhì)的損傷[27]。因此,抗GBM腎炎內(nèi),巨噬細(xì)胞主要通過(guò)JNK途徑調(diào)節(jié)腎損傷。最近發(fā)現(xiàn),抑制巨噬細(xì)胞集落刺激因子受體可消除腎小球內(nèi)巨噬細(xì)胞的浸潤(rùn)和炎癥分子的表達(dá),表明腎小球內(nèi)浸潤(rùn)的巨噬細(xì)胞是促炎性的。抗GBM腎炎中,下調(diào)M1型巨噬細(xì)胞相關(guān)的細(xì)胞因子或上調(diào)M2型巨噬細(xì)胞相關(guān)的細(xì)胞因子都可調(diào)節(jié)他汀類藥物的免疫調(diào)節(jié)作用[28]。這些研究表明,腎小球固有巨噬細(xì)胞是治療腎小球腎炎的潛在靶標(biāo)。順鉑是一種重要的抗腫瘤藥物,廣泛用于治療實(shí)體瘤,但它具有腎毒性,可引起急性腎小管壞死和腎炎。順鉑引起腎損傷的嚴(yán)重程度與腎間質(zhì)巨噬細(xì)胞的數(shù)量呈正相關(guān),表明順鉑能誘導(dǎo)腎內(nèi)巨噬細(xì)胞的致病作用[29]。順鉑引起腎近端小管上皮細(xì)胞壞死與凋亡,誘發(fā)腎炎。順鉑引起的腎損傷中,巨噬細(xì)胞易和不同TLR配體(如PAMPS和DAMPS)結(jié)合,產(chǎn)生大量的NO和促炎因子,增強(qiáng)NF-κB和絲裂原活化蛋白激酶(MAPK)的活性,加重腎臟炎癥。體外試驗(yàn)證明,順鉑能增強(qiáng)巨噬細(xì)胞內(nèi)TLRs及相關(guān)信號(hào)分子的表達(dá)[30]。Ramesh等[31]發(fā)現(xiàn)P38/MAPK的活性受抑制后,巨噬細(xì)胞分泌TNF-α減少,順鉑的腎毒性減弱。羅格列酮(PPARγ的興奮劑)和α-硫辛酸(抗氧化劑)可減少腎間質(zhì)巨噬細(xì)胞的浸潤(rùn),減輕腎功能紊亂和腎小管損傷[24]。這些數(shù)據(jù)表明促炎型巨噬細(xì)胞可加重順鉑誘發(fā)的急性腎損傷。阿霉素腎病(AN)是齲齒類動(dòng)物慢性腎病的模型,反映了人類原發(fā)性局灶性節(jié)段性腎小球硬化癥的特點(diǎn)。在此模型中,巨噬細(xì)胞浸潤(rùn)引起腎小球和腎間質(zhì)損傷。阻塞CCR1、CCL2或CCL5可引起AN小鼠腎內(nèi)巨噬細(xì)胞顯著減少,腎小球和腎間質(zhì)損傷明顯減輕,提示巨噬細(xì)胞在AN的發(fā)展中至關(guān)重要[32]。Cao等[33]首次報(bào)道了巨噬細(xì)胞在AN中具有致病作用,巨噬細(xì)胞的損耗可減輕腎功能損傷,體內(nèi)活化的M1型巨噬細(xì)胞或AN腎內(nèi)的促炎型巨噬細(xì)胞過(guò)繼轉(zhuǎn)移給AN鼠,可加重AN鼠的腎損傷;Cao等[34]還發(fā)現(xiàn)IL-25在體內(nèi)可誘導(dǎo)抗炎型巨噬細(xì)胞產(chǎn)生,有效減輕AN的腎損傷。最近,Wyburn等[35]發(fā)現(xiàn)中性結(jié)合蛋白激活的巨噬細(xì)胞可以產(chǎn)生IL-18,減輕腎間質(zhì)炎癥、組織損傷和腎功能紊亂,抑制AN的發(fā)展。這些研究表明體內(nèi)促炎型巨噬細(xì)胞是治療慢性腎病的靶點(diǎn),為慢性腎病的治療提供了新的治療策略。免疫復(fù)合物的沉積和炎癥細(xì)胞的浸潤(rùn)可引起狼瘡性腎炎(LN)腎損傷。腎內(nèi)巨噬細(xì)胞產(chǎn)生的促炎因子(如IFN-γ)與自身反應(yīng)性T細(xì)胞相互作用,調(diào)節(jié)LN的進(jìn)展。OX40L、CD80和CD86是LN發(fā)病或緩解的標(biāo)志,這些分子在腎內(nèi)浸潤(rùn)巨噬細(xì)胞的表達(dá)增強(qiáng)。在MRL/lpr小鼠,通過(guò)阻塞CCL2/CCR2或損耗集落刺激因子1(CSF-1)驗(yàn)證了促炎型巨噬細(xì)胞在LN中的致病作用[36]?;糒N的MRL/lpr小鼠,腎小管上皮細(xì)胞內(nèi)CSF-1的表達(dá)明顯增強(qiáng);而CSF-1缺失可顯著減少巨噬細(xì)胞浸潤(rùn),減輕腎損傷[36]。M2b型巨噬細(xì)胞表達(dá)的抗炎分子(如IL-10和骨調(diào)素)可緩解LN[32]。在NZB/NZWF1小鼠,LC引起腎巨噬細(xì)胞損耗,抑制腎小球的增殖性病變、消除新月體的形成。M2b型巨噬細(xì)胞可促進(jìn)聚乙烯(I:C)誘導(dǎo)的LN組織修復(fù)。最近研究表明,慢性LN腎內(nèi)F4/80hi型巨噬細(xì)胞既表現(xiàn)促炎性又表現(xiàn)抗炎性,因此,巨噬細(xì)胞M1/M2的極化不能解釋慢性LN[37]。
2.3 抗炎型巨噬細(xì)胞調(diào)節(jié)腎臟的修復(fù)和再生 巨噬細(xì)胞在創(chuàng)傷愈合﹑組織修復(fù)和再生過(guò)程中非常重要。巨噬細(xì)胞參與組織再生,并可轉(zhuǎn)換成其他類型的細(xì)胞(如神經(jīng)細(xì)胞、血管內(nèi)皮細(xì)胞和肌肉細(xì)胞);能夠分泌外泌體,使受損細(xì)胞恢復(fù);參與干細(xì)胞和祖細(xì)胞的形成,若在受損組織中缺失巨噬細(xì)胞,干細(xì)胞和祖細(xì)胞則不能繁殖和分化[38]。促炎型巨噬細(xì)胞通過(guò)分泌炎癥介質(zhì)和腎細(xì)胞相互作用而促成腎病的發(fā)生與發(fā)展。然而,越來(lái)越多的證據(jù)表明巨噬細(xì)胞在腎病康復(fù)階段主要起修復(fù)作用,以IRI最典型[39]。腎病康復(fù)階段巨噬細(xì)胞的缺損與腎炎的持續(xù)、受損腎小管細(xì)胞的增殖及組織修復(fù)有關(guān)[13]。從炎癥損傷到組織修復(fù)和重建,巨噬細(xì)胞所扮演的角色還不完全清楚。局部微環(huán)境內(nèi)DAMPS和PAMPS的減少或凋亡細(xì)胞的增加可能會(huì)引起腎內(nèi)巨噬細(xì)胞表型的改變[40]。調(diào)節(jié)性T細(xì)胞(Treg細(xì)胞)分泌IL-10和TGF-β,抑制效應(yīng)性T細(xì)胞,促進(jìn)抗炎型巨噬細(xì)胞產(chǎn)生,抗炎型巨噬細(xì)胞能吞噬并清除凋亡細(xì)胞和壞死細(xì)胞,減輕腎損傷,參與基質(zhì)重構(gòu)和組織修復(fù)[41]。體內(nèi),類固醇類藥物誘發(fā)抗炎型巨噬細(xì)胞而減輕腎損傷[42]。小鼠IRI 48~72 h,用LC損耗巨噬細(xì)胞可引起腎臟的持續(xù)性損傷;骨調(diào)素敲除小鼠,巨噬細(xì)胞的招募被抑制,腎間質(zhì)纖維化減弱,說(shuō)明巨噬細(xì)胞參與IRI晚期腎臟的修復(fù)[43]。腎缺血后巨噬細(xì)胞表現(xiàn)為抗炎性有兩個(gè)原因:一是巨噬細(xì)胞對(duì)凋亡細(xì)胞的吞噬起一定的抗炎作用;二是腎臟局部微環(huán)境中多重信號(hào)決定的抗炎作用。IRI小鼠腎小管上皮細(xì)胞產(chǎn)生的GSF-1刺激腎內(nèi)巨噬細(xì)胞向M2型極化,有助于腎臟的修復(fù)和再生。抗炎型巨噬細(xì)胞也可由凋亡細(xì)胞衍生因子誘導(dǎo)產(chǎn)生,Sola等[44]證明凋亡細(xì)胞衍生的鞘氨醇-1-磷酸鹽(S1P)能使IRI小鼠腎內(nèi)巨噬細(xì)胞向修復(fù)型極化。IRI修復(fù)階段,抗炎型巨噬細(xì)胞產(chǎn)生的S1P依賴的嗜中性粒細(xì)胞相關(guān)的脂質(zhì)運(yùn)載蛋白(NGAL/Lcn-2)調(diào)節(jié)組織再生,加速腎小管上皮細(xì)胞的增殖。然而,對(duì)IRI小鼠體內(nèi)抗炎型巨噬細(xì)胞衍生的修復(fù)分子報(bào)道還很少。Lin等[45]發(fā)現(xiàn),IRI小鼠腎內(nèi)巨噬細(xì)胞衍生的Wnt7b可促進(jìn)上皮細(xì)胞增殖、基膜修復(fù)和腎臟再生;腎內(nèi)修復(fù)型巨噬細(xì)胞分泌的幾丁質(zhì)酶樣蛋白BRP-39,通過(guò)激活磷脂酰肌醇三激酶/蛋白激酶(P13K/AKT)信號(hào)通路,抑制腎小管細(xì)胞凋亡,促進(jìn)腎組織再生[46]。亞鐵血紅素氧合酶1(HO-1)是表達(dá)于腎巨噬細(xì)胞、具有抗炎作用的保護(hù)性酶,若表達(dá)增高則修復(fù)腎臟IRI,表達(dá)下調(diào)則加重腎臟IRI[23]。總之,急性腎損傷過(guò)程中巨噬細(xì)胞經(jīng)歷了從促炎型到抗炎型的轉(zhuǎn)變。但M2b型巨噬細(xì)胞所依賴的信號(hào)通路或其衍生的修復(fù)分子需要更深入的研究。巨噬細(xì)胞在體內(nèi)具有抗炎性,已用于IRI的細(xì)胞生物治療。腎臟I/R損傷時(shí),缺血后回輸已轉(zhuǎn)染IL-10的巨噬細(xì)胞可減少促炎因子的產(chǎn)生,減少微血管內(nèi)血小板的沉積,減輕腎小管損傷,保護(hù)腎功能[47,48]。表達(dá)IL-10的巨噬細(xì)胞對(duì)腎臟的保護(hù)作用主要依賴于脂質(zhì)運(yùn)載蛋白2,脂質(zhì)運(yùn)載蛋白2在鐵存在時(shí)可抑制腎小管細(xì)胞的凋亡,促進(jìn)其增殖。HO-1是一種抗炎性酶,在各種腎損傷模型中都具有抗炎作用[49],HO-1過(guò)表達(dá)的巨噬細(xì)胞具有抗炎性,產(chǎn)生IL-10增多,對(duì)凋亡細(xì)胞的吞噬增強(qiáng)[48]。Ranganathan等[50]發(fā)現(xiàn),體外神經(jīng)生長(zhǎng)因子1通過(guò)激活過(guò)氧化物酶體增殖物激活受體γ(PPARγ)誘導(dǎo)M2型巨噬細(xì)胞極化[50],將神經(jīng)生長(zhǎng)因子1處理過(guò)的巨噬細(xì)胞過(guò)繼轉(zhuǎn)移入IRI小鼠,可抑制腎炎、保護(hù)腎功能[51]??傊蛲黾?xì)胞和抗炎介質(zhì)引起的微環(huán)境改變可阻止促炎型巨噬細(xì)胞的產(chǎn)生或促進(jìn)抗炎型巨噬細(xì)胞的產(chǎn)生,有助于組織的修復(fù)與再生。
腎纖維化發(fā)生在腎臟的修復(fù)被抑制或不充分時(shí),是腎病康復(fù)的二級(jí)指標(biāo)。傳統(tǒng)上認(rèn)為,巨噬細(xì)胞是促進(jìn)腎纖維化的核心成員;然而,最近表明浸潤(rùn)性巨噬細(xì)胞在阻塞性腎病中具有抗纖維化作用。腎細(xì)胞受損導(dǎo)致血液中的單核細(xì)胞向腎間質(zhì)滲透,并隨不同的局部微環(huán)境極化為M1或M2型巨噬細(xì)胞。M1型釋放炎癥介質(zhì)(如TNF-α和ROS),引起組織炎癥和隨后的腎纖維化;而M2型則釋放抗炎癥介質(zhì)(如IL-10和TGF-β),抑制腎臟炎癥,但促進(jìn)腎纖維化。小鼠腎臟中巨噬細(xì)胞主要存在兩個(gè)亞群:即F4/80+CD11c-和F4/80+CD11c+細(xì)胞。雖然一直認(rèn)為CD11c是樹(shù)突狀細(xì)胞的標(biāo)志,但這兩個(gè)亞群顯示巨噬細(xì)胞的主要特征和功能。它們?cè)谀I內(nèi)的分布不同,F(xiàn)4/80+CD11c-巨噬細(xì)胞彌散于整個(gè)腎臟,而F4/80+CD11c+巨噬細(xì)胞僅分布于皮質(zhì),髓質(zhì)無(wú)分布。相比之下,F(xiàn)4/80+CD11c+巨噬細(xì)胞產(chǎn)生更多的NO和IL-10,具有更強(qiáng)的吞噬能力[33]。這些結(jié)果表明巨噬細(xì)胞具有位點(diǎn)特異性功能,對(duì)腎病可起保護(hù)作用,也可起破壞作用。單側(cè)輸尿管結(jié)扎術(shù)(UUO)是研究腎纖維化的典型模型。UUO前24 h給藥LC損耗小鼠巨噬細(xì)胞,可減輕腎小管細(xì)胞凋亡和腎纖維化,表明早期巨噬細(xì)胞的浸潤(rùn)可促進(jìn)腎纖維化[53]。同樣,UUO小鼠給藥LC選擇性損耗F4/80+巨噬細(xì)胞和F4/80+樹(shù)突狀細(xì)胞,可降低TGF-β的水平,減弱腎小管細(xì)胞凋亡和腎纖維化[50]。CD11b-DTR阻塞性腎病小鼠,單核細(xì)胞系損耗可減弱腎纖維化;而CD11c-DTR阻塞性腎病小鼠,腎纖維化則由樹(shù)突狀細(xì)胞的損耗而減弱。這些研究表明,F(xiàn)4/80+巨噬細(xì)胞或樹(shù)突狀細(xì)胞在輸尿管阻塞小鼠腎纖維化的發(fā)展過(guò)程中起關(guān)鍵作用。然而,UUO中巨噬細(xì)胞促纖維化的機(jī)制還不清楚。Braga等[54]發(fā)現(xiàn)M2型巨噬細(xì)胞可通過(guò)MyD88通路促進(jìn)UUO小鼠腎纖維化;受損組織釋放的介質(zhì)通過(guò)Toll樣受體(TLRS)和MyD88信號(hào)通路激活浸潤(rùn)的巨噬細(xì)胞,促進(jìn)腎纖維化;UUO中,腎臟固有巨噬細(xì)胞產(chǎn)生的半乳糖凝集素3可激活肌成纖維細(xì)胞,促進(jìn)腎纖維化[55];UUO早期,腎小管上皮細(xì)胞(TECs)是MMP-9的主要來(lái)源,晚期,TECs、巨噬細(xì)胞和肌成纖維細(xì)胞都可產(chǎn)生MMP-9,LPS或IFN-γ激活的M1型巨噬細(xì)胞產(chǎn)生大量的MMP-9,MMP-9通過(guò)β-連環(huán)蛋白增加腎小管細(xì)胞的EMT[56];Tan等發(fā)現(xiàn)MMP-9參與上皮間葉細(xì)胞的轉(zhuǎn)換(EMT),促進(jìn)腎纖維化;聯(lián)合阻斷MMP-2/MMP-9或單獨(dú)阻斷MMP-9都明顯減輕腎小管細(xì)胞的EMT,減輕腎纖維化。然而這些對(duì)EMT的研究都是在體外進(jìn)行的,體內(nèi)腎纖維化過(guò)程中是否存在EMT仍存在爭(zhēng)議[57]。最近研究顯示,UUO腎間質(zhì)巨噬細(xì)胞的數(shù)量與纖維化的程度呈負(fù)相關(guān),說(shuō)明在阻塞性腎病恢復(fù)階段,浸潤(rùn)性巨噬細(xì)胞具有抗纖維化作用。Nishida等[58]證明,UUO模型14 d后腎間質(zhì)巨噬細(xì)胞顯示抗纖維化作用;他們還發(fā)現(xiàn),腎內(nèi)巨噬細(xì)胞表面的血管緊張素Ⅱ1型受體(Agtr1)和血管緊張素Ⅱ結(jié)合能影響巨噬細(xì)胞的數(shù)量和活性,減弱腎纖維化。UUO晚期,用環(huán)磷酰胺損耗巨噬細(xì)胞可進(jìn)一步證明間質(zhì)巨噬細(xì)胞的抗纖維化作用。UUO間質(zhì)巨噬細(xì)胞抗纖維化作用的機(jī)制是目前研究的焦點(diǎn)。Lopez-Guisa等[59]證明,甘露糖受體2(Mrc2)是巨噬細(xì)胞和肌成纖維細(xì)胞表面受體,可結(jié)合內(nèi)在膠原。UUO中,Mrc2表達(dá)上調(diào)可活化溶酶體膠原轉(zhuǎn)化而減弱腎纖維化;Mrc2缺陷導(dǎo)致腎纖維化明顯惡化。在uPAR-/-巨噬細(xì)胞缺失清道夫受體,促纖維化分子的清除延遲,導(dǎo)致UUO晚期的腎纖維化[60]??傊?,這些數(shù)據(jù)表明UUO模型中巨噬細(xì)胞促纖維化與抗纖維化之間的平衡是階段依賴性的,腎纖維化是腎臟損傷和巨噬細(xì)胞浸潤(rùn)的結(jié)果。促炎型(M1)和抗炎型(M2)巨噬細(xì)胞分別促進(jìn)或減弱腎損傷,間接或直接影響腎纖維化的程度。晚期修復(fù)階段,巨噬細(xì)胞也許是促纖維化型,直接誘導(dǎo)腎纖維化;也許是抗纖維化型,直接阻止腎纖維化。CKD體內(nèi)巨噬細(xì)胞究竟是促纖維化還是抗纖維化還有待明確地論證。
巨噬細(xì)胞有多種分類體系,但這些分類體系的適用性尚需要在人類腎病中經(jīng)受考驗(yàn)。雖然JNK、MAPK和NF-κB等轉(zhuǎn)錄因子參與M1型巨噬細(xì)胞的調(diào)控,C/EBPβ、PPARγ、IRF和STAT家族參與M2型巨噬細(xì)胞的調(diào)控[61]。但調(diào)控巨噬細(xì)胞表型、功能、纖維化和抗纖維化的主要基因尚不清楚。最近,用IL-4Ra敲除的LysMCre小鼠揭示了慢性血吸蟲病中M2型巨噬細(xì)胞的不同亞群[62],可用同樣的策略確定腎內(nèi)巨噬細(xì)胞的其他轉(zhuǎn)錄調(diào)控元件。促炎型巨噬細(xì)胞可作為治療炎癥和纖維化的靶點(diǎn)。Cao等[63,64]已證明體外M2a和M2c型巨噬細(xì)胞是抗炎型的,可減輕腎損傷。然而,巨噬細(xì)胞在體外是否可被誘導(dǎo)為抗纖維化型,且體內(nèi)如何誘導(dǎo)修復(fù)型巨噬細(xì)胞尚需深入的研究。巨噬細(xì)胞是直接通過(guò)細(xì)胞融合、類型轉(zhuǎn)換、外泌體分泌還是間接影響干細(xì)胞和祖細(xì)胞的增殖和分化而促進(jìn)腎細(xì)胞的增殖尚未定論,這些問(wèn)題需要進(jìn)一步研究。深入研究這些問(wèn)題,可為慢性腎病尋求特異的治療靶點(diǎn)。
[1] Geissmann F,Manz MG,Jung SS,etal.Development of monocytes,macrophages,and dendritic cells[J].Science,2010,327(5966):656-661.
[2] Ginhoux F,Jung S.Monocytes and macrophages:developmental pathways and tissue homeostasis[J].Nat Rev Immunol,2014,14(6):392-404.
[3] Hashimoto D,Chow A,Noizat C,etal.Tissue-resident macrophages self-maintain locally throughout adult life with minimal contribution from circulating monocytes[J].Immunity,2013,38(4):792-804.
[4] Cattin AL,Burden JJ,Van Emmenis L,etal.Macrophage-induced blood vessels guide schwann cell-mediated regeneration of peripheral nerves[J].Cell,2015,162(5):1127-1139.
[5] Murray PJ,Wynn TA.Protective and pathogenic functions of macrophage subsets[J].Nat Rev Immunol,2011,11(11):723-737.
[6] Sica A,Mantovani A.Macrophage plasticity and polarization:in vivo veritas[J].J Clin Invest,2012,122(3):787-795.
[7] Italiani P,Boraschi D.New insights into tissue macrophages:from their origin to the development of memory[J].Immune Netw,2015,15(4):167-176.
[8] Anders HJ,Ryu M.Renal microenvironments and macrophage phenotypes determine progression or resolution of renal inflammation and fibrosis[J].Kidney Int,2011,80(9):915-925.
[9] Ajami B,Bennett JL,Krieger C,etal.Infiltrating monocytes trigger EAE progression,but do not contribute to the resident microglia pool[J].Nat Neurosci,2011,14(9):1142-1149.
[10] Cao Q,Wang Y,Harris DC.Pathogenic and protective role of macrophages in kidney disease[J].Am J Physiol Renal Physiol,2013,305(1):F3-F11.
[11] Liu PS,Lin YW,Burton FH,etal.M1-M2 balancing act in white adipose tissue browning-a new role for RIP140[J].Adipocyte,2015,4(2):146-148.
[12] Eardley KS,Kubal C,Zehnder D,etal.The role of capillary density,macrophage infiltration and interstitial scarring in the pathogenesis of human chronic kidney disease[J].Kidney Int,2008,74(4):495-504.
[13] Lee S,Huen S,Nishio H,etal.Distinct macrophage phenotypes contribute to kidney injury and repair[J].J Am Soc Nephrol,2011,22(2):317-326.
[14] Kurts C,Panzer U,Anders HJ,etal.The immune system and kidney disease:basic concepts and clinical implications[J].Nat Rev Immunol,2013,13(10):738-753.
[15] Rosin DL,Okusa MD.Dangers within:DAMP responses to damage and cell death in kidney disease[J].J Am Soc Nephrol,2011,22(3):416-425.
[16] Mills KH.TLR-dependent T cell activation in autoimmunity[J].Nat Rev Immunol,2011,11(12):807-822.
[17] Sekimoto R,Fukuda S,Maeda N2,etal.Visualized macrophage dynamics and significance of S100A8 in obese fat[J].Proc Natl Acad Sci U S A,2015,112(16):E2058-E2066.
[18] Wynn TA,Freund YR,Paulnock DM.TNF-alpha differentially regulates Ia antigen expression and macrophage tumoricidal activity in two murine macrophage cell lines[J].Cell Immunol,1992,140(1):184-196.
[19] Schwarz M,Taubitz A,Eltrich N,etal.Analysis of TNF-mediated recruitment and activation of glomerular dendritic cells in mouse kidneys by compartment-specific flow cytometry[J].Kidney Int,2013,84(1):116-129.
[20] Meng XM,Nikolic-Paterson DJ2,Lan HY3.Inflammatory processes in renal fibrosis[J].Nat Rev Nephrol,2014,10(9):493-503.
[21] Li L,Huang L,Sung SS,etal.The chemokine receptors CCR2 and CX3CR1 mediate monocyte/macrophage trafficking in kidney ischemia-reperfusion injury[J].Kidney Int,2008,74(12):1526-1537.
[22] Bose S,Cho J.Role of chemokine CCL2 and its receptor CCR2 in neurodegenerative diseases[J].Arch Pharm Res,2013,36(9):1039-1050.
[23] Ferenbach DA,Sheldrake TA,Dhaliwal K,etal.Macrophage/monocyte depletion by clodronate,but not diphtheria toxin,improves renal ischemia/reperfusion injury in mice[J].Kidney Int,2012,82(8):928-933.
[24] Lee S,Huen S,Nishio H,etal.Distinct macrophage phenotypes contribute to kidney injury and repair[J].J Am Soc Nephrol,2011,22(2):317-326.
[25] Holdsworth SR,Neale TJ,Wilson CB.Abrogation of macrophage-dependent injury in experimental glomerulonephritis in the rabbit.Use of an antimacrophage serum[J].J Clin Invest,1981,68(3):686-698.
[26] Ikezumi Y,Atkins RC,Nikolic-Paterson DJ.Interferon-gamma augments acute macrophage-mediated renal injury via a glucocorticoid-sensitive mechanism[J].J Am Soc Nephrol,2003,14(4):888-898.
[27] Ma FY,Flanc RS,Tesch GH.Blockade of the c-Jun amino terminal kinase prevents crescent formation and halts established anti-GBM glomerulonephritis in the rat[J].Lab Invest,2009,89(4):470-484.
[28] Fujita E,Shimizu A,Masuda Y,etal.Statin attenuates experimental anti-glomerular basement membrane glomerulonephritis together with the augmentation of alternatively activated macrophages[J].Am J Pathol,2010,177(3):1143-1154.
[29] Kang KP,Kim DH,Jung YJ,etal.Alpha-lipoic acid attenuates cisplatin-induced acute kidney injury in mice by suppressing renal inflammation[J].Nephrol Dial Transplant,2009,4(10):3012-3020.
[30] Tarang S,Sodhi A,Chauhan P.Differential expression of Toll-like receptors in murine peritoneal macrophages in vitro on treatment with cisplatin[J].Int Immunol,2007,19(5):635-643.
[31] Ramesh G,Reeves WB.p38 MAP kinase inhibition ameliorates cisplatin nephrotoxicity in mice[J].Am J Physiol Renal Physiol,2005,289(1):F166-F16674.
[32] Triantafyllopoulou A,Franzke CW,Seshan SV,etal.Proliferative lesions and metalloproteinase activity in murine lupus nephritis mediated by type I interferons and macrophages[J].Proc Natl Acad Sci USA,2010,107(7):3012-3017.
[33] Cao Q,Wang Y,Wang XM,etal.Renal F4/80+CD11c+mononuclear phagocytes display phenotypic and functional characteristics of macrophages in health and in adriamycin nephropathy[J].J Am Soc Nephrol,2015,26(2):349-363.
[34] Cao Q,Wang C,Zheng D,etal.IL-25 induces M2 macrophages and reduces renal injury in proteinuric kidney disease[J].J Am Soc Nephrol,2011,22(7):1229-1239.
[35] Wyburn KR,Chadban SJ,Kwan T,etal.Interleukin-18 binding protein therapy is protective in adriamycin nephropathy[J].Am J Physiol Renal Physiol,2013,304(1):F68-F76.
[36] Menke J,Rabacal WA,Byrne KT,etal.Circulating CSF-1 promotes monocyte and macrophage phenotypes that enhance lupus nephritis[J].J Am Soc Nephrol,2009,20(12):2581-2592.
[37] Sahu R,Bethunaickan R,Singh S,etal.Structure and function of renal macrophages and dendritic cells from lupus-prone mice[J].Arthritis Rheumatol,2014,66(6):1596-1607.
[38] Ehninger A,Trumpp A.The bone marrow stem cell niche grows up:mesenchymal stem cells and macrophages move in[J].J Exp Med,2011,208(3):421-428.
[39] Huen SC,Cantley LG.Macrophage-mediated injury and repair after ischemic kidney injury[J].Pediatr Nephrol,2015,30(2):199-209.
[40] Galli SJ,Borregaard N,Wynn TA.Phenotypic and functional plasticity of cells of innate immunity:macrophages,mast cells and neutrophils[J].Nat Immunol,2011,12(11):1035-1044.
[41] Liu G,Ma H,Qiu L,etal.Phenotypic and functional switch of macrophages induced by regulatory CD4+CD25+T cells in mice[J].Immunol Cell Biol,2011,89(1):130-142.
[42] Ikezumi Y,Suzuki T,Karasawa T,etal.Contrasting effects of steroids and mizoribine on macrophage activation and glomerular lesions in rat thy-1 mesangial proliferative glomerulonephritis[J].Am J Nephrol,2010,31(3):273-282.
[43] Persy VP,Verhulst A,Ysebaert DK,etal.Reduced postischemic macrophage infiltration and interstitial fibrosis in osteopontin knockout mice[J].Kidney Int,2003,63(2):543-553.
[44] Sola A,Weigert A,Jung M,etal.Sphingosine-1-phosphate signalling induces the production of Lcn-2 by macrophages to promote kidney regeneration[J].J Pathol,2011,225(4):597-608.
[45] Lin SL,Li B,Rao S,etal.Macrophage Wnt7b is critical for kidney repair and regeneration[J].Proc Nat Acad Sci USA,2010,107(9):4194-4199.
[46] Schmidt IM,Hall IE,Kale S,etal.Chitinase-like protein Brp-39/YKL-40 modulates the renal response to ischemic injury and predicts delayed allograft function[J].J Am Soc Nephrol,2013,24(2):309-319.
[47] Jung M,Sola A,Hughes J,etal.Infusion of IL-10-expressing cells protects against renal ischemia through induction of lipocalin-2[J].Kidney Int,2012,81(10):969-982.
[48] Ferenbach DA,Ramdas V,Spencer N,etal.Macrophages expressing heme oxygenase-1 improve renal function in ischemia/reperfusion injury[J].Mol Ther,2010,18(9):1706-1713.
[49] Bolisetty S,Traylor AM,Kim J,etal.Heme oxygenase-1 inhibits renal tubular macroautophagy in acute kidney injury[J].J Am Soc Nephrol,2010,21(10):1702-1712.
[50] Ranganathan PV,Jayakumar C,Mohamed R,etal.Netrin-1 regulates the inflammatory response of neutrophils and macrophages,and suppresses ischemic acute kidney injury by inhibiting COX-2-mediated PGE2 production[J].Kidney Int,2013,83(6):1087-1098.
[51] Ranganathan PV,Jayakumar C,Ramesh G.Netrin-1-treated macrophages protect the kidney against ischemia-reperfusion injury and suppress inflammation by inducing M2 polarization[J].Am J Physiol Renal Physiol,2013,304(7):F948-F957.
[52] Sung SA,Jo SK,Cho WY,etal.Reduction of renal fibrosis as a result of liposome encapsulated clodronate induced macrophage depletion after unilateral ureteral obstruction in rats[J].Nephron Exp Nephrol,2007,105(1):e1-e9.
[53] Kitamoto K,Machida Y,Uchida J,etal.Effects of liposome clodronate on renal leukocyte populations and renal fibrosis in murine obstructive nephropathy[J].J Pharmacol Sci,2009,111(3):285-292.
[54] Braga TT,Correa-Costa M,Guise YF,etal.MyD88 signaling pathway is involved in renal fibrosis by favoring a TH2 immune response and activating alternative M2 macrophages[J].Mol Med,2012,18:1231-1239.
[55] Henderson NC,Mackinnon AC,Farnworth SL,etal.Galectin-3 expression and secretion links macrophages to the promotion of renal fibrosis[J].Am J Pathol,2008,172(2):288-298.
[56] Tan TK,Zheng G,Hsu TT,etal.Macrophage matrix metalloproteinase-9 mediates epithelial-mesenchymal transition in vitro in murine renal tubular cells[J].Am J Pathol,2010,176(3):1256-1270.
[57] LeBleu VS,Taduri G,O′Connell J,etal.Origin and function of myofibroblasts in kidney fibrosis[J].Nat Med,2013,19(8):1047-1053.
[58] Nishida M,Fujinaka H,Matsusaka T,etal.Absence of angiotensin II type 1 receptor in bone marrow-derived cells is detrimental in the evolution of renal fibrosis[J].J Clin Invest,2002,110(12):1859-1868.
[59] López-Guisa JM,Cai X,Collins SJ,etal.Mannose receptor 2 attenuates renal fibrosis[J].J Am Soc Nephrol,2012,23(2):236-251.
[60] Zhang G,Kim H,Cai X,etal.Urokinase receptor modulates cellular and angiogenic responses in obstructive nephropathy[J].J Am Soc Nephrol,2003,14(5):1234-1253.
[61] Lawrence T,Natoli G.Transcriptional regulation of macrophage polarization:enabling diversity with identity[J].Nat Rev Immunol,2011,11(11):750-761.
[62] Vannella KM,Barron L,Borthwick LA,etal.Incomplete deletion of IL-4Rα by LysM(Cre) reveals distinct subsets of M2 macrophages controlling inflammation and fibrosis in chronic schistosomiasis[J].PLoS Pathog,2014,10(9):e1004372.
[63] Cao Q,Wang Y,Zheng D,etal.IL-10/TGF-beta-modified macrophages induce regulatory T cells and protect against adriamycin nephrosis[J].J Am Soc Nephrol,2010,21(6):933-942.
[64] Huang Q,Niu Z,Tan J,etal.IL-25 Elicits Innate Lymphoid Cells and Multipotent Progenitor Type 2 Cells That Reduce Renal Ischemic/Reperfusion Injury[J].J Am Soc Nephrol,2015,26(9):2199-2211.
[收稿2015-09-02 修回2016-03-10]
(編輯 張曉舟)
10.3969/j.issn.1000-484X.2016.12.026
①本文為國(guó)家自然科學(xué)基金(No.81200506、81570624)、河南省教育廳自然科學(xué)基金項(xiàng)目(14A310015)和新鄉(xiāng)醫(yī)學(xué)院青年基金培育項(xiàng)目(No.2014QN129)。
牛志國(guó)(1979年-),男,碩士,副教授,主要從事感染免疫的研究,E-mail:niuzhiguo@xxmu.edu.cn。
及指導(dǎo)教師:黃青松(1978年-),女,博士,副教授,主要從事腎臟免疫的研究,E-mail:huangqingsong@xxmu.edu.cn。 曹 旗(1978年-),男,博士,特聘教授,澳大利亞悉尼大學(xué)高級(jí)研究員,主要從事巨噬細(xì)胞與腎臟炎癥的研究,E-mail:qi.cao@sydney.edu.au。
R392.12
A
1000-484X(2016)12-1840-07
②澳大利亞悉尼大學(xué)腎臟移植中心,悉尼2002。