国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

2013年遼寧理數(shù)第12題的探究

2016-02-25 08:00:06富春江,房曉南,洪恩鋒
關(guān)鍵詞:極小值極大值極值

?

2013年遼寧理數(shù)第12題的探究

遼寧省撫順市第一中學(xué)(113001)富春江房曉南洪恩鋒

隨著新課程標(biāo)準(zhǔn)的實(shí)施,以高等數(shù)學(xué)知識(shí)為背景的題目已成為各省市高考卷中的一道風(fēng)景線,這類題目形式新穎多變,既能開(kāi)闊學(xué)生視野,又有利于完成高等數(shù)學(xué)和中等數(shù)學(xué)的銜接,倍受命題者青睞.因此,在教學(xué)實(shí)踐中教師不僅要掌握傳授這類題目的初等化解法,更應(yīng)透過(guò)高等知識(shí)背景,認(rèn)識(shí)其本質(zhì).本文是筆者在研究2013年遼寧理數(shù)12題時(shí),通過(guò)對(duì)學(xué)生的答題狀況的調(diào)查分析,類比衍生出高等觀點(diǎn)背景下的一個(gè)一般性結(jié)論,懇請(qǐng)同行補(bǔ)充修正.

A.有極大值,無(wú)極小值

B.有極小值,無(wú)極大值

C.既有極大值,又有極小值

D.既無(wú)極大值也無(wú)極小值

點(diǎn)評(píng):本題主要考查導(dǎo)數(shù)及其應(yīng)用,導(dǎo)數(shù)的運(yùn)算,函數(shù)的極值.客觀的說(shuō),本題看似條件簡(jiǎn)單明了,細(xì)品卻回味無(wú)窮,區(qū)分度較大,無(wú)愧一道壓軸選擇題,備受好評(píng).

針對(duì)這道高考題的答題情況,筆者進(jìn)行了統(tǒng)計(jì)分析,有這樣兩組結(jié)果引起了筆者的注意.

結(jié)果1很多考生能夠得到結(jié)果f′(2)=0,故首先排除D,大多數(shù)選了A或B,這種 “想當(dāng)然”正是考生對(duì)函數(shù)穩(wěn)定點(diǎn)與極值點(diǎn)定義的不清.(可導(dǎo)函數(shù)的極值點(diǎn)一定是穩(wěn)定點(diǎn),但反之不成立,例f(x)=x3中x=0是穩(wěn)定點(diǎn)但不是極值點(diǎn))

反思:在結(jié)果2中,考生通過(guò)類比思想,化未知為已知,是一種非常值得借鑒的解題方法.但其解題思想的背后,是否隱藏著什么必然關(guān)系呢?是否可以順著思路將結(jié)論一般化呢?筆者通過(guò)一些特殊函數(shù)的舉例驗(yàn)證,得出如下一般性結(jié)論:

設(shè)f(x)在x0處具有n階連續(xù)導(dǎo)數(shù),且 f′(x0)=f″(x0)=…=f(n-1)(x0),f(n)(x0)≠0, 那么,

(1)當(dāng)n=2時(shí),若f″(x0)<0時(shí),x0是極大值點(diǎn);若f″(x0)>0時(shí),x0是極小值點(diǎn);

(2)當(dāng)n≥3時(shí),若n為偶數(shù)時(shí),x0是極值點(diǎn);

若n為奇數(shù)時(shí),x0不是極值點(diǎn).

當(dāng)n為偶數(shù)時(shí),(x-x0)n>0,由(1)式可得f(x)-f(x0)與f(n)(x0)同號(hào),故

當(dāng)f(n)(x0)<0時(shí),f(x)

當(dāng)f(n)(x0)>0時(shí),f(x)>f(x0),x0是極小值點(diǎn).

當(dāng)n為奇數(shù)時(shí),(x-x0)n在x0的左右兩邊改變符號(hào),由(1)式可得f(x)-f(x0)與f(n)(x0)在x0的左右兩邊也改變符號(hào),故x0不是極值點(diǎn).

行文至此,客觀的說(shuō),衍生的這個(gè)一般性結(jié)論是判斷極值點(diǎn)的一把利器,可以極大的降低思維強(qiáng)度,運(yùn)作機(jī)械,無(wú)論難度再大的變形試題也可迎刃而解.筆者斗膽猜測(cè),也許命題專家的思路源泉正是出于此結(jié)論.

參考文獻(xiàn)

[1]華東師范大學(xué)數(shù)學(xué)系編.數(shù)學(xué)分析[M].高等教育出版社,2001年.

猜你喜歡
極小值極大值極值
極值點(diǎn)帶你去“漂移”
極值點(diǎn)偏移攔路,三法可取
一道抽象函數(shù)題的解法思考與改編*
構(gòu)造可導(dǎo)解析函數(shù)常見(jiàn)類型例析*
一類“極值點(diǎn)偏移”問(wèn)題的解法與反思
極小值原理及應(yīng)用
基于龐特里亞金極小值原理的多運(yùn)載體有限時(shí)間編隊(duì)控制
基于小波模極大值理論的勵(lì)磁涌流新判據(jù)研究
基于經(jīng)驗(yàn)?zāi)B(tài)分解的自適應(yīng)模極大值去噪方法
行人檢測(cè)中非極大值抑制算法的改進(jìn)
宜兰市| 新巴尔虎左旗| 碌曲县| 开原市| 伊春市| 台江县| 突泉县| 长葛市| 武威市| 南昌市| 南川市| 乌鲁木齐市| 宁城县| 商河县| 慈利县| 江安县| 盐源县| 陆河县| 罗田县| 龙南县| 哈尔滨市| 菏泽市| 饶阳县| 小金县| 同江市| 丰宁| 商城县| 乌兰察布市| 太保市| 嘉兴市| 泸定县| 宝应县| 雷波县| 屏边| 奈曼旗| 涡阳县| 兴业县| 甘孜县| 华坪县| 芦山县| 安阳县|