劉 美 趙 敏 王 鵬 綜述 劉冬妍 審校
(中國醫(yī)科大學(xué)附屬盛京醫(yī)院實(shí)驗(yàn)研究中心,沈陽110004)
樹突狀細(xì)胞在腸道黏膜免疫穩(wěn)態(tài)中的作用①
劉 美 趙 敏 王 鵬②綜述 劉冬妍 審校
(中國醫(yī)科大學(xué)附屬盛京醫(yī)院實(shí)驗(yàn)研究中心,沈陽110004)
樹突狀細(xì)胞(Dendritic cells,DCs)是抗原提呈作用最強(qiáng)的專職抗原提呈細(xì)胞,被認(rèn)為是連接特異性免疫應(yīng)答和非特異性免疫應(yīng)答的橋梁,并且可決定機(jī)體特異性免疫應(yīng)答的類型,在腸道黏膜穩(wěn)態(tài)中扮演著極其重要的角色。腸道DCs具有多種類型,不同類型的DCs功能不同。DCs與周圍環(huán)境中的多種細(xì)胞因子相互作用影響腸道的免疫應(yīng)答和免疫耐受。DCs在腸道疾病中起關(guān)鍵作用,影響腸道疾病的發(fā)生和發(fā)展,臨床上DCs已成為多種疾病的治療靶點(diǎn)。本文對(duì)DCs的生物學(xué)特性、在腸道免疫耐受和免疫應(yīng)答中的作用及在臨床上的應(yīng)用進(jìn)行綜述。
DCs起源于骨髓前體細(xì)胞,經(jīng)過一系列發(fā)育分化為不同亞群,即單核樣DCs、漿細(xì)胞樣DCs(plasmacytoid DCs,pDCs)及經(jīng)典 DCs(conventional DCs,cDC)[1]。腸道DCs分布在腸道固有層(Lamina propria,LP)和腸道相關(guān)淋巴組織中,包括派爾集合淋巴結(jié)(Peyer′s patches,PPs)、腸道孤立淋巴結(jié)(Isolated lymphoid follicles,ILFs)和遠(yuǎn)端的腸系膜淋巴結(jié)中(Mesenteric lymph nodes,MLNs)。在不同部位DCs暴露在不同的抗原下,有不同的類型、起源和循環(huán)特性。依據(jù)DCs表面標(biāo)記將LP中的DCs分為CD11chiCD103+CD11b+CX3CR1-和CD11cintCD103-CD11b+CX3CR1+;又根據(jù)表達(dá)的CD11b和CD103,進(jìn)一步將DCs (CD11c+CX3CR1-細(xì)胞) 分為CD11b+CD103+、CD11b-CD103+和CD11b-CD103-[2]。多種轉(zhuǎn)錄因子如BATF3、IRF8、Id2和IRF4等參與DCs分化,如轉(zhuǎn)錄因子IRF8參與CD8a+和CD11b-CD103+DCs的分化發(fā)育,IRF4對(duì)于腸道LP的 CD11b+CD103+DCs的分化發(fā)育亦起重要作用[3-5]。
DCs是機(jī)體內(nèi)抗原提呈能力最強(qiáng)的專職抗原呈遞細(xì)胞,與其他的抗原呈遞細(xì)胞,如B淋巴細(xì)胞和單核巨噬細(xì)胞(macrophages)相比,唯有DCs可以通過活化初始T淋巴細(xì)胞激活初始的免疫應(yīng)答,進(jìn)而調(diào)控免疫反應(yīng)和免疫耐受。DCs主要通過以下途徑識(shí)別和攝取抗原:①通過上皮細(xì)胞間隙與腸腔內(nèi)的抗原和微生物直接接觸;②PP結(jié)頂部的M細(xì)胞可將近乎完整的顆粒性抗原運(yùn)輸至PP結(jié)內(nèi)的DC;③杯狀細(xì)胞可以形成運(yùn)送低分子量可溶性抗原的通道,將腸腔內(nèi)的抗原運(yùn)送到LP的CD103+DCs[6];④CX3CR1+DCs通過其樹突突入腸腔,不斷獲取正常菌群和腸道微生物[7];⑤CD103+DCs可移行至上皮基底膜,直接攝取腸腔中的抗原[8];⑥腸上皮細(xì)胞生成 Fc受體(fetal Fc receptor,F(xiàn)cRn)結(jié)合免疫球蛋白和(或)抗原抗體復(fù)合物,傳遞至DCs。攝取抗原DCs逐漸發(fā)育成熟,在一系列信號(hào)分子如CD40/CD40L等作用下移行至PP結(jié)和MLN中,激活T細(xì)胞觸發(fā)免疫反應(yīng)。CD103+DCs是主要的移行DCs,無論在靜息狀態(tài)還是在炎性狀態(tài)下,DCs移行均依賴CCR7,CCR7與其配體結(jié)合,促進(jìn)DCs在體內(nèi)和體外的趨化作用[9]。
腸道中的DCs通過與其他細(xì)胞的相互作用發(fā)揮免疫效應(yīng)。腸道上皮細(xì)胞(Intestinal epithelial cells,IECs)與腸黏膜DCs位置較近,影響DCs在腸道的分布,并決定黏膜DCs的特異性。IECs可以產(chǎn)生胸腺漿膜淋巴素(Thymic stromal lymphopoietin,TSLP)、視黃酸(Retinoic acid,RA)和TGF-β誘導(dǎo)CD103+DCs的產(chǎn)生和調(diào)節(jié)DCs的功能[10,11]。IECs產(chǎn)生的趨化因子可以促進(jìn)DCs的移行,此外腸道細(xì)菌可通過IECs直接或者間接影響DCs的功能。
DCs分泌的多種細(xì)胞因子或膜分子促進(jìn)不同的T細(xì)胞分化。多種病原微生物刺激不成熟的DCs產(chǎn)生IL-12,從而促進(jìn)初始CD4+T細(xì)胞分化成為Th1細(xì)胞,IL-12還可以促進(jìn)初始Th細(xì)胞產(chǎn)生IFN-γ,進(jìn)一步刺激Th1細(xì)胞介導(dǎo)的免疫應(yīng)答[12]。DCs分泌的IL-6和IL-23可以誘導(dǎo)Th17分化,促進(jìn)Th17細(xì)胞分泌IL-17和IL-22[13]。DCs被IECs產(chǎn)生的TSLP激活后[10],將分泌大量 RA、TGF-β和IL-10,這些因子促進(jìn)初始CD4+T細(xì)胞分化為Foxp3+Treg調(diào)節(jié)性T細(xì)胞,發(fā)揮免疫抑制作用,誘導(dǎo)免疫耐受。正常生理?xiàng)l件下,DCs通過對(duì)腸道共生菌如梭狀芽胞桿菌和脆弱類桿菌的耐受,進(jìn)而持續(xù)活化Treg細(xì)胞,促進(jìn)Treg細(xì)胞分化[14]。RA促進(jìn) CD4+T細(xì)胞表達(dá)歸巢受體α4β7和CCR9,促進(jìn)CD4+T細(xì)胞歸巢。DCs還可以釋放吲哚胺2,3-雙加氧酶(Indoleamine 2,3-dioxygenase,IDO),它誘導(dǎo)Foxp3+Treg調(diào)節(jié)性T細(xì)胞發(fā)育,但抑制T細(xì)胞增生和Th17細(xì)胞的生成以及炎性細(xì)胞因子IL-17、IFN-γ、IL-10和IL-4釋放[11]。
DCs與B細(xì)胞的活化、增殖和發(fā)揮生物學(xué)作用密切相關(guān)。DCs可以通過分泌細(xì)胞因子和RA激活B細(xì)胞產(chǎn)生IgA和促進(jìn)IgA類型轉(zhuǎn)換[15,16];還可以通過TLR5與腸道細(xì)菌鞭毛蛋白—flagellin結(jié)合,刺激DCs分泌腫瘤壞死因子家族B細(xì)胞活化因子(B cells-activating factor of the TNF family,BAFF)、增殖誘導(dǎo)配體(Aproliferation inducing ligand,APRIL)和細(xì)胞因子激活B細(xì)胞,促進(jìn)B細(xì)胞分化和生存[17],產(chǎn)生IgA。并且DCs與B細(xì)胞產(chǎn)生的SIgA亦密不可分:腸黏膜固有層DCs識(shí)別SIgA[18],并中和SIgA,固定SIgA在其表面;SIgA結(jié)合微生物后被DCs識(shí)別,有利于病原微生物清除;SIgA通過與黏膜DCs的相互作用介導(dǎo)抗炎癥功能[19],通過調(diào)節(jié)DCs的活化調(diào)節(jié)黏膜免疫應(yīng)答,誘導(dǎo)DCs在腸道的遷移以便發(fā)揮其生物學(xué)作用[20]。DCs產(chǎn)生的RA,還誘導(dǎo)B細(xì)胞產(chǎn)生腸道歸巢受體CCR9 和 α4β7,促進(jìn)B細(xì)胞的歸巢,并促進(jìn)B細(xì)胞轉(zhuǎn)化為調(diào)節(jié)性B細(xì)胞(regulatory B cells,Bregs)[21]。
腸道DCs能誘導(dǎo)對(duì)致病微生物適應(yīng)性的免疫應(yīng)答并對(duì)食物抗原和共生菌的免疫耐受,對(duì)維持腸道免疫穩(wěn)態(tài)具有重要意義。在靜息狀態(tài)下,腸道DCs主要為耐受性的DCs(tolerogenic DCs,tolDCs)。tolDCs主要通過誘導(dǎo)Foxp3+Treg發(fā)揮免疫抑制作用。tolDCs表達(dá)低水平的共刺激分子CD80和CD86,其表面表達(dá)程序死亡配體1(Programmed death ligand 1,PD-L1)和程序死亡配體2(Programmed death ligand 2,PD-L 2)與T細(xì)胞表面的PD-1相互作用,介導(dǎo)免疫抑制[22]。tolDCs分泌大量的細(xì)胞因子IL-10 和TGF-β,IL-10能夠抑制炎性細(xì)胞因子IL-12、TNF-α和IFN-γ的分泌,IL-10可以維持Treg細(xì)胞的存活[22,23],對(duì)維持腸道穩(wěn)態(tài)至關(guān)重要。除細(xì)胞因子外,DCs分泌多種生物活性物質(zhì)誘導(dǎo)耐受,DCs分泌RA,除可以誘導(dǎo)tolDCs產(chǎn)生,同TGF-β共同作用還可以誘導(dǎo)DCs歸巢。tolDCs誘導(dǎo)的免疫耐受過程包含多種分子信號(hào)機(jī)制,如STAT3 信號(hào)通路的活化促進(jìn)DCs分泌IL-10進(jìn)而誘導(dǎo)耐受;在NF-κB信號(hào)通路中,NF-κB蛋白-p50可以促進(jìn)IDO的形成同時(shí)抑制炎性細(xì)胞因子IFN-γ、IL-1β和IL-18分泌發(fā)揮免疫抑制效應(yīng);Wnt信號(hào)通路主要通過釋放轉(zhuǎn)錄因子β-catenin誘導(dǎo) tolDCs產(chǎn)生[24]。DCs代謝過程也影響其誘導(dǎo)耐受,應(yīng)用已糖激酶抑制劑抑制糖酵解途徑后,DCs更易成為tolDCs 發(fā)揮抑制效應(yīng)[25]。
DCs除調(diào)節(jié)免疫耐受外,在微生物的刺激下,DCs移行至腸道上皮、LP和MLN等不同部位,通過誘導(dǎo)不同的T細(xì)胞活化及抗體形成調(diào)節(jié)腸道免疫應(yīng)答。腸道細(xì)菌鞭毛蛋白刺激CD103+CD11b+DCs分泌IL-23,誘導(dǎo) Th17細(xì)胞分化,當(dāng)敲除Notch2使小鼠缺乏CD103+CD11b+DCs后,小鼠腸道內(nèi)Th17細(xì)胞顯著減少,且CD103+CD11b+DCs和CD103+CD11b-DCs也促進(jìn)Th1活化[26];移行至淋巴結(jié)CD8α+DCs可以促進(jìn)CD8+效應(yīng)T細(xì)胞的分化[27]。如前所述,DCs通過RA、BAFF和APRIL等參與SIgA的生成,進(jìn)而調(diào)節(jié)腸道的免疫應(yīng)答。
炎性腸病(Inflammatory bowel disease,IBD) 是主要包括克羅恩病(Crohn′s disease,CD)和潰瘍性結(jié)腸炎 (Ulcerative colitis,UC)由遺傳因素和環(huán)境因素共同作用導(dǎo)致腸道對(duì)正常菌群的異常免疫應(yīng)答引起的慢性炎癥。由于DCs對(duì)抗原的識(shí)別和遞呈作用,DCs的功能異??蓪?dǎo)致IBD的發(fā)生。DCs在功能上具有可塑性,結(jié)腸炎動(dòng)物模型中DCs在炎癥的初始階段起保護(hù)性作用而在之后的病程中促進(jìn)結(jié)腸炎的發(fā)生[28,29]。結(jié)腸炎時(shí),活化的DCs聚集在腸道LP和MLN中,DCs表面的共刺激分子CD40、CD80和CD86表達(dá)增多,分泌IL-6、IL-12和IL-18,促進(jìn)T細(xì)胞發(fā)育成Th1細(xì)胞[30],參與炎癥反應(yīng)。DCs通過IL-23/Th17通路參與IBD的形成,尤其是參與CD的發(fā)生[31]。DCs產(chǎn)生的IL-23與淋巴細(xì)胞表面IL-23R作用后促進(jìn)Th17細(xì)胞分化并維持Th17的生存,Th17細(xì)胞可以產(chǎn)生IL-17A、IL-17F、IL-21、IL-22和IL-23等炎性細(xì)胞因子,這些細(xì)胞因子又會(huì)反過來誘導(dǎo)Th1和Th17細(xì)胞產(chǎn)生,加劇炎癥反應(yīng)[32]。淋巴細(xì)胞異常的歸巢過程也是IBD的一個(gè)致病因素,結(jié)腸炎時(shí)LP中歸巢受體α4β7和其配體MAdCAM-1表達(dá)增多,由于DCs能夠誘導(dǎo)T細(xì)胞歸巢受體CCR9和α4β7產(chǎn)生,因此DCs很可能是IBD中淋巴細(xì)胞異常歸巢的原因[30]。
DCs通過其表面的模式識(shí)別受體(Pattern recognition receptors,PRRs),包括Toll樣受體(Toll-like receptors,TLR)、RIG-I樣受體(Retinoic acid-inducible gene I like receptors,RLRs)、C-型凝集素樣受體( C-type lectin receptors,CLR)、核苷酸結(jié)合寡聚化域(Nucleotide-binding oligomerization domain-like receptors,NOD)及NOD受體(NOD receptors,NLRs)[33],與微生物表面的DCs病原相關(guān)分子模式(Pathogen-associated molecular patterns,PAMPs)作用進(jìn)而識(shí)別入侵腸道的微生物。IBD的發(fā)生與DCs表面的PRRs變化關(guān)系密切,NOD2突變可以導(dǎo)致IBD的發(fā)生[34],高表達(dá)的TLR1和TLR5 將增加罹患炎性腸病的危險(xiǎn)性[35]。此外DCs自噬功能紊亂也會(huì)使炎性細(xì)胞因子的產(chǎn)生增多促進(jìn)IBD的發(fā)生[36]。
DCs在機(jī)體局部抗腫瘤免疫中亦起重要作用,有研究顯示結(jié)腸癌基質(zhì)中CD83+DCs數(shù)量少的患者術(shù)后預(yù)后不良,而結(jié)腸癌基質(zhì)中S100+DCs和HLA-DR+DCs數(shù)量多的患者生存期較長[37]。在結(jié)腸癌組織中,DCs數(shù)量與淋巴結(jié)轉(zhuǎn)移、腫瘤侵潤深度和復(fù)發(fā)等關(guān)系密切,也就是說,DCs越密集,腫瘤分化程度越高,腫瘤患者預(yù)后越好,反之,DCs越少,腫瘤分化越低,惡性程度越高。但最新研究發(fā)現(xiàn)結(jié)腸癌患者腸道成熟DCs明顯減少,而腸道成熟DCs數(shù)量增加與腫瘤侵潤有關(guān),特別是淋巴結(jié)轉(zhuǎn)移[38]。T-bet是DCs表達(dá)的轉(zhuǎn)錄因子,T-bet敲除后小鼠將罹患無法控制的慢性腸炎繼而癌變成腸癌[39],因此DCs與腸癌息息相關(guān),它的變化影響腸癌的進(jìn)程。
由于DCs是調(diào)節(jié)腸道免疫應(yīng)答的關(guān)鍵點(diǎn),多種以DCs為靶向治療腸道疾病的手段應(yīng)運(yùn)而生。由于DCs提呈腸道細(xì)菌并對(duì)腸道細(xì)菌產(chǎn)生免疫應(yīng)答,因此可以針對(duì)DCs通過益生菌治療腸炎疾病[40]。通過體內(nèi)輸入tolDCs治療IBD也是可行的治療手段。生物制劑如RA和IL-10誘導(dǎo)tolDCs和Treg細(xì)胞產(chǎn)生,達(dá)到治療炎癥性腸病的目的。腫瘤免疫治療中,DCs疫苗已經(jīng)成為研究熱點(diǎn),包括DCs多肽疫苗和DCs基因疫苗。應(yīng)用腫瘤抗原致敏DCs、腫瘤提取物致敏DCs以及DCs與腫瘤融合的方法是腫瘤治療中重要的免疫療法。因此根據(jù)DCs在不同疾病和不同疾病階段中扮演的角色不同進(jìn)行針對(duì)性治療是將來的發(fā)展方向。隨著對(duì)DCs的認(rèn)識(shí)加深和免疫學(xué)、分子生物學(xué)等技術(shù)的發(fā)展,以DCs為靶向的治療方式必定為腸道疾病的治療開辟新的途徑。
DCs在維持腸道免疫穩(wěn)態(tài)和調(diào)節(jié)腸道免疫應(yīng)答中發(fā)揮重要的作用。更好地理解腸道DCs在正常腸道和腸道疾病中的作用至關(guān)重要。腸道DCs的活化和調(diào)節(jié)以及DCs與腸道環(huán)境相互作用可以幫助我們更好地理解腸道免疫功能的紊亂和腸道疾病的發(fā)生原因,同時(shí)為腸道疾病的臨床治療提供新思路。
[1] Cohen SB,Denkers EY.Impact of Toxoplasma gondii on dendritic cell subset function in the intestinal mucosa[J].J Immunol,2015,195(6):2754-2762.
[2] Aliberti J.Immunity and tolerance induced by intestinal mucosal dendritic cells[J].Mediators Inflamm,2016,2016:3104727.
[3] Raetz M,Kibardin A,Sturge CR,etal.Cooperation of TLR12 and TLR11 in the IRF8-dependent IL-12 response to Toxoplasma gondii profilin[J].J Immunol,2013,191(9):4818-4827.
[4] Persson EK,Uronen-Hansson H,Semmrich M,etal.IRF4 transcription-factor-dependent CD103(+)CD11b(+) dendritic cells drive mucosal T helper 17 cell differentiation[J].Immunity,2013,38(5):958-969.
[5] Cohen SB,Smith NL,McDougal C,etal.Beta-catenin signaling drives differentiation and proinflammatory function of IRF8-dependent dendritic cells[J].J Immunol,2015,194(1):210-222.
[6] McDole JR,Wheeler LW,McDonald KG,etal.Goblet cells deliver luminal antigen to CD103+dendritic cells in the small intestine[J].Nature,2012,483(7389):345-349.
[7] Chang SY,Song JH,Guleng B,etal.Circulatory antigen processing by mucosal dendritic cells controls CD8(+) T cell activation[J].Immunity,2013,38(1):153-165.
[8] Farache J,Koren I,Milo I,etal.Luminal bacteria recruit CD103+dendritic cells into the intestinal epithelium to sample bacterial antigens for presentation[J].Immunity,2012,38(3):581-595.
[9] Clatworthy MR,Aronin CE,Mathews RJ,etal.Immune complexes stimulate CCR7-dependent dendritic cell migration to lymph nodes[J].Nat Med,2014,20(12):1458-1463.
[10] Hanabuchi S,Watanabe N,Liu YJ.TSLP and immune homeostasis[J].Allergol Int,2012,61(1):19-25.
[11] Matteoli G,Mazzini E,Iliev ID,etal.Gut CD103+dendritic cells express indoleamine 2,3-dioxygenase which influences T regulatory/T effector cell balance and oral tolerance induction[J].Gut,2010,59(5):595-604.
[12] Ma X,Yan W,Zheng H,etal.Regulation of IL-10 and IL-12 production and function in macrophages and dendritic cells[J].F1000Res,2015,4.pii:F1000 Faculty Rev-1465.
[13] Goto Y,Panea C,Nakato G,etal.Segmented filamentous bacteria antigens presented by intestinal dendritic cells drive mucosal Th17 cell differentiation[J].Immunity,2014,40(4):594-607.
[14] Oh J,Shin JS.The role of dendritic cells in central tolerance[J].Immune Netw,2015,15(3):111-120.
[15] Moro-Sibilot L,This S,Blanc P,etal.Plasmacytoid dendritic cells are dispensable for non-infectious intestinal IgA responses in vivo[J].Eur J Immunol,2016,46(2):354-359.
[16] den Hartog G,van Altena C,Savelkoul HF,etal.The mucosal factors retinoic acid and TGF-β1 induce phenotypically and functionally distinct dendritic cell types[J].Int Arch Allergy Immunol,2013,162(2):225-236.
[17] Aguzzi A,Kranich J,Krautler NJ.Follicular dendritic cells:origin,phenotype,and function in health and disease[J].Trends Immunol,2014,35(3):105-113.
[18] Mathias A,Pais B,Favre L,etal.Role of secretory IgA in the mucosal sensing of commensal bacteria[J].Gut Microbes,2014,5(6):688-695.
[19] Corthésy B.Role of secretory IgA in infection and maintenance of homeostasis[J].Autoimmun Rev,2013,12(6):661-665.
[20] Mantis NJ,Rol N,Corthésy B.Secretory IgA′s complex roles in immunity and mucosal homeostasis in the gut[J].Mucosal Immunol,2011,4(6):603-611.
[21] Di Caro V,Phillips B,Engman C,etal.Retinoic acid-producing,ex-vivo-generated human tolerogenic dendritic cells induce the proliferation of immunosuppressive B lymphocytes[J].Clin Exp Immunol,2013,174(2):302-317.
[22] Yoo S,Ha SJ.Generation of tolerogenic dendritic cells and their therapeutic applications[J].Immune Netw,2016,16(1):52-60.
[24] Manicassamy S,Reizis B,Ravindran R,etal.Activation of beta-catenin in dendritic cells regulates immunity versus tolerance in the intestine[J].Science,2010,329(5993):849-853.
[25] Everts B,Amiel E,Huang SC,etal.TLR-driven early glycolytic reprogramming via the kinases TBK1-IKKε supports the anabolic demands of dendritic cell activation[J].Nat Immunol,2014,15(4):323-332.
[26] Satpathy AT,Briseo CG,Lee JS,etal.Notch2-dependent classical dendritic cells orchestrate intestinal immunity to attaching-and-effacing bacterial pathogens[J].Nat Immunol,2013,14(9):937-948.
[27] Cerovic V,Houston SA,Westlund J,etal.Lymph-borne CD8α+dendritic cells are uniquely able to cross-prime CD8+T cells with antigen acquired from intestinal epithelial cells[J].Mucosal Immunol,2015,8(1):38-48.
[28] Abe K,Nguyen KP,Fine SD,etal.Conventional dendritic cells regulate the outcome of colonic inflammation independently of T cells[J].Proc Natl Acad Sci USA,2007,104(43):17022-17027.
[29] Qualls JE,Tuna H,Kaplan AM,etal.Suppression of experimental colitis in mice by CD11C+dendritic cells[J].Inflamm Bowel Dis,2009,15(2):236-247.
[30] Mann ER,Landy JD,Bernardo D,etal.Intestinal dendritic cells:their role in intestinal inflammation,manipulation by the gut microbiota and differences between mice and men[J].Immunol Lett,2013,150(1-2):30-40.
[31] Siakavellas SI,Bamias G.Role of the IL-23/IL-17 axis in Crohn′s disease[J].Discov Med,2012,14(77):253-262.
[32] Gálvez J.Role of Th17 Cells in the Pathogenesis of Human IBD[J].ISRN Inflamm,2014,2014:928461.
[33] Takeuchi O,Akira S.Pattern recognition receptors and inflammation[J].Cell,2010,140(6):805-820.
[34] Loddo I,Romano C.Inflammatory bowel disease:genetics,epigenetics,and pathogenesis[J].Front Immunol,2015,6:551.
[35] Bank S,Andersen PS,Burisch J,etal.Polymorphisms in the Toll-like receptor and the IL-23/IL-17 pathways were associated with susceptibility to inflammatory bowel disease in a danish cohort[J].PLoS One,2015,10(12):e0145302.
[36] Strisciuglio C,Miele E,Wildenberg ME,etal.T300A variant of autophagy ATG16L1 gene is associated with decreased antigen sampling and processing by dendritic cells in pediatric Crohn′s disease[J].Inflamm Bowel Dis,2013,19(11):2339-2348.
[37] Gulubova MV,Ananiev JR,Vlaykova TI,etal.Role of dendritic cells in progression and clinical outcome of colon cancer[J].Int J Colorectal Dis,2012,27(2):159-169.
[38] Pryczynicz A,Cepowicz D,Zareba K,etal.Dysfunctions in the mature dendritic cells are associated with the presence of metastases of colorectal cancer in the surrounding lymph nodes[J].Gastroenterol Res Pract,2016,2016:2405437.
[39] Garrett WS,Punit S,Gallini CA,etal.Colitis-associated colorectal cancer driven by T-bet deficiency in dendritic cells[J].Cancer Cell,2009,16(3):208-219.
[40] Rupa P,Mine Y.Recent advances in the role of probiotics in human inflammation and gut health[J].J Agric Food Chem,2012,60(34):8249-8256.
[收稿2016-04-19 修回2016-06-02]
(編輯 張曉舟)
10.3969/j.issn.1000-484X.2016.12.033
①本文為國家自然科學(xué)基金(30871158、81170604)、遼寧省教育廳科學(xué)計(jì)劃研究項(xiàng)目(LK201620)和盛京自由研究者資助項(xiàng)目。
劉 美(1988年-),女,碩士,主要從事腸道黏膜研究。
及指導(dǎo)教師:劉冬妍(1969年-),女,研究員,主要從事腸道黏膜研究,E-mail:Liudy19701010@sina.com。
R392
A
1000-484X(2016)12-1870-04
②中國醫(yī)科大學(xué)附屬盛京醫(yī)院泌尿外科,沈陽110004。