胡成輝
一節(jié)成功的數(shù)學(xué)課,往往都會(huì)從情境創(chuàng)設(shè)開始。讓學(xué)生在生動(dòng)具體的情境中學(xué)習(xí)數(shù)學(xué)是《課程標(biāo)準(zhǔn)》的一個(gè)重要理念。新課導(dǎo)入時(shí)創(chuàng)設(shè)情境的目的,或是再現(xiàn)已有的知識(shí)和經(jīng)驗(yàn),為學(xué)生學(xué)習(xí)新知提供攀爬的支架;或是從故事和游戲中引入數(shù)學(xué)問題,激發(fā)學(xué)生的求知欲望;或是借助已有的知識(shí)設(shè)置障礙,形成認(rèn)知沖突,激發(fā)學(xué)生的探究興趣。好的情境一般要符合以下幾個(gè)因素:(1)問題性——好的情境應(yīng)與問題交融;(2)知識(shí)性——提出的問題要有與數(shù)學(xué)學(xué)習(xí)相關(guān)的知識(shí);(3)挑戰(zhàn)性——提出的問題能引起學(xué)生深入的思維活動(dòng);(4)參與性——提出的問題能引起全體學(xué)生的關(guān)注。下面我就結(jié)合實(shí)際談?wù)勗谛抡n導(dǎo)入時(shí)創(chuàng)設(shè)情境的一些具體做法。
一、以舊引新法——從學(xué)生已有的知識(shí)經(jīng)驗(yàn)引入
學(xué)生坐在課堂上,他不是一張白紙,任教師潑墨,畫上自己得意的作品。建構(gòu)主義教學(xué)觀認(rèn)為,學(xué)習(xí)不是把外部知識(shí)直接輸入到心理中的過程,而是主體以已有的經(jīng)驗(yàn)為基礎(chǔ),通過與外部世界的相互作用而主動(dòng)建構(gòu)新的理解、新的心理表征的過程。也就是說,已有的知識(shí)和經(jīng)驗(yàn)被從記憶中提取的過程是一個(gè)重新建構(gòu)的過程,而對新信息的學(xué)習(xí)和理解,是通過運(yùn)用已有的知識(shí)和經(jīng)驗(yàn)對新信息進(jìn)行重新建構(gòu)而達(dá)成的。以舊引新的目的,就是幫助學(xué)生找到知識(shí)的生長點(diǎn),為學(xué)生的進(jìn)一步學(xué)習(xí)提供梯子。例如,在教學(xué)“百分?jǐn)?shù)的認(rèn)識(shí)”一課時(shí),我出示班上三名學(xué)生的投籃成績:
[\&小明\&小華\&小剛\&投籃總次數(shù)\&10\&20\&25\&投中次數(shù)\&8\&17\&21\&]
選誰代表班級去參加學(xué)校組織的投籃比賽呢?學(xué)生在表述自己的意見時(shí),有的比投中的次數(shù),有的比沒投中的次數(shù),進(jìn)而得出三個(gè)人應(yīng)該在投的總次數(shù)一樣多的情況下比才公平,教師順勢引入:生活中,像這樣為了便于比較會(huì)把分母變成100的分?jǐn)?shù),我們這節(jié)課就來學(xué)習(xí)這樣的百分?jǐn)?shù)。
二、制造沖突法——提出挑戰(zhàn)性的問題,直奔教學(xué)主題
如在教學(xué)《體積和體積單位》一課時(shí),為了讓學(xué)生理解體積的概念,我從《烏鴉喝水》的故事中獲得啟迪,設(shè)計(jì)了如下的演示試驗(yàn):(1)往三個(gè)大小、形狀完全相同的玻璃杯中倒上同樣多摻了紅墨水的水;(2)把一個(gè)小石頭放進(jìn)第二個(gè)杯子里。問學(xué)生發(fā)現(xiàn)了什么?在學(xué)生回答的基礎(chǔ)上追問,是杯子里的水多了嗎?使學(xué)生體會(huì)到,杯子里的水沒有多,水位升高是因?yàn)樾∈^占了水的位置。(3)把另一個(gè)大點(diǎn)的石頭放進(jìn)第三個(gè)杯子里,問學(xué)生又發(fā)現(xiàn)了什么?在學(xué)生回答的基礎(chǔ)上追問,你知道什么原因嗎?在觀察、思考的基礎(chǔ)上,學(xué)生知道物體占有體積,直觀感受到體積有大小。我順勢提示課題——這節(jié)課我們就來研究物體的體積。
三、比較入手法——使學(xué)生體會(huì)新知產(chǎn)生的必然性
例如,在教學(xué)《復(fù)式折線統(tǒng)計(jì)圖》時(shí),我先出示了煙臺(tái)市、吐魯番市8月某日6-20時(shí)的氣溫變化情況折線統(tǒng)計(jì)圖,引導(dǎo)學(xué)生觀察、讀圖,依次回答下列問題:(1)煙臺(tái)從幾時(shí)到幾時(shí)氣溫上升最快?吐魯番從幾時(shí)到幾時(shí)氣溫下降最快?(2)煙臺(tái)和吐魯番這兩個(gè)城市在幾時(shí)溫度相差最大?(3)從幾時(shí)到幾時(shí),煙臺(tái)的氣溫比吐魯番高?借助兩幅折線統(tǒng)計(jì)圖,我不斷地創(chuàng)設(shè)問題沖突,讓學(xué)生在經(jīng)歷分析問題、解決問題的學(xué)習(xí)活動(dòng)中,充分感受到單式折線統(tǒng)計(jì)圖在解決問題時(shí)的局限性,從而得到啟發(fā):能不能把這兩個(gè)單式折線統(tǒng)計(jì)圖重疊在一起呢?這樣復(fù)式折線統(tǒng)計(jì)圖的學(xué)習(xí)成為學(xué)生解決問題的需要,學(xué)生的學(xué)習(xí)積極性被充分調(diào)動(dòng)。
四、開門見山法——從學(xué)生熟知的生活知識(shí)入手,揭示新課
例如,在教學(xué)《年、月、日》一課時(shí),我問學(xué)生,你知道今天是哪一年、哪一月、哪一日嗎?指名學(xué)生回答后,我概括:年、月、日與時(shí)、分、秒一樣,也是時(shí)間單位,這節(jié)課我們就來學(xué)習(xí)新的時(shí)間單位:年、月、日。
五、聯(lián)系生活法——結(jié)合生活實(shí)際引入,溝通數(shù)學(xué)與現(xiàn)實(shí)生活的聯(lián)系
如有一位教師在教學(xué)《圓的認(rèn)識(shí)》時(shí),從談話引入:有兩句詩是這么形容揚(yáng)州的,“天下三分明月夜,二分無賴是揚(yáng)州!”,就讓我們的揚(yáng)州之旅從圓圓的月亮開始吧。(伴隨著優(yōu)美的音樂,分別出示揚(yáng)州的五亭橋,何園、徐園,別致的古今玉器,精巧的剪紙作品,玲瓏剔透的漆器等畫面)。教師問學(xué)生,從這些畫面中,我們可以看到一個(gè)熟悉的平面圖形——? 借此導(dǎo)入新課。
六、游戲?qū)搿?lì)學(xué)生參與教學(xué)
我校一位老師上《重疊問題》這節(jié)公開課時(shí),先隨機(jī)抽三個(gè)同學(xué)在講臺(tái)前玩“石頭、剪刀、布”的游戲,然后讓四個(gè)同學(xué)(其中包含先前參加第一個(gè)游戲的一個(gè)同學(xué))玩“搶椅子”的游戲。游戲結(jié)束后,再分別請參加兩種游戲的同學(xué)分組站在一起,這樣同時(shí)參加兩次游戲的同學(xué)處于一個(gè)被爭奪的處境,教師順勢提示課題——重疊問題。
當(dāng)然,新課導(dǎo)入只是課堂的初始環(huán)節(jié),但是俗話說:好的開始是成功的一半。讓我們的課堂從精彩的導(dǎo)入開始。
【作者單位:婺源縣段莘鄉(xiāng)中心小學(xué) 江西】