胥雪蓮 綜述 何川 審校
(1.重慶醫(yī)科大學(xué)附屬大學(xué)城醫(yī)院心血管內(nèi)科,重慶401331; 2.成都大學(xué)附屬醫(yī)院心血管內(nèi)科,四川 成都610081)
?
前蛋白轉(zhuǎn)化酶枯草溶菌素9與動(dòng)脈粥樣硬化
胥雪蓮1綜述何川2審校
(1.重慶醫(yī)科大學(xué)附屬大學(xué)城醫(yī)院心血管內(nèi)科,重慶401331; 2.成都大學(xué)附屬醫(yī)院心血管內(nèi)科,四川 成都610081)
【摘要】動(dòng)脈粥樣硬化是嚴(yán)重危害人類健康的重大疾病。新近的研究表明,前蛋白轉(zhuǎn)化酶枯草溶菌素9作為降解低密度脂蛋白受體的重要分子,影響前蛋白轉(zhuǎn)化酶枯草溶菌素9-低密度脂蛋白受體途徑導(dǎo)致低密度脂蛋白代謝異常,與動(dòng)脈粥樣硬化形成的關(guān)系密切?,F(xiàn)就前蛋白轉(zhuǎn)化酶枯草溶菌素9影響動(dòng)脈粥樣硬化研究進(jìn)展做一綜述。
【關(guān)鍵詞】前蛋白轉(zhuǎn)化酶枯草溶菌素9; 動(dòng)脈粥樣硬化; 低密度脂蛋白受體
動(dòng)脈粥樣硬化是嚴(yán)重危害人類健康的重大疾病。新近的研究表明,前蛋白轉(zhuǎn)化酶枯草溶菌素9(proprotein convertase subtilisin/kexin type 9,PCSK9)作為降解低密度脂蛋白(LDL)受體的重要分子,影響PCSK9-LDL受體途徑導(dǎo)致LDL代謝異常,與動(dòng)脈粥樣硬化形成的關(guān)系密切。
1PCSK9蛋白簡介
PCSK9基因位于染色體lp3.32,是一個(gè)有5個(gè)片段的692個(gè)氨基酸的蛋白。72 kD(≈7.2×104)的前PCSK9蛋白定位于內(nèi)質(zhì)網(wǎng),可自動(dòng)剪切并轉(zhuǎn)化成一個(gè)成熟的62 kD(≈6.2×104)的PCSK9蛋白[1]。PCSK9是前蛋白轉(zhuǎn)化酶的成員,但PCSK9是唯一的底物,具自我催化作用,據(jù)此PCSK9可看作是結(jié)合蛋白作用[2]。自動(dòng)剪切對產(chǎn)生成熟的、可與LDL受體結(jié)合的PCSK9很關(guān)鍵。如果PCSK9不進(jìn)行自動(dòng)剪切,它不會(huì)分泌到循環(huán)血中,并且沒有作用,被看作丟失功能的PCSK9。
2PCSK9的轉(zhuǎn)錄因子
PCSK9主要是在肝細(xì)胞內(nèi)表達(dá),在小腸及腎臟亦有表達(dá)[3]。它的表達(dá)受轉(zhuǎn)錄因子膽固醇調(diào)節(jié)元件結(jié)合蛋白2(sterol-responsive element-binding protein 2,SREBP2)調(diào)節(jié),該轉(zhuǎn)錄因子就是上調(diào)羥甲基戊二酰輔酶A和LDL受體轉(zhuǎn)錄的[4]。肝細(xì)胞核因子1α加強(qiáng)SREBP2的轉(zhuǎn)錄活性[5]。上述的因子調(diào)節(jié)肝細(xì)胞膽固醇濃度。當(dāng)膽固醇濃度下降到一定水平,這些轉(zhuǎn)錄因子就上調(diào)羥甲基戊二酰輔酶A (增加細(xì)胞內(nèi)膽固醇合成)和LDL受體導(dǎo)致對循環(huán)中的載脂蛋白B(apoB)攝入增加,包含apoB脂質(zhì)顆粒向肝細(xì)胞轉(zhuǎn)移。這兩個(gè)機(jī)制均導(dǎo)致更多的膽固醇在肝細(xì)胞的脂質(zhì)池中。
3PCSK9與LDL受體相互作用
PCSK9是絲氨酸蛋白酶的枯草桿菌蛋白酶家族的第9個(gè)成員,由肝臟分泌,作為一個(gè)天然的LDL受體的抑制劑,使LDL受體到溶酶體降解[6]。
通常情況下,LDL受體與循環(huán)中的LDL顆粒結(jié)合,內(nèi)吞入肝細(xì)胞。隨后LDL受體可自由回到細(xì)胞表面,可以結(jié)合另外的循環(huán)中的LDL顆粒,而在內(nèi)吞入肝細(xì)胞內(nèi)的內(nèi)涵體中LDL顆粒被送到溶酶體降解,釋放膽固醇成分到膽固醇池中[7]。當(dāng)LDL受體與PCSK9結(jié)合后,這個(gè)LDL受體不會(huì)再循環(huán)到細(xì)胞表面,而是溶酶體降解的目標(biāo),這樣就減少了細(xì)胞表面的LDL受體數(shù)量,減弱了從循環(huán)中攝取膽固醇的能力[8]。此外它們相互作用在細(xì)胞外空間,PCSK9也可以通過不完全性定義的細(xì)胞內(nèi)通路增強(qiáng)LDL受體的降解,這一途徑不需要PCSK9的分泌[9]。
可以看作,這是一個(gè)動(dòng)態(tài)的過程,是根據(jù)細(xì)胞內(nèi)膽固醇濃度來上調(diào)或下調(diào)這些分子的表達(dá)。當(dāng)一個(gè)轉(zhuǎn)錄因子刺激,新合成的LDL受體分泌出來攜帶更多的膽固醇到細(xì)胞內(nèi),但同時(shí)新合成的PCSK9分泌出來限制這一過程。這一完整的系統(tǒng)提供一個(gè)有效的方式滿足細(xì)胞對膽固醇的需要同時(shí)阻止LDL受體不受約束的消耗循環(huán)中的膽固醇[10]??梢灶A(yù)見,怎樣干擾PCSK9活性,而后允許LDL受體攝取更多的低密度脂蛋的膽固醇(LDL-C)是降低血中膽固醇水平的一種有效方式,這恰好就是新藥作用靶點(diǎn)。
PCSK9同樣也與其他的脂質(zhì)受體結(jié)合[極低密度脂蛋白(VLDL)受體、載脂蛋白E受體2],從而影響循環(huán)中VLDL和載脂蛋白的攝取。PCSK9和LDL受體相互作用發(fā)生在細(xì)胞表面,似乎不發(fā)生(或很弱的發(fā)生)在腎上腺或大腦的一些區(qū)域[11-12]。于是這些細(xì)胞不會(huì)通過PCSK9的途徑被剝奪膽固醇,那些改變PCSK9活性的藥物也不會(huì)有效果。就此沒有其他的靶點(diǎn),和PCSK9結(jié)合的那些受體應(yīng)該是抗PCSK9藥物唯一的靶點(diǎn)。
體內(nèi)實(shí)驗(yàn)表明,用不同的方法使PCSK9超表達(dá)或者敲低PCSK9的表達(dá)對血漿膽固醇水平的影響。在腺病毒介導(dǎo)的PCSK9超表達(dá)小鼠,在肝臟的LDL受體的表達(dá)水平急劇下降,血漿膽固醇水平急劇升高,然而LDL受體的mRNA水平?jīng)]有明顯變化[13]。而后者的發(fā)現(xiàn)表明PCSK9減少肝臟LDL受體表達(dá)是通過轉(zhuǎn)錄后調(diào)節(jié)。在PCSK9超表達(dá)的轉(zhuǎn)基因小鼠的肝臟也觀察到相同的結(jié)果。在轉(zhuǎn)基因小鼠中產(chǎn)生的PCSK9可以降低正常小鼠肝臟的LDL受體水平。相反在PCSK9敲除小鼠,肝臟LDL受體水平明顯上調(diào),而血漿LDL-C水平顯著下降,由于肝臟LDL受體增加介導(dǎo)了對血漿中LDL-C的清除增加[14]。最后在小鼠、大鼠和猴,用RNA干擾敲低肝臟PCSK9表達(dá),顯著升高肝臟LDL受體的表達(dá),降低血漿LDL-C水平[15]。在反義寡核苷酸直接對抗PCSK9 mRNA的小鼠也得到相同的結(jié)果[16]。綜上所述,這些結(jié)果表明PCSK9對膽固醇代謝的影響是通過對肝臟LDL受體影響的結(jié)果。
4PCSK9與三酰甘油
PCSK9與脂質(zhì)組裝和分泌,有一些證據(jù)表明PCSK9對三酰甘油的影響,高三酰甘油也被認(rèn)為是冠狀動(dòng)脈粥樣硬化性心臟病的危險(xiǎn)因素[17]。三酰甘油的殘余物直接與動(dòng)脈粥樣硬化的形成相關(guān),它們被動(dòng)脈中的巨噬細(xì)胞攝取,導(dǎo)致大量的脂質(zhì)負(fù)荷[18-19]。新近的臨床研究表明在人類PCSK9的濃度與三酰甘油的標(biāo)志物相關(guān)。在大樣本量人群中無論男女,均提示血漿PCSK9的水平與三酰甘油水平相關(guān)[19-20]。和這些觀察一致的是攜帶PCSK9的突變體比正常人群有apoB 100生成率3倍增高[21]。幾個(gè)有關(guān)小鼠的研究表明:PCSK9對三酰甘油的影響是基于肝臟特異性的;在急性腺病毒轉(zhuǎn)染PCSK9超表達(dá)空腹小鼠發(fā)現(xiàn)高三酰甘油血癥,源于肝臟VLDL-三酰甘油、apoB極大的生成速率[22]。小鼠超表達(dá)人類PCSK9導(dǎo)致肝臟三酰甘油升高[23]。
小腸是另一個(gè)三酰甘油的主要來源,餐后乳糜微粒及apoB 48是乳糜微粒裝配、分泌必須的[24]。PCSK9在小腸的表達(dá)從數(shù)量上僅次于肝臟,排在第二。PCSK9基因敲除減少apoB 48的分泌并且保護(hù)餐后小鼠的高三酰甘油血癥[25]。這是一個(gè)治療靶點(diǎn),PCSK9抑制腸道三酰甘油的生成,減少餐后高三酰甘油血癥及降低血漿三酰甘油水平。在培養(yǎng)的人類腸細(xì)胞中,PCSK9增加細(xì)胞及分泌型的apoB 48及apoB 100-三酰甘油[26-27]。LDL受體能直接影響apoB的穩(wěn)定,在肝細(xì)胞中提高apoB的翻譯后降解,從而三酰甘油顆粒分泌減少。PCSK9減少腸細(xì)胞中LDL受體水平,直接增加apoB 100-三酰甘油分泌[28]。
5PCSK9抑制與臨床
PCSK9抑制是一個(gè)降低血漿膽固醇水平,并且有助于減少動(dòng)脈粥樣硬化性心血管疾病的一個(gè)新靶點(diǎn)。臨床上有兩類抑制PCSK9的方式:PCSK9單克隆抗體(mAbs)和RNA干擾技術(shù)。使用RNA干擾技術(shù)在Ⅰ期臨床研究中,健康人群志愿者減少PCSK9達(dá)70%,減少LDL-C達(dá)40%,數(shù)據(jù)來源于超過30 d的觀察,并且這些減少呈劑量依賴性[29]。PCSK9的抑制劑mAbs提供敲除或敲低血液中PCSK9的活性,并且不抑制肝細(xì)胞攝取循環(huán)中的LDL顆粒(以及另一些包含apoB的顆粒)。動(dòng)物實(shí)驗(yàn)已經(jīng)證實(shí)這種機(jī)制,并且這種干擾能持續(xù)性降低LDL-C水平。目前有4種mAbs(PCSK9抑制劑)正在研究中,最初的兩個(gè)復(fù)合物(alirocumab and evolocumab)的研究已基本完成Ⅲ期臨床試驗(yàn),已經(jīng)提交數(shù)據(jù)給FDA,可能會(huì)在2015年得到獲準(zhǔn)。第三個(gè)復(fù)合物(bococizumab)正在進(jìn)行Ⅲ期臨床試驗(yàn)。最后一個(gè)復(fù)合物已經(jīng)完成單劑量Ⅰ期臨床試驗(yàn),正在進(jìn)行劑量變化的Ⅱ期臨床試驗(yàn)。前兩個(gè)復(fù)合物(alirocumab and evolocumab)是人類抗體;第三個(gè)復(fù)合物(bococizumab)是人類化的抗體[30]。
PCSK9抑制劑抑制動(dòng)脈粥樣硬化,提高他汀類藥物的療效[31]。在急性心肌梗死的患者血漿中PCSK9濃度增加[32]。PCSK9在人類粥樣斑塊中有表達(dá)。PCSK9的抑制可減少膽固醇水平及減少血管斑塊的形成[33]。PCSK9影響心血管疾病是多個(gè)層面的,包括動(dòng)脈粥樣斑塊形成,同時(shí)影響胰島素抵抗和肥胖等危險(xiǎn)因素。PCSK9是調(diào)節(jié)血漿膽固醇的關(guān)鍵分子,從而影響動(dòng)脈粥樣硬化和藥物的治療靶點(diǎn)。PCSK9是肝臟中調(diào)節(jié)LDL受體表達(dá)的分子,同時(shí)影響循環(huán)中LDL-C的濃度。失去PCSK9功能的突變體有低水平的LDL-C和低冠心病的發(fā)病率;然而得到PCSK9功能的突變體是家族性高膽固醇血癥和早發(fā)冠心病患者;他汀類藥物上調(diào)PCSK9的表達(dá),使他汀類藥物降低LDL-C的作用受限[34]。
6結(jié)語
PCSK9作為一個(gè)新近發(fā)現(xiàn)的蛋白,影響LDL受體降解,從而影響體內(nèi)LDL-C的代謝及動(dòng)脈粥樣硬化的進(jìn)程。我們期待PCSK9的抑制劑早日應(yīng)用于臨床,成為一個(gè)除他汀類藥物以外更強(qiáng)更好的調(diào)脂、抗動(dòng)脈粥樣硬化藥物。
[ 參 考 文 獻(xiàn) ]
[1]Benjannet S, Rhainds D, Essalmani R, et al. NARC-1/PCSK9 and its natural mutants: zymogen cleavage and effects on the low density lipoprotein(LDL) receptor and LDL cholesterol[J]. J Biol Chem,2004,279(47):48865-48875.
[2]Seidah NG, Awan Z, Chrétien M, et al. PCSK9: a key modulator of cardiovascular health[J]. Circ Res, 2014,114(6):1022-1036.
[3]Zaid A, Roubtsova A, Essalmani R, et al. Proprotein convertase subtilisin/kexin type 9(PCSK9): hepatocyte-specific low-density lipoprotein receptor degradation and critical role in mouse liver regeneration[J]. Hepatology,2008,48(2):646-654.
[4]Dong B, Wu M, Li H, et al. Strong induction of PCSK9 gene expression through HNF1alpha and SREBP2: mechanism for the resistance to LDL-cholesterol lowering effect of statins in dyslipidemic hamsters[J]. J Lipid Res,2010,51(6):1486-1495.
[5]Li H, Dong B, Park SW, et al. Hepatocyte nuclear factor 1alpha plays a critical role in PCSK9 gene transcription and regulation by the natural hypocholesterolemic compound berberine[J]. J Biol Chem,2009,284(42):28885-28895.
[6]Berger JM, Vaillant N, le May C,et al. PCSK9-deficiency does not alter blood pressure and sodium balance in mouse models of hypertension[J]. Atherosclerosis,2015,239(1):252-259.
[7]lo Surdo P, Bottomley MJ, Calzetta A, et al. Mechanistic implications for LDL receptor degradation from the PCSK9/LDLR structure at neutral pH[J]. EMBO Rep, 2011,12(12):1300-1305.
[8]Tveten K, Holla ?L,Cameron J, et al. Interaction between the ligand-binding domain of the LDL receptor and the C-terminal domain of PCSK9 is required for PCSK9 to remain bound to the LDL receptor during endosomal acidification[J]. Hum Mol Genet,2012,21(6):1402-1409.
[9]Poirier S,Mayer G,Poupon V,et al. Dissection of the endogenous cellular pathways of PCSK9-induced low density lipoprotein receptor degradation:evidence for an intracellular route[J]. J Biol Chem,2009,284(42):28856-28864.
[10]Lagace TA, Curtis DE, Garuti R, et al. Secreted PCSK9 decreases the number of LDL receptors in hepatocytes and in livers of parabiotic mice[J]. J Clin Invest,2006,116(11):2995-3005.
[11]Liu M, Wu G, Baysarowich J, et al. PCSK9 is not involved in the degradation of LDL receptors and BACE1 in the adult mouse brain[J]. J Lipid Res,2010,51(9):2611-2618.
[12]Rousselet E, Marcinkiewicz J, Kriz J, et al. PCSK9 reduces the protein levels of the LDL receptor in mouse brain during development and after ischemic stroke[J]. J Lipid Res,2011,52(7):1383-1391.
[13]Lagace TA, Curtis DE, Garuti R,et al. Secreted PCSK9 decreases the number of LDL receptors in hepatocytes and in livers of parabiotic mice[J]. J Clin Invest,2006,116(11): 2995-3005.
[14]Rashid S,Curtis DE,Garuti R,et al. Decreased plasma cholesterol and hypersensitivity to statins in mice lacking Pcsk9[J]. Proc Natl Acad Sci USA,2005,102(15):5374-5379.
[15]Frank-Kamenetsky M, Grefhorst A, Anderson NN,et al. Therapeutic RNAi targeting PCSK9 acutely lowers plasma cholesterol in rodents and LDL cholesterol in nonhuman primates[J]. Proc Natl Acad Sci USA,2008,105(33):11915-11920.
[16]Graham MJ, Lemonidis KM, Whipple CP,et al. Antisense inhibition of proprotein convertase subtilisin/kexin type 9 reduces serum LDL in hyperlipidemic mice[J]. J Lipid Res,2007,48(4): 763-767.
[17]Sun H, Samarghandi A, Zhang N,et al.Proprotein convertase subtilisin/kexin type 9 interacts with apolipoprotein B and prevents its intracellular degradation, irrespective of the low-density lipoprotein receptor[J].Arterioscler Thromb Vasc Biol,2012,32(7):1585-1595.
[18]Boekholdt SM,Arsenault BJ,Mora S,et al. Association of LDL cholesterol,non-HDL cholesterol,and apolipoprotein B levels with risk of cardiovascular events among patients treated with statins:a meta-analysis[J].JAMA,2012,307(12):1302-1309.
[19]Chapman MJ, Ginsberg HN, Amarenco P,et al. Triglyceride-rich lipoproteins and high-density lipoprotein cholesterol in patients at high risk of cardiovascular disease:evidence and guidance for management[J]. Eur Heart J,2011,32(11):1345-1361.
[20]J?nis MT,Tarasov K,Ta HX,et al. Beyond LDL-C lowering:distinct molecular sphingolipids are good indicators of proprotein convertase subtilisin/kexin type 9 (PCSK9) deficiency[J].Atherosclerosis,2013,228(2):380-385.
[21]Kwakernaak AJ, Lambert G, Dullaart RP.Plasma proprotein convertase subtilisin-kexin type 9 is predominantly related to intermediate density lipoproteins[J].Clin Biochem,2014,47(7-8):679-682.
[22]Lambert G, Jarnoux AL, Pineau T,et al. Fasting induces hyperlipidemia in mice overexpressing proprotein convertase subtilisin kexin type 9:lack of modulation of very-low-density lipoprotein hepatic output by the low-density lipoprotein receptor [J].Endocrinology,2006,147(10):4985-4995.
[23]Tavori H, Fan D, Blakemore JL,et al. Serum proprotein convertase subtilisin/kexin type 9 and cell surface low-density lipoprotein receptor:evidence for a reciprocal regulation[J]. Circulation,2013,127(24):2403-2413.
[24]Shojaee-Moradie F,Ma Y,Lou S,et al. Prandial hypertriglyceridemia in metabolic syndrome is due to an overproduction of both chylomicron and VLDL triacylglycerol[J]. Diabetes,2013,62(12):4063-4069.
[25]le May C, Kourimate S, Langhi C,et al. Proprotein convertase subtilisin kexin type 9 null mice are protected from postprandial triglyceridemia[J].Arterioscler Thromb Vasc Biol,2009,29(5):684-690.
[26]Rashid S, Tavori H, Brown PE,et al. Proprotein convertase subtilisin kexin type 9 promotes intestinal overproduction of triglyceride-rich apolipoprotein B lipoproteins through both low-density lipoprotein receptor-dependent and -independent mechanisms[J].Circulation,2014,130(5):431-441.
[27]Levy E, Ben Djoudi Ouadda A, Spahis S,et al. PCSK9 plays a significant role in cholesterol homeostasis and lipid transport in intestinal epithelial cells[J].Atherosclerosis,2013,227(2):297-306.
[28]Olofsson SO,Borén J. Apolipoprotein B secretory regulation by degradation[J].Arterioscler Thromb Vasc Biol,2012,32(6):1334-1338.
[29]Fitzgerald K,Frank-Kamentsky M,Shulga-Morskaya S,et al.Effect of an RNA interference drug on the synthesis of proprotein convertase subtilisin/kexin type 9(PCSK9) and the concentration of serum LDL cholesterol in healthy volunteers:a randomised, single-blind, placebo-controlled, phase 1 trial[J]. Lancet,2014,383(9911):60-68.
[30]McKenney JM.Understanding PCSK9 and anti-PCSK9 therapies[J].J Clin Lipidol,2015,9(2):170-186.
[31]Kühnast S, van der Hoorn JW, Pieterman EJ,et al. Alirocumab inhibits atherosclerosis, improves the plaque morphology, and enhances the effects of a statin[J]. J Lipid Res,2014,55(10):2103-2112.
[32]Almontashiri NA, Vilmundarson RO, Ghasemzadeh N,et al. Plasma PCSK9 levels are elevated with acute myocardial infarction in two independent retrospective angiographic studies[J]. PLoS One,2014,9(9):e106294.
[33]Stawowy P.Proprotein convertases in atherogenesis[J]. Curr Opin Lipidol, 2015,26(4):338-344.
[34]Schwartz GG,Bessac L,Berdan LG,et al.Effect of alirocumab, a monoclonal antibody to PCSK9,on long-term cardiovascular outcomes following acute coronary syndromes:rationale and design of the ODYSSEY outcomes trial[J].Am Heart J,2014,168(5):682-689.
Proprotein Convertase Subtilisin/Kexin Type 9 and Atherosclerosis
XU Xuelian1, HE Chuan2
(1.DepartmentofCardiology,University-TownHospitalofChongqingMedicalUniversity,Chongqing401331,China; 2.DepartmentofCardiology,AffiliatedHospital/ClinicalMedicalCollegeofChengduUniversity,Chengdu610081,Sichuan,China)
【Abstract】Atherosclerosis is a serious disease that is harmful to human health. Proprotein convertase subtilisin/kexin type 9 (PCSK9), a newly recognized protein, which plays a key role in cholesterol homeostasis by enhancing the degradation of hepatic low-density lipoprotein receptor and causing marked increases in low-density lipoprotein cholesterol concentration and atherosclerosis. This review provides important links between PCSK9, low-density lipoprotein receptor and the mechanisms of atherosclerosis.
【Key words】Proprotein convertase subtilisin/kexin type 9;Atherosclerosis;Low-density lipoprotein receptor
收稿日期:2015-08-12 修回日期:2015-09-17
【中圖分類號】R543
【文獻(xiàn)標(biāo)志碼】A【DOI】10.16806/j.cnki.issn.1004-3934.2016.01.013
作者簡介:胥雪蓮(1978—),主治醫(yī)師,博士,主要從事動(dòng)脈粥樣硬化研究。Email:2480074@qq.com通信作者:何川,副主任醫(yī)師,碩士,主要從事電生理研究。Email:1492043949@qq.com
基金項(xiàng)目:重慶市科委自然科學(xué)基金計(jì)劃資助項(xiàng)目(cstc2012jjA10045);重慶市渝中區(qū)科委科技計(jì)劃項(xiàng)目(20130129)