国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

芋螺毒素的毒理學和藥理學研究

2016-02-15 01:10:20戴秋云
中國藥理學與毒理學雜志 2016年12期
關鍵詞:二硫鍵離子通道殘基

戴秋云

(軍事醫(yī)學科學院生物工程研究所,北京 100071)

芋螺毒素的毒理學和藥理學研究

戴秋云

(軍事醫(yī)學科學院生物工程研究所,北京 100071)

戴秋云,博士,軍事醫(yī)學科學院生物工程研究所研究員,博士生導師。中國生物毒素專業(yè)委員會常務委員,海洋生物化學與分子生物學專業(yè)委員會理事。主要從事芋螺毒素的基因克隆、毒素分離、結構、功能及藥物開發(fā)研究。已發(fā)現(xiàn)新芋螺毒素序列400余個,測定了7個毒素的溶液結構,發(fā)現(xiàn)多個芋螺毒素的新功能及多個芋螺毒素的新框架,其中一個作用于N-型鈣通道的芋螺多肽SO-3已完成臨床前研究,正在申報臨床試驗批件。另一個I類抗病毒藥物獲軍特藥臨床批件。在PNAS,JACS,JBC,J MolBiol,Sci Rep,Neurophamarcology和J Virol等國內(nèi)外學術刊物上發(fā)表論文120余篇,參編專著2部,獲軍隊科技進步二等獎2項,獲授權國家發(fā)明專利16項。

芋螺毒素由芋螺毒液管和毒囊內(nèi)壁的毒腺所分泌,多數(shù)由12~40個氨基酸組成,富含二硫鍵。其多變的一級序列、特異二硫鍵配對方式和特殊修飾氨基酸與陸生動物分泌的多肽或蛋白質(zhì)顯著不同,作用靶點涵蓋鈉、鉀和鈣離子通道等及多種膜受體。根據(jù)芋螺毒素保守的信號肽序列及半胱氨酸框架,芋螺毒素分為A,M,O,P,S,T,I,V,Y,J,D,C和L等20多個超家族,根據(jù)藥理學作用靶點,其進一步可分為α、μ、ω、κ、δ、ψ、σ、ρ、γ、加壓素、驚厥劑和睡眠肽等藥理家族。本文著重介紹了芋螺毒素的分類與多樣性,簡要總結了作用于煙堿型乙酰膽堿受體、鈣、鈉離子通道和N-甲基-D-天冬氨酸受體的幾類芋螺毒素的毒理學和藥理學研究進展。這些毒素有的毒性很高,有的已發(fā)展為藥物或正在開發(fā)中,一些毒素已成為神經(jīng)藥理學的強大研究工具。期望該綜述對從事毒素或相關神經(jīng)生物學的研究者有所裨益。

芋螺毒素;毒理學;藥理學;離子通道;乙酰膽堿受體;天冬氨酸受體

芋螺屬腹足綱軟體動物,全世界約有500種,遍布世界各暖海區(qū)[1]。我國有芋螺80余種,主要分布在西沙群島、海南島及臺灣海域等熱帶海洋淺水區(qū)[2]。芋螺毒素由芋螺毒液管和毒囊內(nèi)壁的毒腺所分泌,每種芋螺的毒液中含50~200個活性多肽,不同品種芋螺所含的活性肽各不相同,即使同種芋螺因海域不同,其毒素成分也可存在差異,理論上估計約存在5萬多種不同活性的多肽[3]。芋螺毒素多數(shù)由12~40個氨基酸組成,富含二硫鍵,包括了迄今為止最小的神經(jīng)毒素。其多變的一級序列(如Cys排列)、特異二硫鍵配對方式和特殊修飾氨基酸與陸生動物分泌的多肽或蛋白質(zhì)顯著不同,對發(fā)展多肽結構理論很有意義。它們雖然分子質(zhì)量小,但活性及選擇性高,能特異性作用于乙酰膽堿受體、其他神經(jīng)遞質(zhì)的各種受體亞型及鈉、鉀和鈣等多種離子通道,對發(fā)展神經(jīng)生物學和新型靶向特異性藥物十分重要。

1 芋螺毒素的分類和結構特征

根據(jù)芋螺食性的不同可分為食魚、食蟲和食螺3種。其中,食蟲芋螺數(shù)量最多,占全部芋螺種類的70%左右;其次是食軟體動物芋螺。食魚芋螺的毒性最大。芋螺毒素由含70~120個氨基酸殘基的前體肽加工而來,前體肽含信號肽、Pro區(qū)及成熟肽區(qū)。成熟肽一般含13~46個氨基酸及多對二硫鍵,同一超家族的芋螺毒素信號肽保守,成熟肽則超變異,存在多種陸生毒素不常見的修飾,如D-氨基酸和溴化等。根據(jù)芋螺毒素保守的信號肽序列及二硫鍵骨架,將芋螺毒素分為A,M,O,P,S,T,I,V,Y,J,D,C和L等20多個超家族[4],再根據(jù)其藥理學作用靶點,進一步可分為α、μ、ω、κ、δ、ψ、σ、ρ、γ、加壓素、驚厥劑和睡眠肽等藥理家族。目前發(fā)現(xiàn)的芋螺毒素主要超家族及半胱氨酸框架見表1[1,4-11]。

芋螺毒素的半胱氨酸框架(目前超過26種)及二硫鍵配對的多樣性導致其結構多樣性,顯著高于其他動物毒素,如蛇毒、蝎毒和蜘蛛毒等。這里僅以M家族毒素為例說明結構多樣性(圖1),該家族毒素目前發(fā)現(xiàn)9個半胱氨酸框架[4,12-15],其中框架Ⅲ(CCX4-6CX4-5CX1-5CC,數(shù)字代表氨基酸殘基數(shù)目)的第4和第5個半胱氨酸之間的非半胱氨酸殘基數(shù)目不同,可將其進一步分為5個分支M-1~M-5,這些亞家族的二硫鍵連接方式有些不同或作用靶點有區(qū)別。目前,已確定M-4、M-5及框架XVI毒素的作用靶點,其他有待測定。

表1 芋螺毒素的分類[1,4-11]

圖1 芋螺毒素M超家族分類和靶點[4,12-15]

2 芋螺毒素的作用靶點

目前發(fā)現(xiàn)芋螺毒素的作用靶標主要為乙酰膽堿受體,鈉、鉀和鈣離子通道,N-甲基-D-天冬氨酸(N-methyl-D-aspartic acid,NMDA)受體,腎上腺素受體和激素受體等,其中作用于乙酰膽堿受體、鈉和鈣離子通道及NMDA受體的最多,而作用于其他受體或離子通道(如鉀離子通道)的芋螺毒素較少,顯著不同于蝎毒素。本文就研究最多、靶點重要的α、μ、ω和睡眠肽藥理家族芋螺毒素的毒理學藥理學研究進展作簡要介紹。

2.1 α-芋螺毒素

α-芋螺毒素主要包括A,B3,D,J,L,M和S芋螺毒素基因超家族,其中研究最充分的為A超家族[4,16]。屬于A超家族的α-芋螺毒素約有數(shù)十種,其結構通式可表示為GCCXmCXnC,二硫鍵的主要連接方式為C1~C3,C2~C4(個別含3對二硫鍵)。根據(jù)m和n的數(shù)目不同,將α-芋螺毒素細分為幾個亞家族:α3/5,α4/3,α4/4,α4/6,α4/7,α4/8和α5/5。其中α3/5亞家族主要作用于肌肉型乙酰膽堿受體,其他亞家族作用于神經(jīng)元型乙酰膽堿受體,一些主要的α-芋螺毒素作用靶標及選擇性見表2和表3。

在作用于肌肉型乙酰膽堿受體的α-芋螺毒素中(表2),GI及MI的毒性最高。GI來自于劇毒性海洋地紋芋螺,僅含13個氨基酸和2對二硫鍵,能專一性抑制肌肉型煙堿乙酰膽堿受體,造成中毒者器官麻木、嘔吐、眼花、呼吸衰竭,直至死亡,對小鼠的致死劑量為8~12 mg·kg-1(ip)[20],目前還無藥物用于GI中毒治療。該類毒素第一個loop環(huán)含HPA或NPA 3個氨基酸殘基是其顯著特征。

表2 芋螺毒素對神經(jīng)肌肉型乙酰膽堿受體的作用活性[5,16-19]

表3 α-芋螺毒素對神經(jīng)元型乙酰膽堿受體的作用活性

目前對作用于神經(jīng)元型乙酰膽堿受體亞型α7、α9α10、α3β2及γ-氨基丁酸B(γ-aminobutyric acid B,GABAB)受體介導N-鈣通道的α-芋螺毒素已進行很多工作[21-41],涵蓋結構-活性關系及鎮(zhèn)痛和神經(jīng)性疾病應用研究等多個方面。本課題組發(fā)現(xiàn)了數(shù)個新型α-芋螺毒素并測定了其作用靶點[42-43],研究了Mr1.7等芋螺毒素的結構-活性關系,觀察到N端前2個氨基酸殘基PE對毒素的活性及選擇性具有影響。此外,還發(fā)現(xiàn)一些α-芋螺毒素可作用于多種靶點,相關論文正在發(fā)表中。

2.2 ω-芋螺毒素

ω-芋螺毒素是由24~29個氨基酸和3對二硫鍵構成的剛性小肽。自從1984年Olivera首先報道以來,至今已從地紋芋螺(C.geographus)、魔術家(C.magus)、線紋(C.straius)及織錦芋螺(C.textile)等分離出20余種ω-芋螺毒素,其作用靶點及選擇性見表4[44-59]。ω-芋螺毒素能特異地阻斷并區(qū)分不同的電壓敏感鈣通道,不僅在鎮(zhèn)痛和神經(jīng)保護等神經(jīng)疾病治療中具有巨大應用價值,而且為神經(jīng)生物學提供了一系列研究工具。第1個芋螺毒素藥物MⅦA已于2004年12月28在美國上市,用于頑固性慢性疼痛、晚期癌痛及艾滋病疼痛患者的鎮(zhèn)痛[60]。

ω-芋螺毒素涉及的基因超家較少,主要為O1及O2,其二硫鍵框架為Ⅵ/Ⅶ,ⅩⅥ和ⅩⅩⅥ。Ⅵ/Ⅶ框架為C-C-CC-C-C,二硫鍵排列方式為“1-4,2-5,3-6”,ⅩⅥ和ⅩⅩⅥ分別為“C-C-CC”及“C-C-C-C-CCCC”,后二者很少見。作用的鈣通道亞型主要為L-,N-及P/Q型,其中N-型鈣通道最引人關注。

不同的ω-芋螺毒素對小鼠的毒性相差很大,毒性反應亦不相同。GⅥA~GⅥB,GⅦA~GⅦB,MⅦA和SⅥA對小鼠腦內(nèi)給毒只引起震顫,劑量在每公斤數(shù)微克到數(shù)百微克之間;MⅦC和MⅦD則對小鼠有很高的毒性,每只小鼠給毒1 mg即可致死;SⅥB也可致死,但劑量稍高。目前所有的ω-芋螺毒素都難以穿過小鼠的血腦屏障,腹腔給毒的毒性很小,但ω-芋螺毒素對金魚腹腔給毒可致死,LD50為15~60 mg·kg-1,ⅤⅹⅦ,PnⅥA和PnⅥB對脊椎動物的毒性低。

MⅦA雖已用于鎮(zhèn)痛,且不成癮,但MⅦA具有嚴重的副作用,如幻想、共濟失調(diào)及震顫等,降低了其用藥適從性。最近本課題組研究了MⅦA的毒性來源,發(fā)現(xiàn)Met12可能是毒性的主要來源氨基酸[51]。SO-3是本實驗室從中國南海線紋芋螺(Conus stria?tus)發(fā)現(xiàn)的新ω-芋螺多肽[61],也含有25個氨基酸和3對全交叉二硫鍵(表4)。SO-3與MⅦA具有71%的結構同源性,也選擇性作用于N-型鈣通道,結合活性與MⅦA相似[51,56],但其對小鼠的震顫毒性、自發(fā)活動和運動功能的影響顯著低于MⅦA。目前SO-3已完成臨床前研究,正在申報臨床試驗批件。CVID的毒性也比MⅦA低,毒性低可能是第5和第6半胱氨酸之間的氨基酸差異所致。

表4 主要ω-芋螺毒素的作用靶標和選擇性

2.3 μ-芋螺毒素

μ-芋螺毒素主要來自M超家族,由17~22個氨基酸殘基組成,二硫鍵骨架為CC-C-C-CC,連接方式也為“C1-C4,C2-C5,C3-C6”,目前已分離到20多種(表5)[62~76]。其余的μ-芋螺毒素來自于O1和T家族,半胱氨酸框架為“CC-C-C-C-C”、“CC-CC”及“C-C-CC-C-C”。一些μ-芋螺毒素與河豚毒素(te?trodotoxin,TTX)和石房蛤毒素(saxitoxin,STX)競爭性結合α亞單位連接環(huán)區(qū)域的位點1,專一阻斷肌肉河豚毒素敏感型(tetrodotoxin-sensitive,TTX-S)的電壓敏感性鈉通道(voltage sensitive sodium channel,VSSC),抑制動作電位的產(chǎn)生[6,77],其阻斷骨骼肌型鈉通道的活性比阻斷心臟和大腦鈉通道的活性高2個數(shù)量級,而TTX/STX對大腦和骨骼肌的活性比心臟通道高3個數(shù)量級。而另一些μ-芋螺毒素能專一作用于TTX不敏感型(TTX-resistant,TTX-R)鈉通道,如SmⅢA,SⅢA和KⅢA等。

GⅢA,GⅢB和GⅢC對脊椎動物骨骼肌的TTX-S的VSSC Nav1.4選擇性很高,顯示強烈毒性,Arg13是功能關鍵殘基。μ-PⅢA作用于骨骼肌TTX-S的Nav1.4通道(IC50=40 nmol·L-1),對神經(jīng)元Nav1.2亞型(IC50=690 nmol·L-1)和大鼠外周神經(jīng)PN1亞型也表現(xiàn)出一定的活性,能夠區(qū)分大鼠腦部的各種VSSC亞型[64],Arg14是其結合骨骼肌VSSC亞型的關鍵殘基。μ-SmⅢA是從芋螺中發(fā)現(xiàn)的第一個可作用于TTX-R鈉通道的毒素,特異阻斷兩棲類動物交感神經(jīng)元和感覺神經(jīng)元TTX-R型VSSC[67],以及選擇性抑制大鼠背根神經(jīng)節(jié)細胞上TTX-R型VSSC。SmⅢA的Arg和Lys的平面取向?qū)Y合TTX-R鈉通道起關鍵作用,Trp15和Arg17也是重要功能殘基。μ-SⅢA和KⅢA也能阻斷兩棲動物交感神經(jīng)元和背根神經(jīng)節(jié)TTX-R鈉通道。SⅢA中Trp12和His16(KⅢA中為Trp8和His12)也對它們結合TTX-R通道起著重要作用。作用于TTX-R VSSC的芋螺毒素SmⅢA和SⅢA等,已被發(fā)現(xiàn)具有顯著的鎮(zhèn)痛作用,如SⅢA10 nmol能有效抑制小鼠的炎癥痛[78]。

表5 作用于鈉通道的μ-芋螺毒素

從結構來看,μ-芋螺毒素是由一段α螺旋、一個β發(fā)夾和n個轉(zhuǎn)角組成的緊密CSαβ模體(cysteine stablilized αβ motif),分子中常含有Hyp,構成重要的功能結構域,Arg是關鍵氨基酸。

μO-芋螺毒素μO-MrⅥA/B屬于O超家族,能特異阻斷TTX-R型Nav1.8通道,還可以阻止TTX-S Nav1.4通道,高濃度時可與TTX-S Nav1.2通道和鈣通道作用,其對TTX-R電流活性的阻斷作用比對TTX-S約強10倍。但μO-MrⅥA不與TTX和STX競爭結合鈉通道的Site1位點[79],這與μ-芋螺毒素不同。μO-MrⅥA雖作用于鈉通道,但并不降低鈉通道去活化,主要作用于結構域-3孔道loop環(huán)的C端。大鼠神經(jīng)性和慢性炎癥痛疼痛模型實驗表明,MrⅥB 0.03~3 nmol鞘內(nèi)注射能顯著減輕神經(jīng)性慢性疼痛和其他疼痛,且副作用較低[6]。

2.4 睡眠肽(conatokin)

上述芋螺毒素富含二硫鍵,二硫鍵對穩(wěn)定結構及發(fā)揮活性非常重要。睡眠肽不含或只含1對二硫鍵,其作用生物活性并不與二硫鍵有關。該類多肽能特異性作用于NMDA受體及其亞型。早期發(fā)現(xiàn)該類肽能致小鼠睡眠,所以亦稱“睡眠肽”。睡眠肽的結構顯著特點是含有4-5個γ-羧基谷氨酸(γcarboxyl glutamic acid,Gla)殘基,一些Gla是重要功能基團。目前為止,已發(fā)現(xiàn)20余個睡眠肽,其中有些已確定靶點(表6)[80-88]。一些多肽的核磁共振結構及關鍵殘基對NMDA受體亞基NR2A/NR2B和NR2C的選擇性已測定。

睡眠肽是目前唯一已知的具有NMDA受體選擇抑制作用的天然多肽,對NMDA受體的亞基具有很高的選擇性[8]。本課題組在睡眠肽結構及新的藥理功能研究方面開展了系列工作[89-100],研究了睡眠肽與磷脂膜的作用機機制[89],觀察到鈣離子誘導Con-G及Con-T突變體α-雙螺旋[90-92]。該螺旋與已報道的一般雙螺旋結構及金屬離子誘導蛋白質(zhì)形成雙螺旋結構的機制不同,其作用力來自于與Gla絡合的鈣離子,Con-G/Ca晶體結構證實其確為雙螺旋結構[95],分子中除Gla殘基外,其他殘基對螺旋二聚體的形成也有影響[96,98-99]。上述研究拓展了雙螺旋的基礎理論,并為其應用提供新模型。

在應用方面,本課題組開展了睡眠肽及其突變體的鎮(zhèn)痛及戒毒功能研究,用4種鎮(zhèn)痛模型研究了10多個睡眠肽突變體的的鎮(zhèn)痛活性[97],首次觀察到某些睡眠肽及突變體具有很高的戒毒活性[93],其作用活性顯著高于其他戒毒藥,如美金胺及艾芬地爾。最近又觀察到Con-T[M8Q]能顯著降低嗎啡的耐藥性[100]。

表6 睡眠肽(conatokin,Con)對NMDA受體的選擇性

3 芋螺毒素的應用

目前,芋螺毒素的應用研究主要集中在藥物發(fā)展及藥理學研究工具開發(fā)2個方面[101]。前言中談到的ω-芋螺毒素MⅦA已用于晚期癌癥及頑固性慢性疼痛治療,本課題組開發(fā)的ω-芋螺毒素SO-3已完成臨床研究,基于該藥的毒性降低改造或給藥途徑改進也在進行中。作用于神經(jīng)元煙堿型乙酰膽堿受體α7亞基的α-芋螺毒素在治療精神分裂方面具有應用價值[102],α4β2,α3β2和α9α10在鎮(zhèn)痛方面有一定潛力[102],已發(fā)現(xiàn)一些α-芋螺毒素的具有多靶點功能,如作用于神經(jīng)元型乙酰膽堿受體及其他受體和通道(鉀離子通道和GABAB介導的鈣離子通道等)的毒素可能在鎮(zhèn)痛方面具有更好效果。睡眠肽已發(fā)現(xiàn)具有很好的鎮(zhèn)痛和戒毒功能,但其給藥途徑需要改進。

芋螺毒素的高選擇性已用作神經(jīng)生物學的研究工具,用于確定一些離子通道和受體的亞型及它們的生理功能。不同的α-芋螺毒素可選擇性區(qū)分肌肉型及神經(jīng)元型的乙酰膽堿受體的亞型(如α1δ,α1γ,α3β2,α3β4和α7等),ω-芋螺毒素可選擇性區(qū)分N,P/Q,R和L型鈣通道,μ-和δ-芋螺毒素可選擇性作用于鈉通道中6個不同的功能區(qū)。ω-芋螺毒素GⅥA、μ-芋螺毒素SmⅢA和SⅢA等是非常好的N-鈣通道與鈉通道的探針,PeIA能區(qū)分α9α10與α7煙堿型受體亞型,其區(qū)分α-銀環(huán)蛇毒素敏感的α9α10與α7煙堿型受體亞型的選擇性高達260倍[103]。

基于芋螺毒素的結構模體開展的類肽或小分子功能化合物研究也受到關注[104]。迄今為止,基于ω-芋螺毒素的功能團的研究已發(fā)現(xiàn)了小分子N型-鈣離子通道抑制劑(目前活性或選擇性還不能與天然肽相比),一些基于芋螺毒素的環(huán)肽的研究也發(fā)現(xiàn)其具有其他功能,如抑制登革病毒蛋白酶[105]。

4 結語

芋螺毒素相對于其他動物多肽毒素而言,序列更短,結構多樣性更高,目前研究的多肽還不及其預測毒素量的1%,因此還有很大研究空間。目前通過基因測序方法已獲得不少毒素序列,但功能未知。本課題組從20世紀90年代中期就開展芋螺毒素研究,國內(nèi)目前已有數(shù)家單位開展芋螺毒素研究,如防化研究院、同濟大學、海南大學和中山大學等,我國科學家已在新芋螺毒素的發(fā)現(xiàn)、功能鑒定及藥物研發(fā)方面取得顯著進展。今后芋螺毒素的研究重點是毒素的發(fā)現(xiàn)、功能鑒定及應用研究。芋螺毒素的作用靶標不限定于神經(jīng)受體或離子通道,其作為藥理學研究工具的應用領域會進一步擴展,一些基于芋螺毒素的非毒素成分也會引起重視(如最近發(fā)現(xiàn)的芋螺類胰島素組分效應更強[106])。芋螺毒素的臨床應用將進一步拓展,除鎮(zhèn)痛之外,在其他神經(jīng)性疾病治療中也會發(fā)揮作用。

[1]Akondi KB,Muttenthaler M,Dutertre S,Kaas Q,Craik DJ,Lewis RJ,et al.Discovery,synthesis,and structure-activity relationships of conotoxins[J].Chem Rev,2014,114(11):5815-5847.

[2]Dai QY.Conus snail species in China[M]//Liang SP,Zhang Y.Animal Peptide Toxins of China(中國動物多肽毒素).Beijing:Science Press,2016:385-390.

[3]Nelson L.Venomous snails:one slip,and you′re dead[J].Nature,2004,429(6994):798-799.

[4]Kaas Q,Yu R,Jin AH,Dutertre S,Craik DJ. ConoServer:updated content,knowledge,and discovery tools in the conopeptide database[EB/OL].Nucleic Acids Res,2012,40(Database issue):D325-D330.

[5]Wu RJ,Wang L,Xiang H.The structural features of α-Conotoxin specifically target different isoforms of nicotinic acetylcholine receptors[J].Curr Top Med Chem,2015,16(2):156-169.

[6]Green BR,Bulaj G,Norton RS.Structure and function of μ-conotoxins,peptide-based sodium channelblockers with analgesic activity[J].Future Med Chem,2014,6(15):1677-1698.

[7]Hannon HE,Atchison WD.Omega-conotoxins as experimental tools and therapeutics in pain manage?ment[J].Mar Drugs,2013,11(3):680-699.

[8]Huang L,Balsara RD,Castellino FJ.Synthetic conantokin peptides potently inhibitN-methyl-D-aspartate receptor-mediated currents of retinal ganglion cells[J].J Neurosci Res,2014,92(12):1767-1774.

[9]Liu L,Wu X,Yuan D,Chi C,Wang C.Identification of a novel S-superfamily conotoxin from vermivorous Conus caracteristicus[J].Toxicon,2008,51(8):1331-1337.

[10]Buczek O,Wei D,Babon JJ,Yang X,F(xiàn)iedler B,Chen P,et al.Structure and sodium channel activity of an excitatory I1-superfamily conotoxin[J].Biochemistry,2007,46(35):9929-9940.

[11]Zhu C,Li L,Dai QY.Progress on the study of new superfamily conotoxins[J].Chin J Mar Drugs,2014,33(2):84-90.

[12]Jacob RB,Mcdougal OM.The M-superfamily of conotoxins:a review[J].Cell Mol Life Sci,2010,67(1):17-27.

[13]Kancherla AK,Meesala S,Jorwal P,Palanisamy R,Sikdar SK,Sarma SP.A disulfide stabilized βsandwich defines the structure of a new cysteine frameworkM-superfamilyconotoxin[J].ACS Chem Biol,2015,10(8):1847-1860.

[14]Zhou M,Wang L,Wu Y,Liu J,Sun D,Zhu X,et al.Soluble expression and sodium channel activity of lt16a,a novel frameworkⅩⅥ conotoxin from the M-superfamily[J].Toxicon,2015,98:5-11.

[15]Jiang H,Wang CZ,Xu CQ,F(xiàn)an CX,Dai XD,Chen JS,et al.A novel M-superfamily cono?toxin with a unique motif from conus vexillum[J].Peptides,2006,27(4):682-689.

[16]Wei JJ,Dai QY.The research progress of struc?ture-activity relationship of α-conotoxins[J].Bull Acad Mil Med Sci(軍事醫(yī)學科學院院刊),2006,30(4):389-393.

[17]Quinton L,Servent D,Girard E,Molgó J,Le Caer JP,Malosse C,et al.Identification and functional characterization of a novel α-conotoxin(EIIA)from Conus ermineus[J].Anal Bioanal Chem,2013,405(15):5341-5351.

[18]Teichert RW,López-Vera E,Gulyas J,Watkins M,Rivier J,Olivera BM.Definition and characteriza?tion of the short alphaA-conotoxins:a single residue determines dissociation kinetics from the fetal muscle nicotinic acetylcholine receptor[J].Bio?chemistry,2006,45(4):1304-1312.

[19]López-Vera E,Jacobsen RB,Ellison M,Olivera BM,Teichert RW.A novel alpha conotoxin(alpha-PIB)isolated from C.purpurascens is selective for skel?etal muscle nicotinic acetylcholine receptors[J].Toxicon,2007,49(8):1193-1199.

[20]Gray WR,Rivier JE,Galyean R,Cruz LJ,Olivera BM.Conotoxin MI.Disulfide bonding and conformational states[J].J Biol Chem,1983,258(20):12247-12251.

[21]Mcintosh JM,Plazas PV,Watkins M,Gomez-Casati ME,Olivera BM,Elgoyhen AB.A novel alpha-conotoxin,PeIA,cloned from Conus pergrandis,discriminates between rat alpha9alpha10 and alpha7 nicotinic cholinergic receptors[J].J BiolChem,2005,280(34):30107-30112.

[22] Franco A,Kompella SN,Akondi KB,Melaun C,Daly NL,Luetje CW,et al.RegIIA:an α4/7-conotoxin from the venom of Conus regius that potently blocks α3β4 nAChRs[J].Biochem Phar?macol,2012,83(3):419-426.

[23]Talley T,Olivera BM,Han KH,Christensen SB,Dowell C,Tsigelny I,et al.Alpha-conotoxin OmIA is a potent ligand for the acetylcholinebinding protein as well as alpha3beta2 and al?pha7 nicotinic acetylcholine receptors[J].J Biol Chem,2006,281(34):24678-24686.

[24] Inserra MC,Kompella SN,Vetter I,Brust A,Daly NL,Cuny H,et al.Isolation and character?ization of α-conotoxin LsIA with potent activity at nicotinic acetylcholine receptors[J].Biochem Pharmacol,2013,86(6):791-799.

[25]Whiteaker P,Christensen S,Yoshikami D,Dowell C,Watkins M,Gulyas J,et al.Discovery,synthesis,and structure activity of a highly selective alpha7 nicotinic acetylcholine receptor antagonist[J].Biochemistry,2007,46(22):6628-6638.

[26]Nicke A,Loughnan ML,Millard EL,Alewood PF,Adams DJ,Daly NL,et al.Isolation,structure,and activity of GID,a novel alpha 4/7-conotoxin with an extended N-terminal sequence[J].J Biol Chem,2003,278(5):3137-3144.

[27] Dutertre S,Ulens C,Büttner R,F(xiàn)ish A,Van Elk R,Kendel Y,et al.AChBP-targeted alpha-conotox?in correlates distinct binding orientations with nAChR subtype selectivity[J].EMBO J,2007,26(16):3858-3867.

[28] Hopping G, Wang CI, Hogg RC,Nevin ST,Lewis RJ,Adams DJ,et al.Hydrophobic resi?dues at position 10 of α-conotoxin PnIA influence subtype selectivity between α7 and α3β2 neuronal nicotinic acetylcholine receptors[J].Biochem Pharmacol,2014,91(4):534-542.

[29] Loughnan ML,Nicke A,Jones A,Adams DJ,Alewood PF,Lewis RJ.Chemical and functional identification and characterization of novel sulfated alpha-conotoxins from the cone snail Conus anemone[J].J Med Chem,2004,47(5):1234-1241.

[30] Mcintosh JM,Dowell C,Watkins M,Garrett JE,Yoshikami D,Olivera BM.Alpha-conotoxin GIC from Conus geographus,a novel peptide antagonist of nicotinic acetylcholine receptors[J].J Biol Chem,2002,277(37):33610-33615.

[31] LebbeEK,PeigneurS,MaitiM,DeviP,Ravichandran S,Lescrinier E,et al.Structurefunction elucidation of a new α-conotoxin,Lo1a,from Conus longurionis[J].J Biol Chem,2014,289(14):9573-9583.

[32]Halai R, Clark RJ, Nevin T, Jensen JE,Adams DJ,Craik DJ.Scanning mutagenesis of alpha-conotoxin Vc1.1 reveals residues crucial for activity at the alpha9alpha10 nicotinic acetyl?choline receptor[J].J Biol Chem,2009,284(30):20275-20284.

[33] Cartier GE,Yoshikami D,Gray WR,Luo S,Olivera BM,Mcintosh JM.A new alpha-conotoxin which targets alpha3beta2 nicotinic acetylcholine receptors[J].J Biol Chem,1996,271(13):7522-7528.

[34]Luo S,Zhangsun D,Zhu X,Wu Y,Hu Y,Christensen S,et al.Characterization of a novel α-conotoxin TxID from Conus textile that potently blocks rat α3β4 nicotinic acetylcholine receptors[J].J Med Chem,2013,56(23):9655-9663.

[35]Azam L,Dowell C,Watkins M,Stitzel JA,Olivera BM, McIntoshJM.Alpha-conotoxin BuIA,a novel peptide from Conus bullatus,dis?tinguishes among neuronal nicotinic acetylcho?line receptors[J].J Biol Chem,2005,280(1):80-87.

[36]Dowell C,Olivera BM,Garrett JE,Staheli ST,Watkins M,Kuryatov A,et al.Alpha-conotoxin PIA is selective for alpha6 subunit-containing nic?otinic acetylcholine receptors[J].J Neurosci,2003,23(24):8445-8452.

[37]Nicke A, SamochockiM, Loughnan ML,Bansal PS,Maelicke A,Lewis RJ.Alpha-cono?toxins EpI and AuIB Switch subtype selectivity and activity in native versus recombinant nicotin?ic acetylcholine receptors[J].FEBS Lett,2003,554(1/2):219-223.

[38] Luo S,Kulak JM,Cartier GE,Jacobsen RB,Yoshikami D,Olivera BM,et al.Alpha-conotoxin AuIB selectively blocks alpha3 beta4 nicotinic acetylcholine receptors and nicotine-evoked norepi?nephrine release[J].J Neurosci,1998,18(21):8571-8579.

[39]Ellison MA,Mcintosh JM,Olivera BM.Alpha-cono?toxins ImI and ImII.Similar alpha 7 nicotinic receptor antagonists actatdifferentsites[J].JBiol Chem,2003,278(2):757-764.

[40]Ellison M, Haberlandt C, Gomez-Casati ME, Watkins M,Elgoyhen AB,McIntosh M,et al. Alpha-RgIA:a novel conotoxin that specifically and potently blocks the alpha9alpha10 nAChR[J].Biochemistry,2006,45(5):1511-1517.

[41]Lebbe EK,Peigneur S,Wijesekara I,Tytgat J. Conotoxins targeting nicotinic acetylcholine receptors:an overview[J].Mar Drugs,2014,12(5):2970-3004.

[42] Wang S, Zhao C,Liu ZG,Wang XS,Liu N,Du WH,et al.Structural and functional charac?terization of a novel α-conotoxin Mr1.7 from conus marmoreus targeting neuronal nAChR α3β 2,α9α10 and α6/α3β2β3 subtypes[J].Mar Drugs,2015,13(6):3259-3275.

[43] Li L,Liu N,Ding R,Wang S,Liu ZG,Li HY,et al. A novel 4/6-type alpha-conotoxin ViIA selectively inhibits nAchR α3β2 subtype[J].Acta Biochim Biophys Sin(Shanghai),2015,47(12):1023-1028.

[44]Favreau P,Gilles N,Lamthanh H,Bournaud R,Shimahara T,Bouet F,et al.A new omega-cono?toxin that targets N-type voltage-sensitive calcium channels with unusual specificity[J].Biochemis?try,2001,40(48):14567-14575.

[45]Lewis RJ,Nielsen KJ,Craik DJ,Loughnan ML,Adams DA,Sharpe IA,et al.Novel omega-cono?toxins from Conus catus discriminate among neu?ronalcalcium channelsubtypes[J].JBiol Chem,2000,275(45):35335-35344.

[46]Berecki G,Motin L,Haythornthwaite A,Vink S,Bansal P,Drinkwater R,et al.Analgesic(omega)-conotoxins CVIE and CVIF selectively and volt?age-dependently block recombinant andnative N-type calcium channels[J].MolPharmacol,2010,77(2):139-148.

[47]Lee S,Kim Y,Back SK,Choi HW,Lee JY,Jung HH,et al.Analgesic effect of highly revers?ible ω-conotoxin FVIA on N type Ca2+channels[J].Mol Pain,2010,6:97.

[48]Olivera M,Mcintosh M,Cruz J,Luque A,Gray R. Purification and sequence of a presynaptic pep?tide toxin from Conus geographus venom[J].Biochemistry,1984,23(22):5087-5090.

[49]Olivera M,Gray R,Zeikus R,Mcintosh M,Varga J,Rivier J,et al.Peptide neurotoxins from fish-hunting cone snails[J].Science,1985,230(4732):1338-1343.

[50]Olivera BM,Cruz LJ,de Santos V,LeCheminant GW,Griffin D,Zeikus R,et al.Neuronal calciumchannel antagonists.Discrimination between cal?cium channel subtypes using omega-conotoxin from Conus magus venom[J].Biochemistry,1987,26(8):2086-2090.

[51]Wang F,Yan Z,Liu Z,Wang S,Wu Q,Yu S,et al.Molecular basis of toxicity of N-type calcium channel inhibitor MVIIA[J].Neuropharmacology,2016,101:137-145.

[52]Hillyard R,Monje D,Mintz M,Bean P,Nadasdi L,Ramachandran J,et al.A new Conus peptide ligand for mammalian presynaptic Ca2+channels[J].Neuron,1992,9(1):69-77.

[53]Haack JA,Kinser P,Yoshikami D,Olivera BM. Biotinylated derivatives of omega-conotoxins GVIA and MVIID:probes for neuronal calcium channels[J].Neuropharmacology,1993,32(11):1151-1159.

[54]Ramilo A,Zafaralla C,Nadasdi L,Hammerland G,Yoshikami D,Gray R,et al.Novel alpha-and omega-conotoxins from Conus striatus venom[J].Biochemistry,1992,31(41):9919-9926.

[55] Woppmann A,Ramachandran J,Miljanich P. Calcium channel subtypes in rat brain:biochemical characterization of the high-affinity receptors for omega-conopeptides SNX-230(synthetic MVIIC),SNX-183(SVIB),and SNX-111(MVIIA)[J].Mol Cell Neurosci,1994,5(4):350-357.

[56]Wen L,Yang S,Qiao HF,Liu ZW,Zhou WX,Zhang YX,et al.SO-3,a new O-superfamily conopeptide derived from conus striatus,selec?tively inhibits N-type calcium currents in cultured hippocampalneurons[J].BrJPharmacol,2005,145(6):728-739.

[57]Bernáldez J,Román-González SA,Martínez O,Jiménez S,Vivas O,Arenas I,et al.A conus regularis conotoxin with a novel eight-cysteine framework inhibits CaV2.2 channels and displays an anti-nociceptive activity[J].Mar Drugs,2013,11(4):1188-1202.

[58]WangX,BezprozvannayaS,BowersoxS,Nadasdi L,Miljanich G,Mezo G,et al.Peripheral versus central potencies of N-type voltage-sensi?tive calcium channelblockers[J].Naunyn Schmiedebergs Arch Pharmacol,1998,357(2):159-168.

[59]Fainzilber M,Lodder C,Van Der Schors C,Li W,Yu Z,Burlingame L,et al.A novel hydrophobic omega-conotoxin blocks molluscan dihydropyri?dine-sensitive calcium channels[J].Biochemistry, 1996,35(26):8748-8752.

[60]Pope E,Deer R.Ziconotide:a clinical update and pharmacologic review[J].Expert Opin Phar?macother,2013,14(7):957-966.

[61]Dai QY,Liu FY,Zhou YR,Lu BS,Yu F,Huang PT. The synthesis of SO-3,a conopeptide with high analgesic activity derived from Conus striatus[J].J Nat Prod,2003,66(9):1276-1279.

[62]Li RA,Sato K,Kodama K,Kohno T,Xue T,Tomaselli GF,et al.Charge conversion enables quantification of the proximity between a normallyneutral mu-conotoxin(GⅢA)site and the Na+channel pore[J].FEBS Lett,2002,511(1-3):159-164.

[63]Li RA,Ennis IL,Vélez P,Tomaselli GF,Marbán E. Novel structural determinants of mu-conotoxin(GⅢB)block in rat skeletal muscle(mu1)Na+chan?nels[J].J Biol Chem,2000,275(36):27551-27558.

[64]Safo P,Rosenbaum T,Shcherbatko A,Choi DY,Han E,Toledo-Aral JJ,et al.Distinction among neuronal subtypes of voltage-activated sodium channels by mu-conotoxin PⅢA[J].J Neurosci,2000,20(1):76-80.

[65]Fainzilber M,Nakamura T,Gaathon A,Lodder C,Kits S,Burlingame L,et al.A new cysteine frame?work in sodium channel blocking conotoxins[J].Biochemistry,1995,34(27):8649-8656.

[66]Lewis RJ,Schroeder CI,Ekberg J,Nielsen KJ,Loughnan M,Thomas L,et al.Isolation and structure-activity of mu-conotoxin TⅢA,a potent inhibitor of tetrodotoxin-sensitive voltage-gated sodium channels[J].Mol Pharmacol,2007,71(3):676-685.

[67]West PJ, Bulaj G, Garrett JE, Olivera BM,Yoshikami D.Mu-conotoxin SmⅢA,a potent inhibitor of tetrodotoxin-resistant sodium channels in amphibian sympathetic and sensory neurons[J]Biochemistry,2002,41(51):15388-15393.

[68]Bulaj G, West PJ, Garrett JE,Watkins M,Zhang MM,Norton RS,et al.Novel conotoxins from Conus striatus and Conus kinoshitai selec?tively block TTX-resistant sodium channels[J].Biochemistry,2005,44(19):7259-7265.

[69]Zhang MM,Green BR,Catlin P,F(xiàn)iedler B,Azam L,Chadwick A,et al.Structure/function characterization of micro-conotoxin KIIIA,an analgesic,nearly irreversible blocker of mammali?an neuronal Sodium channels[J].J Biol Chem,2007,282(42):30699-30706.

[70] Zhang MM,F(xiàn)iedler B,Green BR,Catlin P,Watkins M,Garrett JE,et al.Structural and functional diversities among mu-conotoxins targeting TTX-resistant sodium channels[J].Biochemistry,2006,45(11):3723-3732.

[71] Liu JL,Wu QF,Pi CH,Zhao Y,Zhou MJ,Wang L,et al.Isolation and characterization of a T-superfamily conotoxin from Conus litteratus with targeting tetrodotoxin-sensitive sodium chan?nels[J].Peptides,2007,28(12):2313-2319.

[72] Wang L,Pi CH,Liu JL,Chen SW,Peng C,Sun DD,et al.Identification and characterization of a novel O-superfamily conotoxin from Conus litteratus[J].J Pept Sci,2008,14(10):1077-1083.

[73] Vetter I, Dekan Z, Knapp O, Adams DJ,Alewood PF,Lewis RJ.Isolation,characteriza?tion and total regioselective synthesis of the novel μO-conotoxin MfVIA from Conus magnificus that targets voltage-gated sodium channels[J].Biochem Pharmacol,2012,84(4):540-548.

[74] Ekberg J,Jayamanne A,Vaughan CW,Aslan S,Thomas L,Mould J,et al.muO-conotoxin MrVIB selectively blocks Nav1.8 sensory neuron specific sodium channels and chronic pain behavior without motor deficits[J].Proc Natl Acad Sci USA,2006,103(45):17030-17035.

[75] Hill JM,Alewood PF,Craik DJ.Conotoxin TVIIA,a novel peptide from the venom of conus tulipa 2.three-dimensional solution structure[J].Eur J Biochem,2000,267(15):4649-4657.

[76] Kuang Z,Zhang MM,Gupta K,Gajewiak J,Gulyas J,Balaram P,et al.Mammalian neuronal sodium channel blocker μ-conotoxin BuIIIB has a structured N-terminus that influences potency[J].ACS Chem Biol,2013,8(6):1344-1351.

[77] Feng GX,Luo FF,Dai QY.Progress in research on sodium channel conotoxins[J].Bull Acad Mil Med Sci(軍事醫(yī)學科學院院刊), 2007,31(6):564-567.

[78] Green BR,Bulaj G,Norton RS.Structure and function of μ-conotoxins,peptide-based sodium channelblockers with analgesic activity[J].Future Med Chem,2014,6(15):1677-1698.

[79] Prorok M,Castellino FJ.The molecular basis of conantokin antagonism of NMDA receptor function[J].Curr.Drug Targets.2007,8(5):633-642.

[80] Donevan D,Mccabe T.Conantokin G is an NR2B-selective competitive antagonist ofN-methyl-D-aspartate receptors[J].Mol Pharmacol,2000,58(3):614-623.

[81]Warder E,Blandl T,Klein C,Castellino J,Prorok M.Amino acid determinants for NMDA receptor inhibition by conantokin-T[J].J Neuro?chem,2001,77(3):812-822.

[82]White S,Mccabe T,Armstrong H,Donevan D,Cruz J,Abogadie C,et al.In vitroandin vivocharacterization of conantokin-R,a selective NMDA receptor antagonist isolated from the venom of the fish-hunting snail Conus radiatus[J].J Pharmacol Exp Ther,2000,292(1):425-432.

[83]Jimenez EC,Donevan S,Walker C,Zhou LM,Nielsen J,Cruz LJ,et al.Conantokin-L,a new NMDA receptor antagonist:determinants for anti?convulsant potency[J].Epilepsy Res,2002,51(1-2):73-80.

[84]Gowd KH,Twede V,Watkins M,Krishnan KS,Teichert RW,Bulaj G,et al.Conantokin-P,an unusual conantokin with a long disulfide loop[J].Toxicon,2008,52(2):203-213.

[85]Platt RJ,Curtice KJ,Twede VD,Watkins M,Gruszczyński P,Bulaj G,et al.From molecular phylogeny towards differentiating pharmacology for NMDA receptor subtypes[J].Toxicon,2014,81:67-79.

[86]Kunda S, Yuan Y, Balsara RD, Zajicek J,Castellino FJ.Hydroxyproline-induced helical dis?ruption in conantokin Rl-B affects subunitselective antagonistic activities toward Ion chan?nels ofN-methyl-D-aspartate receptors[J].J Biol Chem,2015,290(29):18156-18172.

[87]Gowd KH,Watkins M,Twede VD,Bulaj GW,Olivera BM.Characterization of conantokin Rl-A:molecular phylogeny as structure/function study[J].J Pept Sci,2010,16(8):375-382.

[88]Twede VD, TeichertRW, WalkerCS,Gruszczyński P,Kaz′mierkiewicz R,Bulaj G,et al.Conantokin-Br from Conus brettinghami and selectivity determinants for the NR2D subunit of the NMDA receptor[J].Biochemistry,2009,48(19):4063-4073.

[89]Dai Q,Zajicek J,Castellino FJ,Prorok M.Binding and orientation of conantokins in PL vesicles and aligned PL multilayers[J].Biochemistry,2003,42(43):12511-12521.

[90]Dai Q,Prorok M,Castellino FJ.A new mechanism for metal ion-assisted interchain helix assemblyin a naturally occurring peptide mediated by opti?mally spaced gamma-carboxyglutamic acid residues[J].J Mol Biol,2004,336(3):731-744.

[91]Dai QY,Castellino FJ,Prorok M.A single amino acid replacement results in the Ca2+-induced selfassembly of a helical conantokin-based peptide[J].Biochemistry,2004,43(41):13225-13232.

[92]Dai QY,Prorok M,Castellino FJ.Role of the hexapeptide disulfide loop in the gamma-carboxy?glutamic acid domain of protein C in Ca2+-mediated structural and functional properties[J].Biochem?istry,2005,44(37):12508-12514.

[93]Wei JJ,Dong MX,Xiao C,Jiang FC,Castellino FJ,Prorok M,et al.Conantokins and variants derived from cone snail venom inhibit naloxone-induced withdrawal jumping in morphine-dependent mice[J].Neurosci Lett,2006,405(1/2):137-141.

[94]Sheng ZY,Dai QY,Prorok M,Castellino FJ. Subtype-selective antagonism ofN-methyl-D-aspartate receptorion channels by synthetic conantokin peptides[J].Neuropharmacology,2007,53(1):145-156.

[95]Cnudde SE,Prorok M,Dai Q,Castellino FJ,Geiger JH.The crystal structures of the calciumbound con-G and con-T[K7gamma] dimeric peptides demonstrate a metal-dependent helixforming motif[J].J Am Chem Soc,2007,129(6):1586-1593.

[96]Cnudde SE,Prorok M,Dai Q,Castellino FJ,Geiger JH.Helix-helix interactions between homoandheterodimericgamma-carboxyglutamatecontaining conantokin peptides and their deriva?tives[J].J Biol Chem,2007,282(17):12641-12649.

[97]Xiao C,Huang YY,Dong MX,Hu J,Hou SS,Castellino FJ,et al.NR2B-selective conantokin peptide inhibitors of the NMDA receptor display enhanced antinociceptive properties compared to non-selective conantokins[J].Neuropeptides,2008,42(5/6):601-609.

[98]Dai QY,Xiao C,Dong MX,Liu ZG,Sheng ZY,Castellino FJ,et al.Non-strict strand orientation of the Ca2+-induced dimerization of a conantokin peptide variant with sequence-shifted gamma-car?boxy glutamate residues[J].Peptides,2009,30(5):866-872.

[99]Dai QY,Dong MX,Liu ZG,Prorok M,Castellino FJ. Ca2+-induced self-assembly in designed peptides with optimally spaced gamma-carboxyglutamic acid residues[J].J Inorg Biochem,2011,105(1):52-57.

[100]Ren BL,Zhou ZJ,Liu ZG,Li BL,Ou J,Dai QY. Con-T[M8Q]potently attenuates the expression and development of morphine tolerance in mice[J].Neurosci Lett,2015,597:38-42.

[101]Mir R,Karim S,Kamal MA,Wilson CM,Mirza Z. Conotoxins:structure,therapeutic potential and pharmacologicalapplications[J].CurrPharm Des,2016,22(5):582-589.

[102]Lewis RJ,Dutertre S,Vetter I,Christie MJ.Conus venom peptide pharmacology[J].Pharmacol Rev,2012,64(2):259-298.

[103]Cnudde SE,Prorok M,Dai Q,Castellino FJ,Geiger JH.The crystal structures of the calciumbound con-G and con-T[K7gamma]dimeric pep?tides demonstrate a metal-dependent helix-form?ing motif[J].J Am Chem Soc,2007,129(6):1586-1593.

[104]Duggan J,Tuck L.Bioactive mimetics of conotoxins and other venom peptides[J].Toxins(Basel),2015,7(10):4175-4198.

[105]Xu S,Li H,Shao X,F(xiàn)an C,Ericksen B,Liu J,et al.Critical effect of peptide cyclization on the potency of peptide inhibitors against Dengue virus NS2B-NS3 protease[J].J Med Chem,2012,55(15):6881-6887.

[106]Safavi-Hemami H, Gajewiak J, Karanth S,Robinson SD,Ueberheide B,Douglass AD,et al. Specialized insulin is used for chemical warfare by fish-hunting cone snails[J].Proc Natl Acad Sci U S A,2015,112(6):1743-1748.

Progress in toxicology and pharmacology of conotoxins

DAI Qiu-yun
(Institute of Biotechnology,Academy of Military Medical Sciences,Beijing 100071,China)

Conotoxins are secreted by Conus snail,which are mainly composed of 12-40 amino acid residues and several disulfide bridges.Their diversities in sequences,disulfide bond connections and modified amino acids are different from those of peptide toxins and proteins secreted by terrestrial animals,and their targets include sodium,potassium,calcium ion channels and membrane receptors. Conotoxins have been categorized into more than 20 superfamilies,such as A,M,O,P,S,T,I,V,Y,J,D,C and L,which are characterized by consensus signal sequences and cysteine framework. According to pharmacological functions,these superfamilies are further classified into several pharma?cological families,such as α,μ,ω,κ,δ,ψ,σ,ρ,γ,conopressin and conantokins.This review briefly introduced the classifications and diversities of conotoxins,and summarized the progresses in the toxi?cology and pharmacology of conotoxins targeting calcium,sodium ion channel,nicotinic acetylcholine receptor andN-methyl-D-aspartic acid receptor.Some of the above conotoxins are highly poisonous,some have been developed as drugs or drug candidates,or have become powerful research tools for neuro?pharmacology.We hope this review will contribute to researches of toxins and related neuropharmacology.

conotoxins;toxicology;pharmacology;ion channel;acetylcholine receptor;aspartic acid receptor

DAI Qiu-yun,E-mail:qy_dai@yahoo.com

R99,R996.3

A

1000-3002-(2016)12-1397-14

10.3867/j.issn.1000-3002.2016.12.018

Foundation item:The project supported by National Natural Science Foundation of China(81173035);National Natural Science Foundation of China(81473192);National High Technology Research and Development Program(2011AA09070108);and National Key Basic Research and Development Program(973 Program)(2010CB529802)

2016-11-23接受日期:2016-12-20)

(本文編輯:齊春會)

國家自然科學基金(81173035);國家自然科學基金(81473192);863高技術項目(2011AA09070108);國家重點基礎研究發(fā)展計劃(973)(2010CB529802)

戴秋云,E-mail:qy_dai@yahoo.com

猜你喜歡
二硫鍵離子通道殘基
二硫鍵影響GH11木聚糖酶穩(wěn)定性研究進展
基于各向異性網(wǎng)絡模型研究δ阿片受體的動力學與關鍵殘基*
電壓門控離子通道參與紫杉醇所致周圍神經(jīng)病變的研究進展
基于質(zhì)譜技術的二硫鍵定位分析方法研究進展
液相色譜質(zhì)譜對重組人生長激素-Fc(CHO 細胞)二硫鍵連接的確認
蝎毒肽作為Kv1.3離子通道阻滯劑研究進展
“殘基片段和排列組合法”在書寫限制條件的同分異構體中的應用
二硫鍵在蛋白質(zhì)中的作用及其氧化改性研究進展
中國飼料(2016年17期)2016-12-01 08:08:19
蛋白質(zhì)二級結構序列與殘基種類間關聯(lián)的分析
基于支持向量機的蛋白質(zhì)相互作用界面熱點殘基預測
商都县| 安化县| 阳春市| 简阳市| 福州市| 枣强县| 信宜市| 天镇县| 怀集县| 息烽县| 特克斯县| 蒙城县| 保靖县| 镇远县| 景洪市| 福海县| 鸡泽县| 永登县| 越西县| 湖北省| 沭阳县| 晋城| 剑阁县| 淄博市| 西乌珠穆沁旗| 泗洪县| 大同县| 夏河县| 剑阁县| 中宁县| 涡阳县| 阿坝县| 张家口市| 嘉义市| 阜新市| 凤阳县| 永德县| 新闻| 青海省| 阿图什市| 古浪县|