王玉霞,喬 虹,劉子僑
(1.軍事醫(yī)學科學院毒物藥物研究所,北京 100850;2.南開大學法學院,天津 300350)
蓖麻毒素毒性作用機制及防治研究進展
王玉霞1,喬 虹1,劉子僑2
(1.軍事醫(yī)學科學院毒物藥物研究所,北京 100850;2.南開大學法學院,天津 300350)
王玉霞,研究員,1997年畢業(yè)于軍事醫(yī)學科學院生物化學與分子生物學專業(yè)獲博士學位。2012-2014年,作為訪問學者在內(nèi)布拉斯加醫(yī)學中心從事轉(zhuǎn)基因動物模型研究。承擔軍隊十二五重大新藥創(chuàng)制專項、973、海洋863、國家自然科學基金等課題,在靶向抗腫瘤藥物、多糖佐劑、納米制劑的安全性研究中取得了較好進展,在神經(jīng)性毒劑主動免疫、蓖麻毒素抗毒藥物及免疫分析等方面取得了顯著成績?,F(xiàn)兼任中國毒理學會飼料專業(yè)委員會委員、中國生物化學與分子生物學學會工業(yè)生物化學與分子生物學分會理事。目前獲授權(quán)發(fā)明專利9項,在國際和國內(nèi)學術(shù)期刊發(fā)表論文60余篇,其中30余篇為SCI收錄。
蓖麻毒素為提取自蓖麻子的植物毒素,屬于Ⅱ型核糖體活性抑制劑,含有A和B亞基(RTA和RTB),通過二硫鍵相連。RTB與靶細胞表面的糖蛋白或糖脂結(jié)合,介導(dǎo)毒素內(nèi)吞進入細胞并沿逆向轉(zhuǎn)運途徑進入內(nèi)質(zhì)網(wǎng),還原釋放RTA進入細胞質(zhì)。在細胞質(zhì)內(nèi)RTA通過其RNA核糖酶活性抑制蛋白合成產(chǎn)生細胞毒性。除蛋白合成抑制作用,蓖麻毒素還具有誘導(dǎo)細胞凋亡、細胞因子釋放及過氧化作用。蓖麻毒素具有制備成本低廉、性質(zhì)穩(wěn)定、多種中毒途徑和無特效解毒藥等特點。由于它毒性劇烈,作為生物戰(zhàn)劑和恐怖劑,嚴重威脅公共安全。本文針對蓖麻毒素作為恐怖劑應(yīng)用歷史、結(jié)構(gòu)和毒性作用機制、檢測方法和特異性抗毒藥物研究進行綜述。
蓖麻毒素;核糖體活性抑制蛋白;生物恐怖
蓖麻在世界各國均有種植,主要集中在印度、中國和巴西,占世界產(chǎn)量的95%以上。蓖麻全株有毒,其中蓖麻籽中毒素含量最高。蓖麻毒素(ricin)制備成本低廉、毒性極強、多種中毒途徑、潛伏期長、性質(zhì)穩(wěn)定、無特效的解毒藥。近10年來,蓖麻毒素作為暗殺、恐怖武器已構(gòu)成全球性威脅。因此,蓖麻毒素易于為恐怖分子利用,隨著反恐怖斗爭的不斷升級,對蓖麻毒素作為恐怖劑的偵檢、防護及中毒急救越來越受到國際關(guān)注。
蓖麻(Ricinus communis)是大戟科蓖麻屬植物,是重要的油料作物,除蓖麻油外,其種子含有大量的蓖麻毒素。據(jù)記載,1888年德國科學家Stiumark攻讀博士期間,從蓖麻籽中分離得到一種毒蛋白,并命名為蓖麻毒素。目前,全球每年上百萬噸蓖麻籽用于生產(chǎn)蓖麻油,其廢物蓖麻粕重量的5%是蓖麻毒素。由于來源廣,制備簡單,可通過施放氣溶膠或噴灑液體、污染食物和水源、用注射器刺入人體等途徑使人中毒,美、英、加和法等國一直嘗試將蓖麻毒素作為生物戰(zhàn)劑。早在第一次和第二次世界大戰(zhàn)期間,美國和加拿大就試圖制備蓖麻毒素生物戰(zhàn)劑氣溶膠或毒性彈頭[1]。作為純化蛋白,蓖麻毒素毒性作用沒有炭疽桿菌和肉毒桿菌持久,且作為生物戰(zhàn)劑大規(guī)模使用需要成噸的蓖麻毒素,因此難以作為戰(zhàn)劑使用[2]。蓖麻毒素引起關(guān)注的原因在于它易于制備,可以為恐怖分子用于恐怖計劃。
誤食蓖麻籽導(dǎo)致中毒及利用蓖麻毒素進行暗殺和恐怖活動時有報道。據(jù)記載,蓖麻毒素中毒已經(jīng)超過700人次,最早追溯到1974年Balint[3]報道的蓖麻毒素毒蛋白中毒,最著名的是1978年保加利亞官員馬爾科夫被保加利亞特務(wù)刺傷,死于蓖麻毒素中毒,暗殺武器為克格勃制造的毒傘[2]。近年來,利用蓖麻毒素進行暗殺和恐嚇的事件不斷發(fā)生,Bozza等[4]匯總了為人矚目的蓖麻毒素事件,其中包括2012年Assiri報道的蓖麻毒素粉末引起的消化道致死事件、2013年Shannon Richardson寄給美國總統(tǒng)奧巴馬及參議員Wicker的含蓖麻毒素信件。1997年,美國政府將一些包括蓖麻毒素在內(nèi)的核糖體活性抑制劑(ribosome inactivating pro?teins,RIP)歸類為B類生物戰(zhàn)劑,強調(diào)對蓖麻毒素恐怖威脅的應(yīng)急措施是非常必要的[5-7]。
2.1 蓖麻毒素的分子結(jié)構(gòu)
20世紀70年代,蓖麻毒素的一級結(jié)構(gòu)測定己經(jīng)完成,蓖麻毒素含有2個肽鏈,A鏈(ricin A chain,RTA)和B鏈(ricin B chain,RTB),RTA分子質(zhì)量為32 ku,等電點為7.3;RTB分子質(zhì)量為34.7 ku,等電點為5.2;氨基酸和DNA序列均已發(fā)表[8-9]。
有關(guān)蓖麻毒素的二級結(jié)構(gòu)研究顯示,蓖麻毒素是典型的Ⅱ型RIP,RTA和RTB通過二硫鍵相連接,Lord等[10]和Dang等[11]就蓖麻毒素的合成和結(jié)構(gòu)進行了詳盡的研究。起初,在植物細胞中合成的一條單鏈前體稱為preproricin,RTA序列含有26個氨基酸的信號肽和9個氨基酸的前肽,在RTA和RTB之間有個12個氨基酸殘基組成的連接肽。信號肽轉(zhuǎn)導(dǎo)蛋白進入內(nèi)質(zhì)網(wǎng)后,前體蛋白的信號肽切除,初級N-糖基化及分子間二硫鍵形成,對于蛋白的四級結(jié)構(gòu)的形成是非常重要的。此時的前肽和連接肽依然存在,可以維護RTA為非活性狀態(tài),保護植物細胞免遭毒性作用。進而,糖基化的毒素前體由囊泡轉(zhuǎn)運至高爾基復(fù)合體,最終進入空泡。此過程中完成了進一步的糖基修飾、N端前肽和連接肽清除最終形成了Ⅱ型RIP[12-13]。
值得注意的是,來自不同蓖麻及其變種的蓖麻毒素,氨基酸序列及糖基修飾不完全相同,分子量也具有輕微的差異。例如Hegde[14]等分離出2種不同的毒蛋白蓖麻毒素D和蓖麻毒素E,Cawley等[9]分離出3種不同的毒蛋白:蓖麻毒素1、蓖麻毒素2和蓖麻毒素3。Skilleter等[15]和Foxwell等[16]的研究揭示,RTA含有267個氨基酸,由于糖基化水平的差異,RTA分為2個亞類,亞類A1占總RTA 60%以上,含有1個寡糖組成單元,(Man)3-4(Fuc)1(Xyl)1(GlcNAc)2;亞類A2占總RTA 30%以上,比A1多1個富含甘露糖的寡糖。而RTB由262個氨基酸組成,含有2個組成為(Man)4-6(GlcNAc)2的寡糖;Montfort等[17-18]報道的RTA含有263個氨基酸殘基,有(GIcNAc)2(Man)4寡糖鏈修飾;RTB是259個氨基酸殘基組成的序列,含2個寡糖鏈,(GlcNAc)2(Man)8和(GlcNAc)2(Man)7。
2.2 蓖麻毒素的毒性作用機制
早期實驗發(fā)現(xiàn),蓖麻毒素可引起紅細胞凝聚及可溶性血清蛋白出現(xiàn)沉淀,一度認為此凝聚作用是其毒性的根源。到1891年,Ehrlich提出了異議,指出毒素可能是通過結(jié)合簇(haptophore)固定于細胞或組織表面,而發(fā)揮毒性作用的部分是毒素的毒簇(toxophore)。待蓖麻毒素晶體結(jié)構(gòu)被解析,證實了Ehrlich假設(shè)的合理性[19-20]。在蓖麻毒素毒性作用中,RTA和RTB承擔了不可或缺的角色,RTA具有細胞毒性,RTB負責與細胞識別結(jié)合。
RTA具有RNA N-糖苷酶活性,1個分子的蓖麻毒素只需要1 min就可以抑制上千個核糖體的活性[21-22]。僅憑這一點還無法解釋蓖麻毒素極端的毒性作用,其小鼠的LD50為8.0 μg·kg-1[23],達到如此毒性,毒素必然有一跨越細胞膜進入靶細胞發(fā)揮毒性作用的有效途徑。
植物中的RIP有2類。第一類是單鏈多肽,分子質(zhì)量約30 ku,如天花粉和皂角素等,體外與游離核糖體反應(yīng),但對完整細胞無毒性作用。第二類分子質(zhì)量約60 ku,含有A、B兩條多肽共價連接;A鏈類似于第一類RIP,而B鏈具有糖基結(jié)合位點,介導(dǎo)A鏈轉(zhuǎn)入細胞內(nèi),與核糖體反應(yīng)產(chǎn)生毒性。蓖麻毒素是第二類RIP中最典型的一種[24],其B鏈屬于糖基結(jié)合蛋白,為外源凝集素,介導(dǎo)毒素進入細胞[25]。Sandvig等[26]應(yīng)用HeLa細胞,測定125I標記的毒素與細胞的結(jié)合情況。結(jié)果發(fā)現(xiàn),細胞表面存在大約3.3×107個毒素結(jié)合位點,結(jié)合常數(shù)為2.6× 107mol·L-1。細胞表面含有大量的半乳糖,N-乙酰半乳糖胺,及N-乙酰神經(jīng)氨酸[27],一旦與RTB結(jié)合,毒素便以籠形蛋白依賴及不依賴的形式內(nèi)吞進入細胞[28]。
蓖麻毒素進入細胞后存在于胞內(nèi)體中,胞內(nèi)體的成分不同于溶酶體,pH卻極相似,為5.2~6.5。在低pH環(huán)境中,少部分的蓖麻毒素-半乳糖受體復(fù)合物發(fā)生解離,受體返回細胞表面重新利用,胞內(nèi)體與初級溶酶體融合,形成次級溶酶體,其中又有部分復(fù)合物解離,部分受體又得以返回膜表面。大部分毒素進入細胞后被溶酶體降解或再循環(huán)至細胞表面[29],只有大約5%的毒素分子進入高爾基體外側(cè)網(wǎng)絡(luò)(trans-Golgi network,TGN),在此形成活性毒素[30-31]。蓖麻毒素進入TGN后的作用細節(jié)至今仍不清楚,已經(jīng)明確的是,毒素通過逆轉(zhuǎn)運途徑進入內(nèi)質(zhì)網(wǎng)(endoplasmic reticulum,ER),進入ER的途徑可能與B鏈識別糖基有關(guān)[32-33]。由其他蛋白毒素的逆轉(zhuǎn)運機制研究得知,許多蛋白毒素在細胞內(nèi)經(jīng)歷了相同或相似的內(nèi)吞、胞內(nèi)體運輸、從ER易位進入胞漿這一反向跨膜易位過程,C端的短肽(REDKL)類似于ER保守序列KDEL,可利用KDEL-ER蛋白分揀系統(tǒng)高效到達ER腔[34]。蓖麻毒素不具有KDEL或其同源序列,它先結(jié)合于一種含KDEL序列、末端具有半乳糖殘基的ER定居蛋白,形成的復(fù)合物轉(zhuǎn)移到ER腔內(nèi),與KDEL受體結(jié)合之后復(fù)合物解離,蓖麻毒素釋放入ER腔,游離的ER定居蛋白又返回TGN。蓖麻毒素在ER中利用分泌蛋白跨ER膜的各種易位因子進行易位,進入胞漿的方式正好相反于新生蛋白的分泌方式[35]。RTB不僅僅介導(dǎo)全毒素結(jié)合于細胞膜受體上的半乳糖基,還介導(dǎo)毒素到ER定居蛋白,提高了蓖麻毒素內(nèi)吞和加工效率,有助于毒素在細胞內(nèi)的穩(wěn)定,對蓖麻毒素毒性的實現(xiàn)至關(guān)重要。
一般認為,進入ER腔的蓖麻毒素的鏈間二硫鍵在跨膜前發(fā)生降解,原先被封閉的RTA的C末端暴露,激發(fā)了RTA借助于各種易位因子,以伸展形式進入胞漿,再折疊成活性構(gòu)象[36-37]。在ER腔內(nèi)的毒素,至少其A鏈轉(zhuǎn)運到胞漿[38],Lord等[10,39]發(fā)現(xiàn),A鏈逆轉(zhuǎn)運至細胞漿是借用細胞降解錯誤折疊蛋白的路線,當毒素進入內(nèi)質(zhì)網(wǎng)相關(guān)的蛋白降解通路(ER-associated protein degradation,ERAD)后,大量的毒素被泛素化,并被細胞質(zhì)內(nèi)蛋白酶降解,只有小部分得以逃脫的毒素與核糖體結(jié)合。Ⅱ型RIP毒素毒性之間的巨大差異可能與毒素在ERAD途徑降解時的逃逸能力不同有關(guān)。
進入細胞質(zhì)后RTA高效率地進攻核糖體使其滅活[40],一分子RTA、1 min可以滅活1777個核糖體[22]。RTA的作用位點在28s rRNA近3’端延伸袢[41-42],導(dǎo)致單一的腺嘌呤連接糖苷鍵斷裂,丟失腺嘌呤A4324,不是直接切斷RNA鏈,也不是增加RNA對水解酶或裂解酶的敏感性[43]。rRNA袢對于蛋白合成延伸因子的結(jié)合至關(guān)重要,微小的結(jié)構(gòu)破壞即可干擾核糖體、EF-2、GTP復(fù)合體的形成[44],導(dǎo)致蛋白質(zhì)合成的抑制,最終細胞死亡[23,45]。
除了抑制新蛋白合成之外,陸續(xù)有蓖麻毒素其他毒性作用的報道。早在1987年Griffiths等[46]研究發(fā)現(xiàn),蓖麻毒素可引起淋巴和腸細胞凋亡。1990年,Waring等[47]發(fā)現(xiàn),蓖麻毒素可誘導(dǎo)巨噬細胞、未成熟T細胞出現(xiàn)DNA碎片,發(fā)生與凋亡有關(guān)的生化改變。后續(xù)的研究陸續(xù)發(fā)現(xiàn)了蓖麻毒素誘導(dǎo)上皮樣細胞發(fā)生凋亡樣的形態(tài)學改變[48]、誘導(dǎo)小鼠體內(nèi)甲狀腺及脾細胞出現(xiàn)凋亡[49]。
Oda等[48]及Waring等[47]的研究都指出,蓖麻毒素誘導(dǎo)的凋亡機制與其抑制蛋白合成作用無關(guān)。蓖麻毒素引起的細胞凋亡并非A鏈依賴,即屬于與蛋白合成抑制不相關(guān)的途徑[50]。蓖麻毒素細胞毒性存在明顯的劑量依賴性,高濃度時可導(dǎo)致細胞壞死,低濃度時卻引起細胞發(fā)生凋亡。目前認為有多種途徑參與[51],包括蓖麻毒素對于DNA的脫腺嘌呤作用及激活細胞死亡的線粒體途徑[52]和直接干擾DNA的修復(fù)機制[53]。
蓖麻毒素中毒后的早期急性反應(yīng),如發(fā)熱、肝出血性壞死、腹水、胸水滲出和腸道出血壞死性炎癥等還不能完全用抑制蛋白質(zhì)合成來解釋。研究表明,蓖麻毒素誘導(dǎo)體外培養(yǎng)的外周血單核細胞分泌腫瘤壞死因子α(tumor necrosis factor-α,TNF-α)和白細胞介素1β(interleukin-1β,IL-1β),同時在蓖麻毒素中毒大鼠的血漿中亦可檢測到低水平的TNF-α[54]。1997年,董巨瑩等[55]報道了蓖麻毒素中毒誘導(dǎo)小鼠肝產(chǎn)生TNF-α,IL-1,IL-6和IL-8。1994年,Muldoon等[56]發(fā)現(xiàn),注射抗TNF的抗體,可明顯降低蓖麻毒素對小鼠的氧化損傷。Nadkarni等[57]發(fā)現(xiàn),這些細胞因子釋放與蓖麻毒素構(gòu)建的免疫毒素引發(fā)的發(fā)熱、肌痛、毛細血管滲漏綜合征等不良反應(yīng)有關(guān)。蓖麻毒素誘導(dǎo)細胞因子產(chǎn)生的機制可能與細胞膜受體作用后,啟動了某些核轉(zhuǎn)錄因子,導(dǎo)致了一些細胞因子的產(chǎn)生,這些細胞因子進而可引起重要臟器及組織的氧化損傷。
Muldoon等[58]發(fā)現(xiàn),蓖麻毒素中毒小鼠尿液中丙二醛、甲醛和丙酮的含量增加,中毒后36 h各臟器脂質(zhì)過氧化程度明顯升高、還原型谷胱甘肽的明顯減少及DNA單鏈斷裂程度最為嚴重,認為氧化作用可以歸屬到蓖麻毒素的毒性機制中,并提出脂質(zhì)過氧化產(chǎn)生的機制與毒素激活巨噬細胞分泌活性氧(reactive oxygen species,ROS)有關(guān)[59]。1997年,Sadani等[60]研究了蓖麻毒素誘導(dǎo)的大鼠甲狀腺損傷機制,也發(fā)現(xiàn)中毒大鼠甲狀腺組織抗氧化狀態(tài)的改變。研究表明,TNF-α、ROS和鐵離子等對蓖麻毒素誘導(dǎo)的脂質(zhì)過氧化和氧化損傷具有重要的調(diào)節(jié)作用,在毒素中毒的對癥治療中,注射抗TNF-α的抗體,可以明顯降低小鼠尿液丙二醛、甲醛、丙酮的含量,給予去鐵敏(desferrioxamine)可減少蓖麻毒素誘導(dǎo)的脂質(zhì)過氧化的水平。
蓖麻毒素導(dǎo)致細胞死亡機制包括蛋白合成抑制及非蛋白合成抑制,細胞表面蛋白的特征決定進入細胞的毒素的量和毒性。我們前期的研究結(jié)果顯示,蓖麻毒素在動物體內(nèi)會富集分布于脾和肝等組織[61-62]。Derenzini等[63]的實驗結(jié)果也顯示,蓖麻毒素在血液中可快速被網(wǎng)狀內(nèi)皮細胞清除,肝病理檢查發(fā)現(xiàn)肝竇間隙嚴重損傷,是肝非實質(zhì)細胞主動攝取蓖麻毒素所致,與毒素表面的甘露糖與細胞甘露糖受體識別促進了毒素的細胞內(nèi)吞噬密切相關(guān)[64-65]。
除了公認的RTB與細胞表面的半乳糖基結(jié)合之外,蓖麻毒素含有的甘露糖可以被細胞表面的甘露糖受體識別進入細胞,因此,蓖麻毒素對于表面富含甘露糖細胞的毒性也要引起重視。Skilleter等[15]體外實驗還原裂解了蓖麻毒素二硫鍵,經(jīng)分離得到RTA和RTB,進而使用酶處理去糖基,與含有糖基的RTA和RTB分別作用于肝非實質(zhì)細胞,結(jié)果發(fā)現(xiàn),含有糖基的游離的RTA可以被肝非實質(zhì)細胞主動內(nèi)吞,使用單糖D-甘露糖、L-巖澡糖或末端含有甘露糖的卵清蛋白都可以抑制75%~90%的攝取量,而D-半乳糖不能抑制;α-甘露糖苷酶切除糖基的RTA進入肝非實質(zhì)細胞的量下降了60%。說明RTA通過細胞表面甘露糖受體介導(dǎo)進入肝非實質(zhì)細胞。實驗發(fā)現(xiàn),除了RTA與甘露糖受體結(jié)合進入肝非實質(zhì)細胞外,RTB進入肝非實質(zhì)細胞的量是RTA的2倍,且α-甘露糖苷酶處理只能微弱影響RTB進入細胞的水平,天然RTB及α-甘露糖苷酶處理的RTB在細胞內(nèi)聚集均可被D-甘露糖,L-巖澡糖或卵清蛋白抑制,其中D-甘露糖抑制能力較低(約40%),原因可能是α-甘露糖苷酶不能徹底去除RTB的甘露糖所致。此外,進入肝實質(zhì)細胞RTB是RTA的5~7倍,RTB和糖苷酶處理后的RTB沒有明顯區(qū)別,且只有D-半乳糖有明顯抑制,說明天然的RTA可以被肝非實質(zhì)細胞內(nèi)吞,卻不能在肝實質(zhì)細胞中聚集。
就肝細胞而言,蓖麻毒素進入肝實質(zhì)細胞,主要靠RTB與細胞表面半乳糖基識別;對于肝非實質(zhì)細胞,RTB除了識別細胞表面半乳糖基外,RTB的甘露糖與細胞表面甘露糖基受體識別發(fā)揮了重要作用。此外,RTA與細胞表面甘露糖基受體識別也發(fā)揮了重要作用,毒素進入肝非實質(zhì)細胞,至少很大一部分是依賴于細胞的甘露糖受體與RTA和RTB的甘露糖基結(jié)合介導(dǎo)的內(nèi)吞過程。
綜合分析,幾乎所有的真核細胞表面都表達含有半乳糖基修飾的受體,蓖麻毒素RTB與半乳糖基識別進入細胞是其細胞毒性作用的主要機制。然而有部分細胞如吞噬細胞等,含有豐富的甘露糖基受體,雖然其數(shù)目遠不如半乳糖基,可甘露糖基受體與蓖麻毒素表面甘露糖的親和力卻是細胞表面半乳糖與毒素親和力的近10倍[66]。此外,蓖麻毒素與細胞膜受體廣泛結(jié)合后,對受體介導(dǎo)的下游信號系統(tǒng)產(chǎn)生影響,如一些核轉(zhuǎn)錄因子啟動、細胞因子的分泌、抗氧化機制的影響可能是導(dǎo)致毒素多種毒性作用的原因所在。
蓖麻毒素的快速檢測直接關(guān)系到有效的急救治療。依據(jù)蓖麻毒素的理化性質(zhì)和免疫原性已建立了多種快速、靈敏、特異的檢測方法,如由毒素的蛋白免疫原性建立的免疫學分析[67-68]、生物傳感器[69-71]及根據(jù)毒素的組成等建立的儀器分析[72-75]和免疫吸附結(jié)合電化學分析方法[76]。
不同的蓖麻毒素檢測方法具有不同的檢測原理和不同的檢測靈敏度及檢測樣本需求。毛細管電泳結(jié)合基質(zhì)輔助激光解吸附電離質(zhì)譜法等儀器分析方法多根據(jù)毒素的理化性質(zhì),具有靈敏度高,樣品用量少等特點,但儀器昂貴,普及困難,難以進行現(xiàn)場快速分析。根據(jù)毒素的抗原特性建立的免疫分析方法如放免分析和免疫PCR具有較高的檢測靈敏度,但是要求在專業(yè)實驗室進行,生物傳感器操作快速,然而檢測靈敏度差異較大,干擾因素多。蓖麻毒素快速檢測試紙是根據(jù)膠體金免疫層析原理,其檢測靈敏度高,操作簡便快速,然而多種樣品本身對此方法存在嚴重的干擾[77]。
分析樣品中是否含有蓖麻毒素,同時還可以告知毒素是否還具有毒力的方法才是更有效的檢測分析方法[4]。雙夾心ELISA[78-79]、化學發(fā)光[80]、膠體金免疫層析[67,77]、xMAP微球免疫分析[81]、DNA適配子及拉曼分析[82]、表面等離子共振(SPR)[79,83-85]、免疫PCR[86]、免疫吸附結(jié)合液質(zhì)聯(lián)用[87]及免疫捕獲飛行質(zhì)譜[75]等無法檢測毒素生物活性。RTA作為N-糖苷酶與核糖體60s大亞單位的28s RNA作用,水解腺嘌呤的N-糖苷鍵,脫去腺嘌呤,可通過反相化學發(fā)光[88]、HPLC[89]、拉曼[90]和MS檢測等[75]檢測釋放的腺嘌呤判斷蓖麻毒素活性。還可以通過免疫分析[91]、HPLC[92]、質(zhì)譜[93]和PCR技術(shù)[94]檢測分析樣品中的蓖麻毒素蛋白和DNA,通過蛋白合成抑制檢測蓖麻毒素導(dǎo)致的核糖體功能失活[95]。細胞實驗[96-99]和動物實驗[100]檢測RTB鏈糖基結(jié)合位點的完整性以及RTA鏈是否具有催化活性。
4.1 中毒途徑及對癥治療
蓖麻毒素毒性強度取決于中毒途徑,吸入毒性高于經(jīng)口途徑,潛伏期一般為4~8 h。經(jīng)口毒性主要作用靶器官為肝和脾,其他臟器也會受到損傷;吸入性毒性則表現(xiàn)為非心源性肺水腫[101]。
吞服蓖麻籽可通過胃腸道排出,而咀嚼可加速毒素釋放和吸收。嚴重中毒可導(dǎo)致廣泛的細胞中毒性器官損傷,如水腫、出血和壞死等,還可引起中毒性肝病、腎病及出血性胃腸炎。中毒較輕的可在48~72 h恢復(fù),嚴重者可因呼吸和循環(huán)衰竭在24 h~ 4 d死亡,也有中毒者在恢復(fù)期因腎功能衰竭死亡[102-104]。Audi等[103]報道,蓖麻毒素口服中毒,小鼠LD50為30 mg·kg-1,人致死劑量為1~20 mg·kg-1。小鼠吸入小于5 μm大小的毒素氣溶膠,LD50為3~5 μg·kg-1。氣溶膠顆粒直徑越小,危害越大,首發(fā)癥狀起于8 h內(nèi),表現(xiàn)為呼吸困難、發(fā)熱、咳嗽、惡心及胸部緊迫、大汗、肺水腫、紫紺,最后導(dǎo)致低血壓、呼吸衰竭,甚至死亡。亞致死劑量中毒導(dǎo)致的急性肺損傷后需要長時間才能恢復(fù)[105]。注射途徑的小鼠最小致死劑量為0.7~2 μg·kg-1,LD50為5~10 μg·kg-1,注射部位會出現(xiàn)肌肉、淋巴結(jié)壞死,肝、腎、脾功能障礙、胃腸道出血,患者最后死于多臟器衰竭[103,106]。當年馬爾科夫在被含有蓖麻毒素的毒傘尖刺傷后第3天死亡。中毒后24 h會相繼出現(xiàn)疲勞、惡心、嘔吐和發(fā)熱癥狀,進而發(fā)展為廣泛性的壞死性淋巴結(jié)病和注射部位的組織壞死。臨終的并發(fā)癥有胃腸道出血、失血性休克及腎衰竭[107]。無破損的皮膚接觸毒素一般不會引起中毒,眼睛接觸可致結(jié)膜炎、瞳孔放大和視神經(jīng)損傷。
由于蓖麻毒素起效迅速、毒性作用不可逆,其中毒的有效治療非常困難,對于高危職業(yè)的軍人和外交人員應(yīng)該接種有效的疫苗;按照生物戰(zhàn)劑的洗消方案處理和輔助性治療是目前常用的治療手段,糾正體液的酸堿平衡、保護肝腎功能是治療的第一步。對于吸入性中毒,要注意呼吸道的對癥處理,比如給予抗炎藥物、鎮(zhèn)痛藥和人工換氣等。研究顯示,地塞米松和二氟甲基鳥氨酸在延長中毒小鼠的存活時間上明顯好于丁羥茴醚(butylated hydroxyani?sole)和維生素E[101,103]。經(jīng)口中毒者,應(yīng)盡早洗胃、催吐、導(dǎo)瀉和腸灌洗,為減少毒物繼續(xù)吸收,還可以口服蛋清或冷牛奶、冷米湯,必要時給予胃黏膜保護劑。
4.2 抗毒藥物
值得注意的是,針對蓖麻毒素中毒的預(yù)防和急救藥物研究已經(jīng)取得了顯著進展,人們首先想到的是從源頭阻止毒素進入細胞,包括使用小分子拮抗肽、免疫疫苗及中和性抗體[108]。1991年,Lambert等[109]制備了含有2個半乳糖殘基、具有三叉結(jié)構(gòu)的糖肽可以與RTB結(jié)合。Khan等[110]用隨機肽庫技術(shù)篩選到與蓖麻毒素特異性結(jié)合的12肽,Trp-Pro-His-Arg-His-His-His-Ser-Glu-Iso-Gly-His,與單抗比較,此肽和蓖麻毒素的結(jié)合緩慢而解離速率較快,用于抗毒沒有明顯優(yōu)勢。
抗蓖麻毒素單抗可被動保護同系小鼠抵抗蓖麻毒素中毒[111-113],說明免疫防護產(chǎn)生特異性抗體,可有效抵抗蓖麻毒素襲擊。免疫疫苗可采用脫毒的毒素或去糖基化的RTA[114],免疫動物可對抗致死劑量的蓖麻毒素中毒[115-116]。RTA本身的毒性作用可通過突變其酶活性部位的Y80,Y123,E177,R180,N209和W211等關(guān)鍵氨基酸殘基降低其毒性,而RTA抗原免疫動物引起局部甚至全身的血管滲漏綜合征(vascular leak syndrome,VLS)可通過突變氨基酸L74,D75和V76而減輕或避免。因此,重組RTA突變體作為免疫抗原均明顯地降低了毒副作用,并具有很好的抗毒活性[117-118]。Kende等[119]研發(fā)了針對毒素氣溶膠襲擊用于黏膜免疫的免疫微球(Soligenix Inc)。研發(fā)的RiVax?疫苗免疫小鼠、家兔和人員都表現(xiàn)出非常好的抗毒效果[120-122],可對抗10倍LD50劑量的蓖麻毒素襲擊,可使100%免疫動物抵抗致死劑量的蓖麻毒素氣溶膠攻擊[123]。
蓖麻毒素免疫疫苗主動免疫有很好的抗毒效果,疫苗產(chǎn)生有效的抗毒抗體至少需要1個月以上的免疫時間。對于沒有進行過免疫接種的中毒人員還需要特異性的抗毒抗體進行被動免疫治療。以滅活全毒素、RTA及RTB為抗原制備的單克隆抗體均有明確的抗毒活性[112-113,124],這些研究結(jié)果推動了抗毒抗體研究[125-128]。Hu等[129]和Prigentu等[130]篩選了抗毒活性抗體并進行了人源化,發(fā)現(xiàn)將RTA抗體和RTB抗體合用可提高抗毒效果,小鼠抗毒活性實驗可以對抗5×LD50蓖麻毒素中毒。我國自行研制的蓖麻毒素抗毒抗體,在小鼠蓖麻毒素腹腔中毒后2 h后用于急救仍可完全對抗3個致死劑量的毒素中毒;致死劑量中毒后6 h給予抗體急救,仍有70%小鼠存活[131],此抗體已經(jīng)完成了人源化研究。
特異性抗體可用于蓖麻毒素中毒的預(yù)防和急救,其效果與中毒時間和給藥時機密切相關(guān),對于中毒時間稍長、錯過了最佳抗體治療的中毒人員,抗體難以進入細胞內(nèi),治療無效。況且,蓖麻毒素從中毒到出現(xiàn)明顯的中毒癥狀,至少有幾個小時的潛伏期。因此,與抗毒疫苗和抗體相比較,研制能進入細胞的蓖麻毒素小分子拮抗劑同樣重要。
2010年,Wahome等[97]建立了體外細胞實驗高方法通量篩選蓖麻毒素小分子拮抗劑。Stechmann等[98]成功合成了小分子拮抗劑Retr-2,作用于中毒早期TGN的逆轉(zhuǎn)運途徑從而具有抗毒活性,但要在中毒前1 h大劑量給予才有效。2013年Gupta等[132-133]研究合成了Retr-2的衍生物(S)-Retro-2.1。細胞實驗顯示,預(yù)防給藥抗蓖麻毒素活性提高了1000倍,是抗毒活性最強的小分子化合物。(S)-Retro-2.1是否能成為有效的急救藥物還需要進一步進行藥效學評價及安全性研究。
作為生物戰(zhàn)劑的蓖麻毒素的醫(yī)學防護,無論是戰(zhàn)時還是和平時期的反恐怖都是非常重要的。特異性醫(yī)學防護包括采用疫苗進行預(yù)防和使用小分子抗毒藥物或大分子抗毒抗體進行急救,理想的免疫疫苗能快速激活機體的免疫反應(yīng),可對抗大劑量的毒素中毒,治療抗體或小分子藥物可對抗致死劑量的蓖麻毒素中毒并具有較寬的治療窗口。防護效果除了與毒素的中毒途徑、劑量相關(guān)外,還與治療藥物的給藥途徑、劑量及及給藥時機密切相關(guān)。
蓖麻毒素作為典型的Ⅱ型RIP,其主要毒性作用機制為抑制細胞蛋白的合成,具有劇烈的細胞毒性。此外,它還具有誘導(dǎo)產(chǎn)生細胞因子,引起脂質(zhì)過氧化及誘導(dǎo)細胞凋亡的作用。隨著反恐怖斗爭的不斷升級,對蓖麻毒素的偵檢、防護及中毒急救越來越受到國際關(guān)注。已經(jīng)建立多種蓖麻毒素檢測方法,其中能判定毒素、同時檢測其生物活性的方法是研究的重點。在蓖麻毒素的抗毒藥物研究中,疫苗免疫具有很好的預(yù)防效果,抗毒抗體作為急救藥物特異、有效,但對進入細胞內(nèi)的毒素無效。因此,在開發(fā)特異性大分子抗毒藥物的同時,安全有效、可用于預(yù)防及急救的小分子抗毒藥物有待進一步開發(fā)。建立蓖麻毒素的檢測預(yù)警、防護及中毒治療體系,是軍事醫(yī)學研究中針對生物戰(zhàn)劑及恐怖劑襲擊的重點內(nèi)容。
[1] Gupta RC.Handbook of toxicology of chemical warfare agents[M].Boston:Academic Press, 2009.
[2]Schep LJ,Temple WA,Butt GA,Beasley MD. Ricin as a weapon of mass terror-separating fact from fiction[J].Environ Int,2009,35(8):1267-1271.
[3]Balint GA.Ricin:the toxic protein of castor oil seeds[J].Toxicology,1974,2(1):77-102.
[4]Bozza WP,Tolleson WH,Rosado LA,Zhang B. Ricin detection: Tracking active toxin[J].Biotechnol Adv,2015,33(1):117-123.
[5]Rotz LD,Khan AS,Lillibridge SR,Ostroff SM,Hughes JM.Public health assessment of poten?tial biological terrorism agents[J].Emerg Infect Dis,2002,8(2):225-230.
[6]From S, P?usa T.Today's threat of ricin toxin[J].Pol Merkur Lekarski,2015,39(231):162-164.
[7]Griffiths GD.Understanding ricin from a defen?sive viewpoint[J].Toxins,2011,3:1373-1392.
[8]Funatsu G,Yoshitake S, Funatsu M.Primary structure of Ile chain of ricin D[J].Agric Biol Chem,1978,42(2):501-503.
[9]Cawley DB,Hedblom ML,Houston LL.Homology between ricin and Ricinus communis agglutinin:Amino terminal sequence analysis and protein synthesis inhibition studies[J].Arc Biochem Biophy,1978,190(2):744-755.
[10] Lord JM,Spooner RA.Ricin trafficking in plant and mammalian cells[J].Toxins(Basel),2011,3(7):787-801.
[11]Dang L,Van Damme EJ.Toxic proteins in plants[J].Phytochemistry,2015,117(1):51-64.
[12]Lord JM.Precursors of ricin and Ricinus communis agglutinin.Glycosylation and processing during synthesis and intracellular transport[J].Eur J Biochem,1985,146(2),411-416.
[13]Frigerio L,Jolliffe NA,Di Cola A,F(xiàn)elipe DH,Paris N,Neuhaus JM,et al.The internal propep?tide of the ricin precursor carries a sequence-spe?cific determinant for vacuolar sorting[J].Plant Physiol,2001,126(1):167-75.
[14]Hegde R,Podder SK.Studies of the variants of the protein toxins ricin and abrin[J].Eur J Biochem,1992,204(1):155-164.
[15] Skilleter DN,F(xiàn)oxwell BM.Selective uptake of ricin A-chain by hepatic non-parenchymal cellsin vitro[J].FEBS letters,1986,196(2):344-348.
[16]Foxwell BM,Donovan TA,Thorpe PE,Wilson G. The removal of carbohydrates from ricin with endoglycosidases H,F(xiàn) and D and alpha-manno-sidase[J].Biochim.Biophys,1985,840(2),193-203.
[17]Montfort W,Villafranca JE,Monzingo AF,Ernst SR,Katzin B,Rutenber E,et al.The three-dimen?sional structure of ricin at 2.8A[J].J Biochem,1987,262(11):5398-403.
[18]Li GR,Chen YS,Huang FL,Sa RN,Yao Y. Progress on research ofricin[J].JInner Mongolia Univ Nationalities(內(nèi)蒙古民族大學學報:自然科學版),2009,24(1):65-67.
[19]Tahirov TH,Lu TH,Liaw YC,Chu SC,Lin JY. A new crystal form of abrin-a from the seeds of Abrus precatorius[J].J Mol Biol,1994,235(3):1152-1153.
[20]Weston SA, Tucker AD, Thatcher DR,Derbyshire DJ,Pauptit RA.X-ray structure of recombinant ricin A-chain at 1.8 A resolution[J].J Mol Biol,1994,244(4):410-422.
[21]Olsnes S,F(xiàn)ernandez-Puentes C,Carrasco L,Vazquez D.Ribosome inactivation by the toxic lectins abrin and ricin.Kinetics of the enzymic ac?tivity of the toxin A-chains[J].Eur J Biochem,1975,60(1):281-288.
[22]Endo Y,Tsurugi K.The RNA N-glycosidase activity of ricin A-chain.The characteristics of the enzymatic activity of ricin A-chain with ribosomes and with rRNA[J].J Biol Chem,1988,263(18):8735-8739.
[23] Stirpe F,Battelli MG.Ribosome-inactivating proteins:progress and problems[J].Cell Mol Life Sci,2006,63(16):1850-1866.
[24]Dietrich JB,Ribéreau-Gayon G,Jung ML,F(xiàn)ranz H,Beck JP,Anton R.Identity of the N terminal sequences of the three A chains of mistletoe lectins:homology with ricin like plant toxin and single-chain ribosome inhibiting proteins[J].Anti?cancer Drugs,1992,3(5):507-511.
[25]Olsnes S,Pihl A.Different biological properties of the two constituent peptide chains of ricin,a toxic protein inhibiting protein synthesis[J].Biochemistry,1973,12(16):3121-3126.
[26]Sandvig K,Olsnes S,Pihl A.Kinetics of binding of the toxic lectins abrin and ricin to surface receptors of human cells[J].J Biol Chem,1976,251(13):3977-3984.
[27]Peumans WJ,Hao Q,Van Damme EJ.Ribo?some inactivating proteins from plants:more than RNA N-glycosidases?[J]FASEB J,2001,15(9):1493-1506.
[28]Sandvig K,Grimmer S,Iversen TG,Rodal K,Torgersen ML,Nicoziani P,et al.Ricin transport into cells:studies of endocytosis and intracellular transport[J].Int J Med Microbiol,2000,290(4-5):415-420.
[29]Puri M,Kaur I,Perugini MA,Gupta RC.Ribo some-inactivating proteins:current status and biomedical applications[J].DrugDiscov To?day,2012,17(13-14):774-783.
[30]Van Deurs B, Tonessen TI, Petersen OW,Sandvig K,Olsnes S.Routing of internalized ricin and ricin conjugates to the Golgi complex[J].J Cell Biol,1986,102(1):37-47.
[31]Tagge E, Chandler J, Tang BL, Hong W,Willingham MC,F(xiàn)rankel A.Cytotoxicity of KDEL-terminated ricin toxins correlates with distribution of the KDEL receptor in the Golgi[J].J Histo?chem Cytochen,1996,44(2):159-165.
[32]Sandvig K,van Deurs B.Transport of protein toxins into cells:pathways used by ricin,cholera toxin and Shiga toxin[J].FEBS Lett,2002,529(1):49-53.
[33]Lord JM,Roberts LM.Toxin entry:retrograde transport through the secretory pathway[J].J Cell Biol,1998,140(4):733-736.
[34]Rboerts LM,Simpson JC,Lord JM.Simpson JC,Roberts LM,Lord JM.Catalysic and cytotoxic ac?tivities of recombinant ricin A chain mutant with charged residues added at the carboxyl terminus[J].Protein Expr Purif,1995,6(5):665-670.
[35]Tonevitsky AG, Agapov II, Shamshiev AT,Temyakov DE,Pohl P,Kirpichnikov MP.Immu?notoxins containing A-chain of mistletoe lectin I are more active than immunotoxins with ricin A-chain[J].FEBS Lett,1996,392(2):166-168.
[36]Dosio F,F(xiàn)ranceschi A,Ceruti M,Brusa P,Cattel L,Colombatti M.Enhancement of ricin toxin A chain immunotoxin activity:synthesis,ionopho?retic ability andin vitroactivity of monensin deriv?atives[J].Biochem Pharmaecol,1996,52(1):157-166.
[37]Spooner RA,Watson PD,Marsden CJ,Smith DC,MooreKAH,CookJP,etal.Proteindisul phide-isomerase reduces ricin to it's A and B chains in the endoplasmic reticulum[J].Bio?chem J,2004,383(Pt 2):285-293.
[38]Roberts LM,Smith DC.Ricin:the endoplasmic reticulum connection[J].Toxicon,2004,44(5):469-472.
[39] Spooner RA,Lord JM.Ricin trafficking in cells[J].Toxins(Basel),2015,7(1):49-65.
[40] Sandvig K, Torgersen ML, EngedalN,Skotland T,Iversen TG.Protein toxins from plants and bacteria:probes for intracellular transport and tools in medcine[J].FEBS Letters,2010,584(12):2626-2634.
[41] Endo Y,Mitsui K,Motizuki M,Tsurugi K.The mechanism of action of ricin and related toxic lectins on eukaryotic ribosomes.The site and the characteristics of the modification in 28 S ribosom?al RNA caused by the toxins[J].J Biol Chem,1987,262(12):5908-5912.
[42] Endo Y,Tsurugi K.RNA N-glycosidase activity of ricin A-chain.Mechanism of action of the toxic lectin ricin on eukaryotic ribosomes[J].J Biol Chem,1987,262(17):8128-8130.
[43]Ogasawara T,Sawasaki T,Morishita R,Ozawa A,Madin K,Endo Y.A new class of enzyme acting on damaged ribosomes:ribosomal RNA apurinic site specific lyase found in wheat germ[J].EMBO J,1999,18(22):6522-6531.
[44]Brigotti M,Rambelli F,Zamboni M,Montanaro L,Sperti S.Effect of alpha-sarcin and ribosomeinactivating proteins on the interaction of elonga?tion factors with ribosomes[J].Biochem J,1989,257(3):723-727.
[45]Walsh MJ,Dodd JE,Hautbergue GM.Ribosomeinactivating proteins:potent poisons and molecular tools[J].Virulence,2013,4(8):774-784.
[46]Griffiths GD,Leek MD,Gee DJ.The toxic plant proteins ricin and abrin induce apoptotic changes in mammalian lymphoid tissues and intestine[J].J Pathol,1987,151(3):221-229.
[47] Waring P.DNA fragmentation induced in macro?phages by gliotoxin does not require protein synthesis and is preceded by raised inositol tri?phosphate levels[J].J Biol Chem,1990,265(24):14476-14480.
[48] Oda T,Komatsu N,Muramatsu T.Diisopropylflu orophosphate(DFP)inhibits ricin-induced apoptosis of MDCK cells[J].Biosci Biotechnol Biochem,1998,62(2):325-333.
[49]Fu T,Burbage C,Tagge EP,Brothers T,Willingham MC,F(xiàn)rankel AE.Ricin toxin contains three lectin sites which contribute to itsin vivotoxicity[J].Int J Immunopharmacol,1996,18(2):685-692.
[50] Authier F,Djavaheri-Mergny M,Lorin S,F(xiàn)rénoy JP, Desbuquois B.Fate and action of ricin in rat liverin vivo:translocation of endocytosed ricin into cytosol and induction of intrinsic apoptosis by ricin B-chain[J].Cell Microbiol,2016,18(12):1800-1814.
[51]Liao P,Li Y,Li H,Liu W.Organellar proteome analyses of ricin toxin-treated HeLa cells[J].Toxicol Ind Health,2016,32(7):1166-1178.
[52]Brigotti M,Alfieri R,Sestili P,Bonelli M,Petronini PG,Guidarelli A,et al.Damage to nuclear DNA in duced by Shiga toxin 1 and ricin in human endothelial cells[J].FASEB J,2002,16(3):365-372.
[53]Sestili P,Alfieri R,Carnicelli D,Martinelli C,Barbieri L,Stirpe F,et al.Shiga toxin 1 and ricin inhibit the repair of H2O2-induced DNA single strand breaks in cultured mammalian cells[J].DNA Repair(Amst),2005,4(2):271-277.
[54] Licastro F,Morini MC,Bolognesi A,Stirpe F. Ricin induces the production of tumor necrosis factor-α and interleukin-1 by human peripheralblood mononuclear cells[J].Biochem J,1993,294(2):517-523.
[55]Dong JY,Wang WX,Wang JB.Induction of tumor necrosis factor in the liver of ricin intoxicated mice[J].J Fourth Milt Med Univ(第四軍醫(yī)大學學報),1997,18(1):78.
[56]Muldoon DF,Bagchi D,Hassoun EA,Stohs SJ. The modulating effects of tumor necrosis factor alpha antibody on ricin-induced oxidative stress in mice[J].J Biochem Toxicol,1994,9(6):311-318.
[57]Nadkarni GD,Deshpande UR.Effect of ricin on acute phase response in rats[J].Indian I Exp Biol,1991,29(6):584-585.
[58]Muldoon DF,Hassoun EA,Stohs SJ.Ricininduced hepatic lipid peroxidation,glutathione depletion,and DNA single-strand breaks in mice[J].Toxicon,1992,30(9):977-984.
[59]Muldoon DF,Hassoun EA,Stohs SJ.Role of iron in ricin-induced lipid peroxidation and super?oxide production[J].Res Commun Mol Pathol-Pharmacol,1996,92(1):107-118.
[60]Sadani GR,Soman CS,Deodhar KK,Nadkarni GD. Reactive oxygen species involvement in ricininduced thyroid toxicity in rat[J].Hum Exp Toxicol,1997,16(5):254-256.
[61]Wang CY,Lang LW,Zhong YH,Wang YX,Jia PY,Wu JH,et al.A quantitative sandwich enzyme-linked immunosorbent assay for ricin inbiological samples and its application[J].Mil Med Sci(軍事醫(yī)學),2011,35(8):620-623.
[62]Dong N,Li Z,Li Q,Wu J,Jia P,Wang Y,et al. Absorption,distribution and pathological injury of ricin in mice poisoned by alimentary pathway[J].J Toxicol Pathol,2014,27(1):73-80.
[63]Derenzini M,Bonnetti E,Marinozzi V,Stirpe F. Toxic effects of ricin:studies on the pathogenesis of liver lesions[J].Virchows Arch B Cell Pathol,1976,20(1):15-28.
[64]Skilleter DN,Paine AJ,Stirpe F.A comparison of the accumulation of ricin by hepatic parenchymal and non-parenchymal cells and its inhibition of protein synthesis[J].Biochim Biophys Acta,1981,677(3-4):495-500.
[65]Skilleter DN,Price RJ,Thorpe PE.Modification of the carbohydrate in ricin with metaperiodate and cyanoborohydride mixtures:effect on binding,uptake and toxicity to parenchymal and nonparenchymal cells of rat liver[J].Biochim Bio?phys Acta,1985,842(1):12-21.
[66]Riccobono F.Finai ML.Mannose receptor dependent uptake of ricin A1 and A2 chains by macrophage[J].Carbohydr Res,1996,282(2):285-292.
[67]Shyu RH,Shyu HF,Liu HW,Tang SS.Colloidal gold-based immunochromatographic assay for detection of ricin[J].Toxicon,2002,40(3):255-258.
[68]Men J,Lang L,Wang C,Wu J,Zhao Y,Jia PY,et al.Detection of residual toxin in tissues of ricin-poisoned mice by sandwich enzyme-linked immunosorbent assay and immunoprecipitation[J].Anal Biochem,2010,401(2):211-216.
[69]Fan JR,Zhu J,Wu WG,Huang Y.Plasmonic metasurfaces based on nanopin-cavity resonator for quantitative colorimetric ricin sensing[J/OL].Small,2016,6.doi:10.1002/smll.201601710.(2016-11-25) http://onlinelibrary.wiley.com/doi/ 10.1002/smll.201601710/abstract; jsessionid= E7C633AC390063DF1FE7E3DBE0C9A1CC.f03t04
[70]Kirby R,Cho EJ,Gehrke B,Bayer T,Park YS,Neikirk DP,et al.Aptamer-based sensor arrays for the detection and quantitation of proteins[J].Anal Chem,2004,76(14):4066-4075.
[71]Uzawa H,Ohga K,Shinozaki Y,Ohsawa I,Nagatsuka T,Seto Y,et al.A novel sugar-probe biosensor for the deadly plant proteinous toxin,ricin[J].Biosens Bioelectron,2008,24(4):929-933.
[72]Zheng J,Zhao C,Tian G,He L.Rapid screening for ricin toxin on letter papers using surface enhanced Raman spectroscopy[J].Talanta,2017,162:552-557.
[73]Yeung WS,Luo GA,Wang QG,Ou JP.Capillary electrophoresis-based immunoassay[J].J Chro?matogr B Analyt Technol Biomed Life Sci,2003,797(1-2):217-228.
[74]Despeyroux D,Walker N,Pearce M,F(xiàn)isher M,McDonnell M,Bailey SC,et al.Characterization of ricin heterogeneity by electrospray mass spec?trometry,capillary electrophoresis,and resonant mirror[J].Anal Biochem,2000,279(1):23-36.
[75]Wang D,Baudys J,Barr JR,Kalb SR.Improved sensitivity for the qualitative and quantitative analy?sis of active ricin by MALDI-TOF mass spectrom?etry[J].Anal Chem,2016,88(13):6867-6872.
[76]Cunningham JC,Scida K,Kogan MR,Wang B,Ellington AD,Crooks RM.Paper diagnostic de?vice for quantitative electrochemical detection of ricin at picomolar levels[J].Lab Chip,2015,15(18):3707-3715.
[77]Wu JH,Wang YX,Jia PY,Wang CY,Zhao Y,Peng H,et al.Immunochromatography detection of ricin in environmental and biological samples[J].Nano Biomed Eng,2011,3(3):169-173.
[78]Huebner M,Wutz K,Szkola A,Niessner R,Seidel M.Aglyco-chip for the detection of ricin by an automated chemiluminescence read-out system[J].Anal Sci,2013,29(4):461-466.
[79]Anderson GP,Glaven RH,Algar WR,Susumu K,Stewart MH,Medintz IL,Goldman ER.Single domain antibody-quantum dot conjugates for ricin detection by both fluoroimmunoassay and surface plasmon resonance[J].Anal Chim Acta,2013,786(13):132-138.
[80]Xiao X,Tao J,Zhang HZ,Huang CZ,Zhen SJ. ExonucleaseⅢ-assisted graphene oxide ampli?fied fluorescence anisotropy strategy for ricin detection[J].Biosens Bioelectron,2016,85:822-827.
[81]Simonova MA, Valyakina TI, Petrova EE,Komaleva RL,Shoshina NS,Samokhvalova LV,et al.Development of xMAP assay for detection of six protein toxins[J].Anal Chem,2012,84(15):6326-6330.
[82]Lamont EA,He LL,Warriner K,Labuza TP,Sreevatsan S.A single DNA aptamer functions as a biosensor for ricin[J].Analyst,2011,136(19):3884-3895.
[83]Stern D,Pauly D,Zydek M,Müller C,Avondet MA,Worbs S,et al.Simultaneous differentiation and quantification of ricin and agglutinin by an anti?body-sandwich surface plasmon resonance sen?sor[J].Biosens Bioelectron,2016,78:111-117.
[84]Feltis BN,Sexton BA,Glenn FL,Best MJ,Wilkins M,Davis TJ.A hand-held surface plasmon resonance biosensor for the detection of ricin and other biological agents[J].Biosens Bioelectron,2008,23(7):1131-1136.
[85]Nagatsuka T,Uzawa H,Sato K,Kondo S,Izumi M,Yokoyama K,et al.Localized surface plasmon resonance detection of biological toxins using cell surface oligosaccharides on glyco chips[J].ACS Appl Mater Interfaces,2013,5(10):4173-4180.
[86]Gaylord ST,Dinh TL,Goldman ER,Anderson GP,Ngan KC,Walt DR.Ultrasensitive detection of ricin toxin in multiple sample matrixes using single-domain antibodies[J].Anal Chem,2015,87(13):6570-6577.
[87]Ma X,Tang J,Li C,Liu Q,Chen J,Li H,et al. Identification and quantification of ricin in biomedical samples by magnetic immunocapture enrichment and liquid chromatography electrospray ioniza?tion tandem mass spectrometry[J].Anal Bioanal Chem,2014,406(21):5147-5155.
[88]Sturm MB,Schramm VL.Detecting ricin:sensi?tive luminescent assay for ricin A-chain ribosome depurination kinetics[J].Anal Chem,2009,81(8):2847-2853.
[89]Chen XY,Link TM,Schramm VL.Ricin A-chain:kinetics,mechanism,and RNA stem-loop inhibi?tors[J].Biochemistry,1998,37(33):11605-11613.
[90]Tang JJ,Sun JF,Lui R,Zhang ZM,Liu JF,Xie JW.New surface-enhanced raman sensing chip designed for on-site detection of active ricin in complex matrices based on specific depurination[J].ACS Appl Mater Interfaces,2016,8(3):2449-2455.
[91]Lumor SE,Hutt A,Ronningen I,Diez-Gonzalez F,Labuza TP.Validation of immunodetection(ELISA)of ricin using a biological activity assay[J].J Food Sci,2011,76(1):C112-C116.
[92]Becher F,Duriez E,Volland H,Tabet JC,Ezan E. Detection of functional ricin by immunoaffinity and liquid chromatography-tandem mass spec?trometry[J].Anal Chem,2007,79(2):659-665.
[93]McGrath SC,Schieltz DM,McWilliams LG,Pirkle JL,Barr JR.Detection and quantification of ricin in beverages using isotope dilution tandem mass spectrometry[J].Anal Chem,2011,83(8):2897-2905.
[94]Felder E,Mossbrugger I,Lange M,W?lfel R. Simultaneous detection of ricin and abrin DNA by real-time PCR(qPCR)[J].Toxins(Basel),2012,4(9):633-642.
[95]Ling J,Liu WY,Wang TP.Radioassay for RNA N-glycosidase with tritium-labeled sodium-borohy?dride or amino acid[J].Bio Org Chem,1994,22:395-404.
[96]Rasooly R,He X.Sensitive bioassay for detec?tion of biologically active ricin in food[J].J Food Prot,2012,75(5):951-954.
[97] Wahome PG,Bai Y,Neal LM,Robertus JD,Mantis NJ.Identification of small-molecule inhibi?tors of ricin and shiga toxin using a cell-based high-throughput screen[J].Toxicon,2010,56(3):313-323.
[98]Stechmann B,Bai SK,Gobbo E,Lopez R,Merer G,Pinchard S,et al.Inhibition of retro?grade transport protects mice from lethal ricin challenge[J].Cell,2010,141(2):231-242.
[99]Pauly D,Worbs S,Kirchner S,Shatohina O,Dorner MB,Dorner BG.Real-time cytotoxicity assay for rapid and sensitive detection of ricin from complex matrices[J].PLoS One,2012,7(4):e35360.
[100] Zhan J,Zhou P.A simplified method to evaluate the acute toxicity of ricin and ricinus agglutinin[J].Toxicology,2003,186(1-2):119-123.
[101] Moshiri M,Hamid F,Etemad L.Ricin toxicity:Clinical and molecular aspects[J].Rep Biochem Mol Biol,2016,4(2):60-65.
[102] Qiu ZW,Niu WK.Diagnosis and treatment of acute ricin poisoning[J].Chin J Emerg Med(中華急診醫(yī)學雜志),2006,15(7):669-670.
[103] Audi J,Belson M,Patel M,Schier J,Osterloh J.Ricin poisoning:a comprehensive review[J].JAMA,2005,294(18):2342-2351.
[104] Grimshaw B,Wennike N,Dayer M.Ricin poisoning:a case of internet-assisted parasuicide[J].Br J Hosp Med(Lond),2013,74(9):532-533.
[105] Bhaskaran M,Didier PJ,Sivasubramani SK,Doyle LA,Holley J,Roy CJ.Pathology of lethal and sublethal doses of aerosolized ricin in rhesus macaques[J].Toxicol Pathol,2014,42(3):573-581.
[106] Pincus SH,Bhaskaran M,Brey RN 3rd,Didier PJ,Doyle-Meyers LA,Roy CJ.Clinical and pathologicalfindings associated with aerosol exposure of macaques to ricin toxin[J].Toxins(Basel),2015,7(6):2121-2133.
[107]Crompton R,Gall D.Georgi Markov-death in a pellet[J].Med Leg J,1980,48(2):51-62.
[108]Guo JW,Shen BF.Current status of antagoinst and vaccine for toxic ricin[J].Int J Immunol(國際免疫學雜志),2006,29(4):217-220.
[109]Lambert JM,McIntyre G,Gauthier MN,Zullo D,Rao V,Steeves RM,et al.The galactose-binding sites of the cytotoxic lectin ricin can be chemically blocked in high yield with reactive ligands prepared by chemical modification of glycopeptides containing triantennary N-linked oligosaccharides[J].Biochemistry,1991,30(13):3234-3247.
[110]Khan AS, Thompson R, Cao C, Valdes JJ. Selection and characterization of peptide memi?topes binding to ricin[J].Biotechnol Lett,2003,25(19):1671-1675.
[111]Yermakova A,Klokk TI,O‘Hara JM,Cole R,Sandvig K,Mantis NJ.Neutralizing monoclonal antibodies against disparate epitopes on ricin tox?in’s enzymatic subunit interfere with intracellular toxin transport[J/OL].Sci Rep,2016,[2016-12-03].http://www.nature.com/articles/srep22721
[112] Yermakova A, Mantis NJ.Neutralizing activity and protective immunity to ricin toxin conferred by B subunit(RTB)-specific Fab fragments[J].Toxicon,2013,72:29-34.
[113] Noy-Porat T,Rosenfeld R,Ariel N,Epstein E,Alcalay R,Zvi A,et al.Isolation of anti-ricin protective antibodies exhibiting high affinity from immunized non-human primates[J/OL].Toxins(Basel),2016,8(3).[2016-11-22].http://www. mdpi.com/2072-6651/8/3/64
[114] Vance DJ,Mantis NJ.Progress and challenges associated with the development of ricin toxin subunitvaccines[J].ExpertRevVaccines,2016,15(9):1213-22.
[115]Roy CJ,Brey RN,Mantis NJ,Mapes K,Pop IV,Pop LM,etal.Thermostable ricin vaccine protects rhesus macaques against aerosolized ricin:Epitope-specific neutralizing antibodies correlate with protection[J].Proc Natl Acad Sci USA.2015,112(12):3782-3787.
[116] Vitetta ES,Smallshaw JE,Coleman E,Jafri H,F(xiàn)oster C,Munford R,et al.A pilot clinical trial of a recombinant ricin vaccine in normal humans[J].Proc Natl Acad Sci USA,2006,103(7):2268-2273.
[117]OlsonMA, CarraJH, Roxas-DuncanV,Wannemacher RW,Smith LA,Millard CB.Finding a new vaccine in the ricin protein fold[J].Protein Eng Des Sel,2004,17(4):391-397.
[118] Marsden CJ,Knight S,Smith DC,Day PJ,Roberts LM,Phillips GJ,Lord JM.Insertional mutagenesis of ricin A chain:a novel route to an anti-ricin vaccine[J].Vaccine,2004,22(21-22):2800-2805.
[119] Kende M,Yan C,Hewetson J,F(xiàn)rick MA,Rill WL,Tammariello R.Oral immunization of mice with ricin toxoid vaccine encapsulated in polymeric microspheres againstaerosolchallenge[J].Vaccine,2002,20(11-12):1681-1691.
[120] Smallshaw JE,RichardsonJA,PincusS,Schindler J,Vitetta ES.Preclinical toxicity and efficacy testing of RiVax,a recombinant protein vaccine against ricin[J].Vaccine,2005,23(39):4775-4784.
[121] Smallshaw JE,Richardson JA and Vitetta ES. RiVax,a recombinant ricin subunit vaccine,protects mice against ricin delivered by gavage or aerosol[J].Vaccine,2007,25(42):7459-7469.
[122] Marconescu PS, Smallshaw JE, Pop LM,Ruback SL,Vitetta ES.Intradermal administra?tion of RiVax protects mice from mucosal and systemic ricin intoxication[J].Vaccine,2010;28(32):5315-5322.
[123] McLain DE, Lewis BS, Chapman JL,Wannemacher RW,Lindsey CY,Smith LA. Protective effect of two recombinant ricin subunit vaccines in the New Zealand white rabbit subjected to a lethal aerosolized ricin challenge:survival,immunological response and histopathological findings[J].Toxicol Sci,2012,126(1):72-83.
[124] Respaud R,Marchand D,Pelat T,Tchou-Wong KM,Roy CJ,Parent C,et al.Development of a drug delivery system for efficient alveolar delivery of a neutralizing monoclonal antibody to treat pulmo nary intoxication to ricin[J].J Control Release,2016,234:21-32.
[125] McGuinness CR,Mantis NJ.Characterization of a novel high-affinity monoclonal immunoglobulin G antibody against the ricin B subunit[J].Infec?tion and Immunity,2006,74(6):3463-3470.
[126] Yermakova A,Mantis NJ.Protective immunity to ricin toxin conferred by antibodies against the toxin′s binding subunit(RTB)[J].Vaccine,2011,29(45):7925-7935.
[127]O'Hara JM,Yermakova A,Mantis NJ.Immunity to ricin:fundamental insights into toxin-antibody interactions[J].Curr Top Microbiol Immunol,2012,357:209-241.
[128]Herrera C,Klokk TI,Cole R,Sandvig K,Mantis NJ.A bispecific antibody promotes aggregation of ricin toxin on cell surfaces and alters dynamics of toxin internalization and trafficking[J].PLoS One,2016,11(6):e0156893.
[129]Hu WG,Yin J,Chau D,Negrych LM,Cherwono?grodzky JW.Humanization and characterization of an anti-ricin neutralization monoclonal antibody[J].PLoS One,2012,7(9):e45595.
[130]Prigent J,Panigai L,Lamourette P,Sauvaire D,Devilliers K,Plaisance M,et al.Neutralising anti?bodies against ricin toxin[J].PLoS One,2011,6(5):e20166.
[131]Dong N,Luo LL,Wu JH,Jia PY,Li Q,Wang YX,et al.Monoclonal antibody,mAb 4C13,an effective detoxicant antibody against ricin poisoning[J].Vaccine,2015,33(32):3836-3842.
[132]Gupta N,Pons V,No?l R,Buisson DA,Michau A,Johannes L,et al.(S)-N-Methyldihydroquinazoli?nones are the active enantiomers of retro-2 derived compounds against toxins[J].ACS Med Chem Lett,2013,5(1):94-97.
[133]Gupta N,No?l R,Goudet A,Hinsinger K,Michau A,Pons V,et al.Inhibitors of retrograde trafficking active against ricin and Shiga toxins also protect cells from several viruses,Leishmania and Chlamydiales[J/OL].Chem Biol Interact,2016,[2016-11-03].http://www.sciencedirect. com/science/article/pii/S0009279716304276
Toxicity and treament of ricin poisoning:a review
WANG Yu-xia1,QIAO Hong1,LIU Zi-qiao2
(1.Institute of Pharmacology and Toxicology,Academy of Military Medical Sciences,Beijing 100850,China;2.School of Law,Nankai University,Tianjin 300350,China)
Ricin is a plant toxin isolated from the seed of the castor plant(Ricinus communis).As a typical II ribosome inactivating protein,ricin consists of two polypeptide chains named ricin toxin A chain(RTA)and ricin toxin B chain(RTB),linked via a disulfide bridge.RTB binds to both glycopro?tein and glycolipid at the surface of the target cell and mediates ricin to be endocytosed and transported retro?gradely to the endoplasmic reticulum.After being reduced and retrotranslocated to the cytosol,RTA mediates its toxicity due to its activity of a RNA N-glycosidases.Aside from its main toxic effect of protein synthesis inhibition,ricin also displays other properties that contribute to its toxicity such as inducing apoptosis,cytokine secreting and peroxidation.Ricin is stable and can be easily isolated.It has many routes of intoxication with no specific antidotes.Due to its natural abundance,remarkable toxicity,and the potential to be used in biological warfare as well as terrorist attacks,ricin has been classified as a Category B biothreat agent.Here we reviewed its history as a biothreat agent,constitu?tion,intoxication mechanism,detection methods and the development of specific antitodes.
ricin;biothreat agent;ribosome inactivating protein;bioterrorism
WANG Yu-xia,Tel:(010)66931645,E-mail:wangyuxia1962@hotmail.com
R99,R996.2
A
1000-3002-(2016)12-1385-12
10.3867/j.issn.1000-3002.2016.12.017
2016-11-20接受日期:2016-12-05)
(本文編輯:喬 虹)
王玉霞,E-mail:wangyuxia1962@hotmail.com,Tel:(010)66931645