杜雅娟,趙國慶,熊曉虎
(1.中國科學(xué)院地球環(huán)境研究所 黃土與第四紀(jì)地質(zhì)國家重點(diǎn)實(shí)驗(yàn)室,西安 710061 2.陜西省加速器質(zhì)譜技術(shù)及應(yīng)用重點(diǎn)實(shí)驗(yàn)室,西安 710061)
鶴慶湖泊沉積物樣品的BeO制備
杜雅娟1,2,趙國慶1,2,熊曉虎1,2
(1.中國科學(xué)院地球環(huán)境研究所 黃土與第四紀(jì)地質(zhì)國家重點(diǎn)實(shí)驗(yàn)室,西安 710061 2.陜西省加速器質(zhì)譜技術(shù)及應(yīng)用重點(diǎn)實(shí)驗(yàn)室,西安 710061)
湖泊沉積物是研究古氣候、古環(huán)境的理想對象。本文選取鶴慶湖泊沉積物開展了樣品BeO制備的實(shí)驗(yàn)研究。通過對比黃土提取10Be的思路,利用條件實(shí)驗(yàn)確定了先沉淀去除常量元素,再進(jìn)行陽離子交換的新的實(shí)驗(yàn)流程。加速器質(zhì)譜儀的測量結(jié)果表明該流程有效可靠,為下一步拓展湖泊10Be環(huán)境示蹤的新方向提供了實(shí)驗(yàn)方法基礎(chǔ)。
鶴慶;10Be;加速器質(zhì)譜(AMS)
10Be是由宇宙射線高能粒子與大氣圈中氮、氧進(jìn)行散裂反應(yīng)的產(chǎn)物(Lal and Peters,1967)。因其具有半衰期較長(1.39 Ma)(Korschinek et al,2010);地球化學(xué)行為比較穩(wěn)定(Frank et al,1997);普遍賦存于各種沉積物中的特點(diǎn)(Baumgartner et al,1997),成為環(huán)境示蹤研究普遍應(yīng)用的示蹤物。由于10Be產(chǎn)率與地磁場強(qiáng)度變化呈反相關(guān)關(guān)系(Masarik and Beer,1999),因此可以用沉積物的10Be記錄示蹤古地磁場的強(qiáng)度變化。這一點(diǎn),在冰芯、海洋、湖泊及黃土中都取得了較好的效果(Ticich et al,1986;Robinson et al,1995;Horiuchi et al,2000;Wagner et al,2000;Christl et al,2003;Raisbeck et al,2006; Belmaker et al,2008,2014;Nilsson et al,2011;Zhou et al,2014)。然而,針對湖泊沉積物10Be的研究工作,在國內(nèi)尚未見文獻(xiàn)報(bào)道。因此,開展湖泊沉積物樣品的研究,尤其是樣品化學(xué)前處理方法的研究很有必要,這將有望為拓展湖泊10Be環(huán)境示蹤的新方向提供實(shí)驗(yàn)方法基礎(chǔ)。
云南鶴慶盆地作為“中國大陸環(huán)境鉆探計(jì)劃”的首個(gè)深鉆地點(diǎn),累計(jì)鉆取厚度約666 m的沉積物巖心,以湖相沉積為主(徐新文等,2010)。通過對該巖心的研究,前人已經(jīng)取得了不少成果(童國榜等,2002;肖海豐等,2006;肖霞云等,2007;徐新文等,2010;盧鳳艷和安芷生,2010;An et al,2011)。本文則針對該樣品序列,開展了BeO制備化學(xué)前處理方法的研究。基于西安加速器質(zhì)譜中心已建立的提取黃土大氣成因10Be的實(shí)驗(yàn)流程,對鶴慶湖泊沉積物樣品進(jìn)行了Be的分離純化及BeO制備的條件實(shí)驗(yàn),建立了新的實(shí)驗(yàn)流程,為下一步10Be的AMS測量及進(jìn)一步的研究提供了良好的基礎(chǔ)。
基于課題組多年的研究總結(jié),10Be實(shí)驗(yàn)室已形成一套成熟的用于提取黃土樣品中大氣成因10Be的實(shí)驗(yàn)流程(孔祥輝,2011)。該流程中的主要步驟是黃土-古土壤樣品經(jīng)過酸離析后,通過酸溶解(離析液蒸干后的殘留物),經(jīng)陽離子交換柱去除樣品溶液中的其他元素(B、大部分的Fe、Ca、Mg 等),然后通過NaOH沉淀去除殘留的常量元素(Fe、Ca、Mg 等),最后用堿沉淀(氨水)獲得Be(OH)2,經(jīng)高溫灼燒將其轉(zhuǎn)化為BeO。
可以看出,黃土提取10Be的關(guān)鍵在于去除樣品中的其他元素。因此,對于湖泊沉積物樣品,同樣可以采取該思路來進(jìn)行Be元素的分離及純化。所以首先需要建立鶴慶湖泊樣品的淋濾曲線。
在Be的分離提純過程中,淋濾曲線的建立是關(guān)鍵的一步。實(shí)驗(yàn)中利用陽離子交換樹脂通過H+與溶液中的陽離子發(fā)生置換而使其先吸附于樹脂上,隨著酸淋濾的進(jìn)行,這些陽離子又再次被H+洗脫出來。由于每種陽離子吸附-洗脫發(fā)生的時(shí)間有早有晚,利用這一特性即可將不同的陽離子加以分離。若要將Be元素提純,只需通過測量獲得Be淋出的時(shí)間區(qū)間即可。
在提取黃土10Be的實(shí)驗(yàn)流程中,由于黃土和古土壤中Be淋洗出的時(shí)間區(qū)間基本重合(圖1,黃土與古土壤Be的洗脫時(shí)間為1000 — 4000 s,空白樣品為2000 — 5000 s),所以經(jīng)過一次陽離子交換即可實(shí)現(xiàn)Be元素的分離。
針對鶴慶鉆孔樣品,選取研究深度范圍內(nèi)的三個(gè)樣品及一個(gè)空白。三個(gè)樣品的磁化率分別對應(yīng)最小、中間以及最大值(圖2),數(shù)值如表1所示:
依照實(shí)驗(yàn)流程第1 — 4步(孔祥輝,2011)對樣品進(jìn)行前處理,將所得溶液加入陽離子交換柱中,每400 s為一批次接收淋洗液,樣品共接收15批次,空白接收18批次。用ICP-AES測量四組各批次淋洗液中Be元素的含量,結(jié)果如圖3所示。
圖1 西峰黃土剖面樣品淋濾曲線(孔祥輝,2011)Fig.1 Leaching sample curve of Xifeng loess section (Kong, 2011)
圖 2 鶴慶樣品磁化率及實(shí)驗(yàn)點(diǎn)選取Fig.2 Susceptibility of Heqing sample and experimental sample
表1 實(shí)驗(yàn)樣品Tab.1 Experimental samples
從實(shí)驗(yàn)結(jié)果可以看出,樣品Be的洗出時(shí)間均不相同,其中磁化率最低的樣品a(HQ86-9)時(shí)間最早,而樣品c(HQ103-11)洗出的時(shí)間最晚。因此,經(jīng)過一次離子交換不能實(shí)現(xiàn)元素Be的分離。根據(jù)陽離子交換的原理,不同樣品中Be淋洗的時(shí)間區(qū)間不同,是由于其溶液中離子的數(shù)量和種類不同。離子種類越多,Be淋洗出的時(shí)間越早,反之則晚。因此,要實(shí)現(xiàn)Be的分離提純,需考慮如何減少溶液中的其他離子。這里提出兩種實(shí)驗(yàn)方案:1)兩次陽離子交換;2)先沉淀再進(jìn)行陽離子交換。
圖3 鶴慶樣品淋濾曲線Fig.3 Leaching curve of Heqing sample
3.1 兩次陽離子交換
既然一次陽離子交換不能實(shí)現(xiàn)Be的分離,那么再一次陽離子交換是否可以達(dá)到目的呢?根據(jù)淋濾實(shí)驗(yàn)測得的結(jié)果,選取樣品a和c的Be元素淋出時(shí)間區(qū)間的并集作為接收時(shí)間,即800 — 3600 s,空白則取2400 — 6400 s。
在進(jìn)行條件實(shí)驗(yàn)之前,可以先分析一下800—3600 s,樣品中的其他元素是否也同時(shí)被接收。從圖4中可以看到,在800 — 3600 s,除了Be之外,樣品a(圖4a)幾乎仍保留了所有元素,而樣品c(圖4b)的Al、Mg及Ti元素也均被保留。那么,由此推斷第一次接收的淋洗液中,不同樣品的離子數(shù)目仍有較大差異,因此理論上即使經(jīng)過第二次陽離子交換,它們Be的洗出時(shí)間也不會(huì)一致。
圖4 樣品a與c各元素淋濾曲線Fig.4 Leaching curve of element in sample a and c
實(shí)驗(yàn)步驟:
(1)同樣選取樣品a、c及空白,依照實(shí)驗(yàn)流程第1 — 4步(孔祥輝,2011)對樣品進(jìn)行前處理,將所得溶液加入陽離子交換柱中,接收800 — 4000 s的淋洗液。
(2)將第一次淋洗液(樣品800 — 3600 s,空白2400 — 6400 s)在電熱板上蒸干(170°C),向蒸干的殘留物中加入5 mL 1 mol · L-1的HCl,待其完全溶解后轉(zhuǎn)移至15 mL的離心管中,離心并保留上清液。
(3)將上清液加入陽離子交換柱,用1 mol · L-1HCl淋濾離子交換柱,每400 s一批次接收淋洗液,樣品共接收15批次,空白接收18批次。用ICPAES測量三組各批次淋洗液中Be元素的含量,結(jié)果如圖5所示。
圖5 兩次陽離子交換后的淋濾曲線Fig.5 Leaching curve after twice cation exchange
圖5 顯示樣品a與c中Be淋洗出的時(shí)間區(qū)間依然不重合,即二次分離的效果仍然不理想,和預(yù)計(jì)的結(jié)果相同。因此,對于鶴慶湖泊樣品,兩次陽離子交換的方案不可行。
3.2 先沉淀再進(jìn)行陽離子交換
該方案首先通過酸溶解-堿沉淀-堿溶解的方法除去樣品中的常量元素如Fe、Mg和大部分的鈣,此時(shí)留在堿性樣品溶液中的元素主要是兩性元素如Be、Al。那么,即使不同樣品的元素組成不同,在經(jīng)過沉淀去除大部分常量元素后,溶液中就主要為Be、Al。這樣,經(jīng)過陽離子交換之后,理論上Be析出的時(shí)間就可基本一致。
實(shí)驗(yàn)步驟:
(1)選取樣品a—c及空白,依照實(shí)驗(yàn)流程第1—3步(孔祥輝,2011)對樣品進(jìn)行前處理。
(2)蒸干溶解:在170℃的電熱板上將Te fl on燒杯中的離心上清液蒸干(至凝乳狀即可取下)。蒸干后殘留物加入1 mL鹽酸 (1 mol · L-1),使離心殘留物完全溶解并轉(zhuǎn)移至離心管,用9 mL Mini-Q水清洗燒杯,清洗液一并轉(zhuǎn)入離心管。
(3)調(diào)節(jié)pH:離心管中滴入甲酚紅-百里酚藍(lán)指示劑1 — 2滴攪勻(此時(shí)溶液為酸性,顏色為紅色),用氨水(將25%的濃氨水1:1稀釋,約6.69 mol · L-1)將溶液調(diào)至紫色(顏色變化為:紅—黃—紫),然后繼續(xù)滴加氨水2—3滴保證pH處于8—9,添加Mili-Q水至18 mL攪勻,靜置0.5 h后,向離心管中緩緩加入20 mL NaOH溶液(2 mol · L-1)并攪勻,用pH試紙檢測并保證溶液pH為14,放置至少2 h,離心并將上清液轉(zhuǎn)移至洗凈的燒杯。
(4)再次調(diào)節(jié)pH:給上一步沉淀物中加入3 mL鹽酸(6 mol · L-1)攪拌溶解,并加入Mini-Q水至7 mL處,滴加指示劑1—2滴,用氨水(25%的濃氨水1:1稀釋,約3 mL)將溶液調(diào)至紫色(紅—黃—紫),然后繼續(xù)滴加氨水2—3滴保證pH處于8—9,添加Mili-Q水至18 mL攪勻,靜止0.5 h后,向離心管中加入20 mL NaOH溶液(2 mol · L-1)并搖勻,用pH試紙檢測并保證溶液pH為14,放置過夜,離心并將上清液轉(zhuǎn)移至上一步對應(yīng)的樣品溶液(燒杯)中。調(diào)節(jié)兩次pH值,目的是為了盡可能最大限度地保留Be元素。
(5)氨水沉淀:用鹽酸(12 mol · L-1)將燒杯內(nèi)溶液調(diào)至酸性(紫—黃—紅),再用氨水(25%的濃氨水1:1稀釋)將溶液調(diào)至堿性(紅—黃—紫,pH:8 — 9)。靜置2 h以上,離心棄去上清液,加入5 mL鹽酸(1 mol · L-1)溶解沉淀物,并再次離心。
(6)陽離子交換:將所得溶液加入陽離子交換柱中,每400 s為一批次接收淋洗液,共接收17個(gè)批次。用ICP-AES測量四組各批次淋洗液中Be元素的含量,結(jié)果如圖6所示。
實(shí)驗(yàn)結(jié)果如預(yù)期,所有樣品Be的淋洗時(shí)間區(qū)間均重合(2400 — 6400 s),達(dá)到了分離Be的效果。但從圖中不難看出,除空白的峰值較高外,樣品的峰值對比方案1大幅降低,說明該實(shí)驗(yàn)方案的回收率降低。分析原因可能是由于其他元素在沉淀過程中(例如Fe(OH)3)包裹了Be元素一起沉淀,從而造成Be的損失。
圖6 先沉淀后陽離子交換的淋濾曲線Fig.6 Leaching curve after precipitation- cation exchange
3.3 回收率分析
綜上分析可知,先沉淀再進(jìn)行陽離子交換雖然可實(shí)現(xiàn)Be的分離,但樣品的回收率大大降低。因此,計(jì)算一下截止到陽離子交換,樣品的回收率能達(dá)到多少?
可以看到除空白樣之外,其他樣品的回收率均小于60%,那么這樣的回收率是否能夠滿足Be的測量?如果有同位素分餾效應(yīng),是否會(huì)影響到10Be /9Be比值。因此隨機(jī)選取樣品HQ82-3和HQ82-21,經(jīng)過先沉淀然后陽離子交換的方法制備兩組平行樣并進(jìn)行AMS測量,獲得的結(jié)果如下表所示。結(jié)果表明,調(diào)整后的BeO樣品制備實(shí)驗(yàn)流程基本穩(wěn)定,平行樣品之間的相對誤差< 3%。也就是說,先沉淀后淋濾的實(shí)驗(yàn)流程Be的回收率雖然較以往的回收率有所降低,但依然能夠滿足10Be測量的要求。
表 2 樣品回收率Tab.2 Sample recovery
表3 平行樣測試結(jié)果Tab.3 The result of parallel samples
由于沉積環(huán)境的差異,鶴慶湖泊沉積物樣品的碳酸鹽、有機(jī)質(zhì)等指標(biāo)的含量與黃土存在較大差異。例如鶴慶湖相巖心碳酸鹽的總體含量最大值83.35%,最小值0.29%,平均值41.11%,且變化幅度比較大(徐新文等,2010);而西峰黃土剖面900 ka以來的碳酸鹽含量均小于25%(孔祥輝,2011)。其次鶴慶盆地地處云南高原西北部,屬西南季風(fēng)區(qū)。在氣候適宜的條件下,入湖徑流量大,帶來豐富的陸生植物和營養(yǎng)物質(zhì),湖泊生產(chǎn)力提高,使得有機(jī)質(zhì)含量較高。因此鶴慶整套巖心樣品序列燒失量較大,平均值為19%,最大值可達(dá)36%(徐新文等,2010)。
在上述情況下,經(jīng)實(shí)驗(yàn)證明,黃土10Be實(shí)驗(yàn)流程中提純分離Be的步驟已不能適用于鶴慶巖心樣品。根據(jù)條件實(shí)驗(yàn),對原有流程進(jìn)行調(diào)整,建立了從鶴慶湖泊沉積物樣品中提取Be的新的實(shí)驗(yàn)流程,如圖7所示。同理,對于其他湖泊沉積物,也可以通過該實(shí)驗(yàn)流程進(jìn)行BeO的制備。通過新流程制備的BeO,已滿足鶴慶湖泊沉積樣品序列10Be研究的需要,但后續(xù)還需進(jìn)一步設(shè)法提高Be的回收率,減小測量誤差。
圖 7 鶴慶樣品的BeO制備流程Fig.7 The procedure of BeO preparation for Heqing sample
致謝:感謝謝興俊博士在實(shí)驗(yàn)過程中的指導(dǎo)與幫助;感謝付云翀高級工程師在10Be-AMS測量及數(shù)據(jù)處理方面提供的指導(dǎo)。
孔祥輝. 2011. 西峰黃土10Be記錄的最近800 ka以來古地磁場變化研究[D]. 北京:中國科學(xué)院大學(xué). [Kong XH. 2011. The study of the paleogeomagnetic fi eld change for the past 800 ka using10Be in Xifeng loess of China [D]. Beijing: University of Chinese Academy of Sciences.]
盧鳳艷, 安芷生. 2010.鶴慶鉆孔沉積物總有機(jī)碳、氮含量測定的前處理方法及其環(huán)境意義[J].地質(zhì)力學(xué)學(xué)報(bào), 16(4): 394–401. [Lu F Y, An Z S. 2010. Pretreatment methods for analyzing the total organic carbon and nitrogen contents of Heqing core sediments and their environmental signi fi cances [J].Journal of Geomechanics, 16(4) : 394–401.]
童國榜, 劉志明, 王蘇民, 等. 2002. 云南鶴慶盆地近1 Ma來的氣候序列重建初探[J].第四紀(jì)研究, 22(4) : 332–339. [Tong G B, Liu Z M, Wang S M, et al. 2002. Reconstruction of climatic sequence of the past 1 Ma in the Heqing basin, Yunnan province [J].Quaternary Science, 22(4) : 332–339.]
肖海豐, 沈 吉, 肖霞云. 2006. 鶴慶孔碳酸鹽記錄與深海δ18O和黃土粒度記錄的對比[J].海洋地質(zhì)與第四紀(jì)地質(zhì), 26(2): 41–47. [Xiao H F, Shen J, Xiao X Y. 2006. Comparison between carbonate record of Heqing coreδ18O record of the deep sea and grain size record of the continental loess [J].Marine Geology & Quaternary Geology, 26(2): 41– 47.]
肖霞云, 沈 吉, 王蘇民, 等. 2007. 鶴慶深鉆孢粉記錄揭示的2.78 Ma以來的植被演替與氣候變遷[J].中國科學(xué) D 輯: 地球科學(xué), 37(6) : 778–788. [Xiao Y X, Shen J, Wang S M, et al. 2007. The vegetation succession and climate change of the past 2.78 Ma recorded by pollen in Heqing core [J].Science in China Series D-Earth Sciences, 37(6) : 778–788. ]
徐新文, 強(qiáng)小科, 安芷生, 等. 2010. 鶴慶盆地湖相巖心磁化率記錄及其古環(huán)境意義[J].地質(zhì)力學(xué)學(xué)報(bào), 16(4): 373–382. [Xu X W, Qiang X K, An Z S, et al. 2010. Magnetic susceptibility of Heqing drill core and its palaeoenvironment implications [J].Journal of Geomechanics, 16(4): 373–382.]
An Z S, Steven C, Shen J, et al. 2011. Glacial-interglacial Indian summer monsoon dynamics [J].Science, 333: 719–723.
Baumgartner S, Beer J, Wagner G, et al. 1997.10Be and dust [J].Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 123(1 /2 / 3 / 4): 296–301.
Belmaker R, Lazar B, Tepelyakov N, et al. 2008.10Be in Lake Lisan sediments — a proxy for production or climate? [J].Earth and Planetary Science Letters, 269: 448–457.
Belmaker R, Stein M, Beer J, et al. 2014. Beryllium isotopes as tracers of Lake Lisan (last Glacial Dead Sea) hydrology and the Laschamp geomagnetic excursion [J].Earth and Planetary Science Letters, 400: 233–242.
Christl M, Strobl C, Mangini A. 2003. Beryllium-10 in deepsea sediments: a tracer for the Earth’s magnetic fi eld intensity during the last 200,000 years [J].Quaternary Science Reviews, 22: 725–739.
Frank M, Schwarz B, Baumann S, et al. 1997. A 200 kyr record of cosmogenic radionuclide production rate and geomagnetic field intensity from10Be in globally stacked deep-sea sediments [J].Earth and Planetary Science Letters, 149(1/2/3/ 4): 121–129.
Horiuchi K, Kobayashi K, Oda T, et al. 2000. Climate-induced fl uctuations of10Be concentration in Lake Baikal sediments [J].Nuclear Instruments and Methods in Physics Research B: Beam Interactions with Materials and Atoms, 172: 562–567.
Korschinek G, Bergmaier A, Faestermann T, et al. 2010. A new value for the half-life of10Be by heavy-ion elastic recoil detection and liquid scintillation counting [J].Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 268: 187–191.
Lal D, Peters B. 1967. Cosmic ray produced radioactivity on the Earth [M]// Sitte K. Kosmische strahlung II. Berlin: Springer Berlin Heidelberg: 551–612.
Masarik J, Beer J. 1999. Simulation of particle fluxes and cosmogenic nuclide production in the Earth’s atmosphere [J].Journal of Geophysical Research, 104(D10): 12099–12111.
Nilsson A , Raimund M, Ian S, et al. 2011. Multi-proxy identi fi cation of the Laschamp geomagnetic fi eld excursion in Lake Pupuke, New Zealand [J].Earth and Planetary Science Letters, 311 (1 / 2): 155–164.
Robinson C, Raisbeck G M, Yiou F, et al. 1995. The relationship between10Be and geomagnetic fi eld strength records in central North Atlantic sediments during the last 80 ka [J].Earth and Planetary Science Letters, 136: 551–557.
Raisbeck G M, Yiou F, Cattani O, et al. 2006.10Be evidence for the Matuyama-Brunhes geomagnetic reversal in the EPICA dome C ice core [J].Nature, 444: 82–84.
Ticich T, Lundberg L, Pal D K, et al. 1986.10Be contents of Mono Lake sediments: search for enhancement during a geomagnetic excursion [J].Geophysical Journal International, 87 (2): 487–492.
Wagner G, Masarik J, Beer J, et al. 2000. Reconstruction of the geomagnetic fi eld between 20 and 60 kyr BP from cosmogenic radionuclides in the GRIP ice core [J].Nuclear Instruments and Methods in Physics Research B: Beam Interactions with Materials and Atoms, 172: 597–604.
Zhou W J. Beck W, Kong X H, et al. 2014. Timing of the Brunhes-Matuyama magnetic polarity reversal in Chinese loess using10Be [J].Geology, 42: 467–470.
BeO preparation for Heqing lake sediment samples
DU Yajuan1,2, ZHAO Guoqing1,2, XIONG Xiaohu1,2
(1. State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi’an 710061, China; 2. Shaanxi Key Laboratory of Accelerator Mass Spectrometry Technology and Application, Xi’an 710061, China)
Background, aim, and scopeThe cosmogenic radionuclide10Be is produced primarily by nuclear interactions between secondary cosmic-ray particles with oxygen and nitrogen in the atmosphere. Its production rate is mainly regulated by the geomagnetic field intensity on time scales of thousands to hundreds of thousands years, so that its accumulated concentration in sediments can, in principle, be used to derive high-resolution records of geomagnetic fi eld changes. A lot of researches that trace paleogeomagnetic intensity variation using10Be in ice core, lake and loess sediment were reported during recent years. The results have validated the10Be technique using AMS, as a viable tool to trace past paleogeomagnetic intensity changes. However, the research about10Be in lake sediment hasn’t been reported in China. Therefore, it is very necessary to study the lacustrine sample, especially the chemical pretreatment method, which will provide the experimental foundation for environment tracing by lacustrine10Be. In this paper, we research the procedure of BeO preparation of samples from Heqing lake sediment.Materials and methodsThe Heqing Basin in Yunnan was the first deep drill core, which obtained about 666 m depth sediment. The sediment was mainly lacustrine. In the paper, we chose a small part of the drill core as our samples. The depth range of the samples is 120—180 m, the interval of which is 8 cm. According the procedure of BeO preparation of loess samples, it is an important step to create the leaching curve. The time scope of Be from the samples in loess and paleosol is the same. But according the result of condition experiment, the time range of Be of different lacustrine samples was different. Obviously, oncecation exchange can not separate Be. So we tried twice cation exchange and precipitation-cation exchange respectively, in order to decide which one can separate Be.ResultsThe experiment results show that (1) we collected the leachate between 800 — 3600 s. The solutions were evaporated and dissolved, and then put in cation exchange resin. The solutions were collected every 400 s. However, the time scope of Be was still different in different samples. Because during 800 — 3600 s, lots of other element was contained in the solution except Be. And the type and quantity of ion were different in different samples. Therefore, the start time of Be were different. So the twice cation exchange proves infeasible. (2) According the second method, we remove the major element (Mg, Fe, Ca, et al.) by the acid dissolution-alkali precipitation-alkali dissolution, and then purified Be by cation exchange. Finally, we obtained the time range of Be of different samples, which was 2400—6400 s. Be was puri fi ed and separate successfully.DiscussionHowever, comparing the former method, the recovery of samples by the second method (precipitation-cation exchange) was lower. Except the blank sample, the recovery of other samples was between 45% — 60%. The possible reason was that other precipitation (e.g. Fe(OH)3) caused the precipitation of Be during the experiment. Therefore, the parallel samples were prepared for AMS measurement. The result revealed that the relative error of each parallel samples was less than 3%, which re fl ected the new procedure is effective and credible. The new procedure can meet the requirement of10Be measurement although the recovery was lower.ConclusionsBecause of the different deposition environment, the climatic proxy of the loess and lake sediments, such as carbonate and organic matter are different. For example, the max value of carbonate is 83.35%, and the minimum value is 0.29% in Heqing core. But the carbonate of loess is below 25% in Xifeng from 900 ka. So the procedure of BeO preparation of loess samples was not fi t for the Heqing lake sediment. In the paper, we create the new procedure of BeO preparation of samples from Heqing lake sediment. Similarly, the new procedure is fit for other lake sediment samples.Recommendations and perspectivesThe new procedure of BeO preparation of Heqing lake sediment samples provides an experiment basis for lacustrine10Be environment tracing. It is signi fi cant for tracing paleo-geomagnetic events. Meanwhile, it’s de fi nitely worth discussing whether the results of lacustrine10Be and paleo-geomagnetic method are the same or different. It was found that there was offset between the age of the Brunhes-Matuyama (BM) geomagnetic reversal obtained by10Be and paleomagnetic method in loess. Further more, maybe the research in lacustrine10Be can provide a new idea for explaining the offset phenomenon.
Heqing; BeO; accelerator mass spectrometer (AMS)
DU Yajuan, E-mail: duyj@ieecas.cn
10.7515/JEE201605009
2016-05-08;錄用日期:2016-08-22
Received Date:2016-05-08;Accepted Date:2016-08-22
國家自然科學(xué)基金項(xiàng)目(41230525);黃土與第四紀(jì)地質(zhì)國家重點(diǎn)實(shí)驗(yàn)室開放基金(SKLLQG1305)Foundation Item: National Natural Science Foundation of China (41230525); State Key Laboratory of Loess and Quaternary Geology Open Fund (SKLLQG1305)
杜雅娟,E-mail: duyj@ieecas.cn