国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

食品非目標(biāo)性檢測技術(shù)

2016-03-06 02:49俞良莉陸維盈劉潔杜麗娟
關(guān)鍵詞:目標(biāo)性指紋圖譜

俞良莉,陸維盈,劉潔,杜麗娟

(1.馬里蘭大學(xué)營養(yǎng)與食品科學(xué)系,美國馬里蘭 20742;

2.上海交通大學(xué)農(nóng)業(yè)與生物學(xué)院,上海 200240; 3.北京工商大學(xué)人類營養(yǎng)與健康高精尖中心,北京 100048)

食品非目標(biāo)性檢測技術(shù)

俞良莉1,陸維盈2,劉潔3,杜麗娟2

(1.馬里蘭大學(xué)營養(yǎng)與食品科學(xué)系,美國馬里蘭 20742;

2.上海交通大學(xué)農(nóng)業(yè)與生物學(xué)院,上海 200240; 3.北京工商大學(xué)人類營養(yǎng)與健康高精尖中心,北京 100048)

非目標(biāo)性檢測技術(shù)近年來在食品安全與質(zhì)量分析領(lǐng)域得到了深入應(yīng)用。非目標(biāo)性檢測技術(shù)創(chuàng)新性地通過儀器分析、指紋圖譜及細胞分子生物學(xué)技術(shù)與化學(xué)計量學(xué)等手段的有機結(jié)合,綜合分析食品的特征,是現(xiàn)代分析技術(shù)與食品質(zhì)量控制的有機結(jié)合。非目標(biāo)性檢測技術(shù)的核心是檢出非正常樣品,而不是檢測由何種物質(zhì)造成樣品的非正常。重點介紹了非目標(biāo)性檢測技術(shù)相關(guān)研究的最新進展,包括非目標(biāo)性色譜、質(zhì)譜、波譜,以及基于體外細胞的非目標(biāo)性檢測技術(shù),廣泛涉及了國內(nèi)外的牛乳、枸杞、當(dāng)歸、牛至、蜂蜜等食品及食品原料。非目標(biāo)性檢測技術(shù)的研究工作能夠在食品檢驗方面建立新的標(biāo)準(zhǔn)規(guī)范,推動食品工業(yè)健康快速發(fā)展,為保障群眾的公共衛(wèi)生安全水平以及生活質(zhì)量的提高發(fā)揮重要作用。

非目標(biāo)性檢測技術(shù);化學(xué)計量學(xué);食品安全與質(zhì)量;食品分析

近十年來,食品安全與質(zhì)量問題對食品科學(xué)提出了新的任務(wù)與挑戰(zhàn)。為了應(yīng)對當(dāng)前的食品安全與質(zhì)量問題,實現(xiàn)食品安全與質(zhì)量監(jiān)控由“亡羊補牢”式的被動檢查到主動防范的轉(zhuǎn)變,食品安全與質(zhì)量監(jiān)控研究領(lǐng)域的科研工作者提出了一系列新技術(shù)、新方法,其中,非目標(biāo)性檢測技術(shù)(non-targeted detection technique)已成為近年來食品安全與質(zhì)量分析領(lǐng)域的研究重點與熱點之一。

1 非目標(biāo)性檢測技術(shù)及其特點

非目標(biāo)性檢測技術(shù)是以樣品的整體化學(xué)或生物學(xué)信息為基礎(chǔ),通過基于分析化學(xué)、細胞和分子生物學(xué)、統(tǒng)計學(xué)、化學(xué)計量學(xué)等技術(shù)手段來綜合分析食品特征的技術(shù)。非目標(biāo)性檢測的核心是檢出非正常樣品,而不是檢出是什么造成非正常。傳統(tǒng)的定向檢測技術(shù)主要通過找出造成食品安全與質(zhì)量問題的特定目標(biāo)物質(zhì),并圍繞此目標(biāo)物質(zhì)開展定性、定量檢測工作。比如,找出特定的如三聚氰胺等受經(jīng)濟利益驅(qū)使的蓄意非法添加物質(zhì)或摻假物質(zhì);檢測中找出特定組分的農(nóng)藥、獸藥殘留等。然而,定向檢測技術(shù)在現(xiàn)代的食品安全與質(zhì)量檢測中存在一定的局限性:對于食品中蓄意摻假或者偽造現(xiàn)象而言,由于摻假物質(zhì)和手段的多樣性,對于未知化學(xué)結(jié)構(gòu)的添加物與異常的樣品,無法通過對目標(biāo)物的定向檢測達到食品安全與質(zhì)量監(jiān)控的目的。而且,有限數(shù)量的目標(biāo)物質(zhì)的檢測往往難以全面涵蓋樣品中重要的質(zhì)量信息。相對地,非目標(biāo)性檢測技術(shù)采用指紋圖譜技術(shù)結(jié)合化學(xué)計量學(xué),包括主成分分析(principal component analysis,PCA),偏最小二乘法(partial least squares,PLS)等建模手段,解決了長期以來定向目標(biāo)檢測需要明確毒害物化學(xué)結(jié)構(gòu)和標(biāo)準(zhǔn)品對照的缺陷。非目標(biāo)性檢測技術(shù)已經(jīng)在摻假檢測、食品及原料的溯源分析等諸多領(lǐng)域得到了深入的研究[1-2]。該技術(shù)已運用到各類食品檢測領(lǐng)域,例如:色譜、質(zhì)譜、波譜,以及基于體外細胞的非目標(biāo)性檢測分析技術(shù)等。

2 食品安全與質(zhì)量檢測中的非目標(biāo)性檢測技術(shù)

2.1 非目標(biāo)性色譜檢測技術(shù)

色譜技術(shù)是最常用的分析食品化學(xué)檢測技術(shù)之一,主要是通過檢測樣品中特有的組成進行食品的檢測。其中最具代表性的是高效液相色譜(high performance liquid chromatography,HPLC)及其相關(guān)技術(shù)。Lu等[3]采用超高效液相色譜(ultra performance liquid chromatography,UPLC)與微波輔助蛋白水解的技術(shù),比較了牛乳蛋白與非乳蛋白的氨基酸相對比例的差異(圖1[3])。

圖1 牛乳與非乳蛋白全水解氨基酸指紋圖譜主成分分析結(jié)果Fig.1PCA scores plot for all milk and non-milk proteins

Jablonski等[4]采用色譜法非定向地檢測了脫脂奶粉中是否存在非乳外源蛋白。Zhao等[5]采集當(dāng)歸的樣品,樣品包括不同制造商的當(dāng)歸制成的保健品,進行HPLC指紋圖譜的化學(xué)組成分析。Xie等[6]比較了不同基因型絞股藍HPLC指紋圖譜的不同區(qū)別。Blanch等[7]采用HPLC和HPLC-GC評價橄欖油和榛子油的真假。也有研究者用HPLC區(qū)分不同地區(qū)和不同品種的葡萄[8]。除了液相色譜和氣相色譜外,其他色譜法也適用于非目標(biāo)性檢測的方法。如,反向薄層色譜法測定牛奶脂肪中混入的椰子油、大豆油等外源脂肪[9]。

2.2 非目標(biāo)性質(zhì)譜檢測技術(shù)

近年來,一系列非目標(biāo)性流動注射質(zhì)譜(flow injection mass spectrometry,F(xiàn)IMS)指紋圖譜技術(shù)在食品中得到了廣泛應(yīng)用。流動注射質(zhì)譜具有分析速度快的優(yōu)勢。Chen等[10]首先提出了FIMS的概念,該研究分析了不同的因素,包括栽培年份、有機或者常規(guī)的種植方式、果實成熟度對于葡萄FIMS指紋圖譜的影響。FIMS技術(shù)在最近的一系列區(qū)分有機與非有機種植模式的薄荷葉、鼠尾草等食品原料的工作中也得到了深入研究[11-15]。Gao等[14]在比較非有機與有機種植模式生產(chǎn)的牛至的工作中,運用了FIMS研究了牛至中化學(xué)組分的區(qū)別。結(jié)果表明,在非有機與有機種植的牛至中,百里香酚以及一些其他的活性分子的含量有著顯著區(qū)別。此外,Zhao等[15]也運用了FIMS指紋圖譜技術(shù)進行當(dāng)歸指紋圖譜的分析,結(jié)果獲得了與HPLC指紋圖譜一致的結(jié)論。

Gao等[12]研究了有機與無機鼠尾草的FIMS指紋圖譜(圖2[12])。圖2中,F(xiàn)IMS譜圖的PCA分析表明了有機與無機種植模式下鼠尾草化學(xué)組分呈現(xiàn)出差異性。類似的不同種植模式的差異性也體現(xiàn)在薄荷葉[11]、羅勒葉[13]等植物原料中。Zhao等[15-16]也對二倍體與四倍體的絞股藍與絞股藍葉子和全草之間的區(qū)別進行分析。一系列的研究結(jié)果表明,F(xiàn)IMS技術(shù)與非目標(biāo)性檢測兩者可以在實際的應(yīng)用中得到很好地結(jié)合。

除了FIMS技術(shù)外,其他非目標(biāo)性質(zhì)譜檢測技術(shù)也得到了很多報道。液質(zhì)聯(lián)用是將液相色譜法與質(zhì)譜法相結(jié)合,其應(yīng)用范圍廣泛。Lu等[17]建立了一種基于超高效液相色譜-質(zhì)譜聯(lián)用(UPLC-MS)與FIMS指紋圖譜的方法,進行枸杞產(chǎn)地及其品種的非定向目標(biāo)鑒別。他們將從寧夏采集的4種不同品種的枸杞干果與其他5個省份采集的枸杞干果用UPLC-MS和FIMS采集指紋圖譜,并進行建模(圖3[17]),為寧夏枸杞的優(yōu)化育種提供了一定參考。

圖2 使用FIMS指紋圖譜的有機和無機鼠尾草的主成分分析結(jié)果Fig.2PCA scores plot for HPLC absolute peak areas of organic and conventional sage samples

圖3 不同品種寧夏枸杞提取物偏最小二乘法判別分析主成分圖Fig.3PLS-DA scores plot differentiating NX cultivars using UPLC-MS peak areas

此外,Wang等[18]采用GC-MS采集傳統(tǒng)種植和有機種植羅勒的指紋圖譜對羅勒進行分類。Cordewener等[19]通過四級桿質(zhì)譜研究了非目標(biāo)性檢測脫脂奶粉中潛在的非乳蛋白添加物的技術(shù),該方法能夠檢測脫脂牛奶中加入的兩種大豆分離蛋白和豌豆蛋白。Karlund等[20]采用LC-MS分析了常規(guī)與有機種植模式的3個不同品種草莓中的酚類、脂肪酸等代謝物的不同。此外,F(xiàn)raser等[21]運用親水性相互作用液相色譜-質(zhì)譜聯(lián)用,研究了茶葉水提物中的自由氨基酸和花青素的指紋圖譜,為茶葉的品質(zhì)等的鑒定提供參考。基質(zhì)輔助激光解吸電離飛行時間質(zhì)譜(matrix-assisted laser desorption/ionization mass spectrometry,MALDI-MS)被報道用于檢測牛奶中摻假的成分如大豆油、棕櫚油和動物脂肪[22],以及區(qū)別生鮮乳和加工的奶粉工作中[23]。

2.3 非目標(biāo)性波譜檢測技術(shù)

波譜檢測技術(shù)是食品分析中的一類重要方法。波譜法主要包括紅外光譜(infrared spectroscopy,IR)、NMR等。其中,近紅外光譜技術(shù)(near infrared spectroscopy,NIR)是一種常用的波譜檢測技術(shù)。NIR具有分析速度快、樣品無需進行預(yù)處理、操作技術(shù)要求低等優(yōu)點。非目標(biāo)性紅外光譜是一種有效的食品檢測方法,其研究包括:采用NIR結(jié)合化學(xué)計量學(xué)模式識別測定牛奶中的乳清與尿素等摻假物[24],對生鮮牛奶和摻入增稠劑和偽蛋白的摻假樣品進行鑒定[25],測定奶粉中的常用摻假物(淀粉、乳清和蔗糖)[26],通過全波長掃描IR檢測螺旋藻粉的摻假等[27]。

拉曼光譜技術(shù)也被應(yīng)用于非目標(biāo)性檢測。He等[28]將免疫磁珠和表面增強拉曼光譜結(jié)合檢測混入牛奶中的卵白蛋白等外源蛋白,能夠滿足常規(guī)分析測定的需求。此外,NMR也被用來檢測區(qū)別牛肉與馬肉[29],確定釀酒的葡萄品種、釀酒的年份及地區(qū)[30],通過熒光光譜測定了來自不同喂養(yǎng)條件的羊奶[31]。

2.4 基于體外細胞的非目標(biāo)性檢測技術(shù)

肝臟是機體內(nèi)負責(zé)代謝和解毒的重要器官,在外源性物質(zhì)如藥物、膳食補充劑、食品添加劑、食品污染物的代謝過程中發(fā)揮了重要作用。這也使得肝臟成為毒性物質(zhì)作用的主要靶器官,導(dǎo)致急慢性肝毒、肝損傷或肝臟疾病。Liu等[32]將酚類化合物作用于人源肝癌HePG2/C3A細胞系及大鼠肝癌MH1C1細胞系,考察了他們對于細胞活力、氧化應(yīng)激等指標(biāo)的影響;綜合各項指標(biāo)按照毒性強弱分為4類,劃分的情況與在體內(nèi)的毒性基本一致(圖4[32]);證明了利用易培養(yǎng)的肝細胞系,選取足夠數(shù)量的受試化合物,通過檢測細胞內(nèi)活性氧的含量、線粒體膜電位、細胞內(nèi)DNA含量、細胞內(nèi)ATP含量和細胞LDH釋放量、細胞線粒體CYP450酶活力等與細胞功能關(guān)系密切的指標(biāo),對相關(guān)物質(zhì)的肝毒性進行非目標(biāo)性評估的可行性。以體外肝細胞為載體、以多項肝毒性指標(biāo)進行綜合評價的肝毒性預(yù)警模型具有簡便、快速、有效等優(yōu)勢。

2.5 其他檢測技術(shù)

值得注意的是,非目標(biāo)性檢測作為一種通用的技術(shù)途徑,還可在基因芯片等其他生物、化學(xué)檢測手段中發(fā)揮巨大的應(yīng)用潛力。如用凝膠電泳鑒定牛膠摻假[33],采用酶聯(lián)免疫吸附技術(shù)鑒定驢奶中混入低價的牛奶等[34]。

圖416 種酚酸與5種植物提取物的8 MH1C1細胞活性評價指標(biāo)聚類分析圖Fig.4Cluster analysis for activity of 16 phenolics and 5 botanical extracts on 8 endpoint assays in MH1C1 cells

3 結(jié)論及展望

隨著食品化學(xué)、儀器分析、代謝組學(xué)等相關(guān)科學(xué)研究的日趨成熟,非目標(biāo)性檢測技術(shù)將在食品檢驗領(lǐng)域發(fā)揮重大作用。為了推動此技術(shù)的發(fā)展,建立食品安全與質(zhì)量相關(guān)的非目標(biāo)性檢測技術(shù)標(biāo)準(zhǔn),開發(fā)集成非目標(biāo)性檢測技術(shù)相關(guān)模塊的便攜式檢測設(shè)備等十分重要??傊?,非目標(biāo)性檢測技術(shù)能夠幫助推動食品工業(yè)健康、快速地發(fā)展,保障與提高廣大群眾的飲食健康以及生活質(zhì)量。

[1]俞良莉,王碩,孫寶國.食品安全化學(xué)[M].上海:上海交通大學(xué)出版社,2014:283-311.

YU L L,WANG S,SUN B G.Food safety chemistry[M].Shanghai:Shanghai Jiao Tong University Press,2014:283-311.

[2]YU L L,WANG S,SUN B G.Food safety chemistry: toxicant occurence,analysis and mitigation[M].Boca Raton:CRC Press,2015:1-5.

[3]LU W,LV X,GAO B,et al.Differentiating milk and non-milk proteins by UPLC amino acid fingerprints combined with chemometric data analysis techniques[J].Journal of Agricultural and Food Chemistry,2015,63 (15):3996-4002.

[4]JABLONSKI J E,MOORE J C,HARNLY J M.Nontargeted detection of adulteration of skim milk powder with foreign proteins using UHPLC-UV[J].Journal of Agricultural and Food Chemistry,2014,62(22):5198-5206.

[5]ZHAO Y,SUN J,YU L L,et al.Chromatographic and mass spectrometric fingerprinting analyses of Angelica sinensis(Oliv.)diels-derived dietary supplements[J].Analytical and Bioanalytical Chemistry,2013,405(13): 4477-4485.

[6]XIE Z,ZHAO Y,CHEN P,et al.Chromatographic fingerprint analysis and rutin and quercetin compositions in the leaf and whole-plant samples of di-and tetraploid Gynostemma pentaphyllum[J].Journal of Agricultural and Food Chemistry,2011,59(7):3042-3049.

[7]BLANCH G P,CAJA M D M,RUIZ DEL CASTILLO M L,et al.Comparison of different methods for the evaluation of the authenticity of olive oil and hazelnut oil[J].Journal of Agricultural and Food Chemistry,1998,46 (8):3153-3157.

[8]FRAIGE K,PEREIRA-FILHO E R,CARRILHO E.Fingerprinting of anthocyanins from grapes produced in Brazil using HPLC-DAD-MS and exploratory analysis by principal component analysis[J].Food Chemistry,2014,145:395-403.

[9]RANI A,SHARMA V,ARORA S,et al.A rapid reversed-phase thin layer chromatographic protocol for detection of adulteration in ghee(clarified milk fat)with vegetable oils[J].Journal of Food Science and Technology,2015,52(4):2434-2439.

[10]CHEN P,HARNLY J M,LESTER G E.Flow injection mass spectral fingerprints demonstrate chemical differences in rio red grapefruit with respect to year,harvest time,and conventional versus organic farming[J].Journal of Agricultural and Food Chemistry,2010,58 (8):4545-4553.

[11]GAO B,LU Y,QIN F,et al.Differentiating organic from conventional peppermints using chromatographic and flow injection mass spectrometric(FIMS)fingerprints[J].Journal of Agricultural and Food Chemistry,2012,60(48):11987-11994.

[12]GAO B,LU Y,SHENG Y,et al.Differentiating organic and conventional sage by chromatographic and mass spectrometry flow injection fingerprints combined with principal component analysis[J].Journal of Agricultural and Food Chemistry,2013,61(12):2957-2963.

[13]LU Y,GAO B,CHEN P,et al.Characterisation of organic and conventional sweet basil leaves using chromatographic and flow-injection mass spectrometric(FIMS) fingerprints combined with principal component analysis[J].Food Chemistry,2014,154:262-268.

[14]GAO B,QIN F,DING T,et al.Differentiating organically and conventionally grown oregano using ultraperformance liquid chromatography mass spectrometry(UPLCMS),headspace gas chromatography with flame ionization detection(Headspace-GC-FID),and flow injection mass spectrum(FIMS)fingerprints combined with multivariate data analysis[J].Journal of Agricultural and Food Chemistry,2014,62(32):8075-8084.

[15]ZHAO Y,NIU Y,XIE Z,et al.Differentiating leaf and whole-plant samples of di-and tetraploid Gynostemma pentaphyllum(Thunb.)Makino using flow-injection mass spectrometric fingerprinting method[J].Journal of Functional Foods,2013,5(3):1288-1297.

[16]XIE Z,HUANG H,ZHAO Y,et al.Chemical composition and anti-proliferative and anti-inflammatory effects of the leaf and whole-plant samples of diploid and tetraploid Gynostemmapentaphyllum(Thunb.)Makino[J].Food Chemistry,2012,132(1):125-133.

[17]LU W,JIANG Q,SHI H,et al.Partial least-squaresdiscriminant analysis differentiating Chinese wolfberries by UPLC-MS and flow injection mass spectrometric (FIMS)fingerprints[J].Journal of Agricultural and Food Chemistry,2014,62(37):9073-9080.

[18]WANG Z,CHEN P,YU L,et al.Authentication of organically and conventionally grown basils by gas chromatography/mass spectrometry chemical profiles[J].Analytical Chemistry,2013,85(5):2945-2953.

[19]CORDEWENERJHG,LUYKXDMAM,F(xiàn)RANKHUIZEN R,et al.Untargeted LC-Q-TOF mass spectrometry method for the detection of adulterations in skimmed-milk powder[J].Journal of Separation Science,2009,32(8):1216-1223.

[20]KARLUND A,HANHINEVA K,LEHTONEN M,et al.Nontargeted metabolite profiles and sensory properties of strawberry cultivars grown both organically and conventionally[J].Journal of Agricultural and Food Chemistry,2015,63(3):1010-1019.

[21]FRASER K,HARRISON S J,LANE G A,et al.Nontargeted analysis of tea by hydrophilic interaction liquid chromatography and high resolution mass spectrometry[J].Food Chemistry,2012,134(3):1616-1623.

[22]GARCIA J S,SANVIDO G B,SARAIVA S A,et al.Bovine milk powder adulteration with vegetable oils or fats revealed by MALDI-QTOF MS[J].Food Chemistry,2012,131(2):722-726.

[23]COZZOLINO R,PASSALACQUA S,SALEMI S,et al.Identification of adulteration in milk by matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry[J].Journal of Mass Spectrometry,2001,36(9):1031-1037.

[24]SANTOS P,PEREIRA-FILHO E,RODRIGUEZ-SAONA L.Rapid detection and quantification of milk adulteration using infrared microspectroscopy and chemometrics analysis[J].Food Chemistry,2013,138(1): 19-24.

[25]ZHANG L G,ZHANG X,NI L J,et al.Rapid identification of adulterated cow milk by non-linear pattern recognition methods based on near infrared spectroscopy[J].Food Chemistry,2014,145:342-348.

[26]BORIN A,F(xiàn)ERRAO M F,MELLO C,et al.Leastsquares support vector machines and near infrared spectroscopy for quantification of common adulterants in powdered milk[J].Analytica Chimica Acta,2006,579 (1):25-32.

[27]WU D,NIE P,CUELLO J,et al.Application of visible and near infrared spectroscopy for rapid and non-invasive quantification of common adulterants in Spirulina powder[J].Journal of Food Engineering,2011,102(3): 278-286.

[28]HE L,HAYNES C L,DIEZ‐GONZALEZ F,et al.Rapid detection of a foreign protein in milk using IMSSERS[J].Journal of Raman Spectroscopy,2011,42 (6):1428-1434.

[29]JAKES W,GERDOVA A,DEFERNEZ M,et al.Authentication of beef versus horse meat using 60 MHz1H NMR spectroscopy[J].Food Chemistry,2015,175: 1-9.

[30]MONAKHOVA Y B,GODELMANN R,KUBALLA T,et al.Independent components analysis to increase efficiency of discriminant analysis methods(FDA and LDA):application to NMR fingerprinting of wine[J].Talanta,2015,141:60-65.

[31]HAMMAMI M,ROUISSI H,SALAH N,et al.Fluorescence spectroscopy coupled with factorial discriminant analysis technique to identify sheep milk from different feeding systems[J].Food Chemistry,2010,122(4): 1344-1350.

[32]LIU Y,F(xiàn)LYNN T J,F(xiàn)ERGUSON M S,et al.Effects of dietary phenolics and botanical extracts on hepatotoxicity-related endpoints in human and rat hepatoma cells and statistical models for prediction of hepatotoxicity[J].Food and Chemical Toxicology,2011,49(8):1820-1827.

[33]AZIRA T N,MAN Y C,HAFIDZ R R M,et al.Use of principal component analysis for differentiation of gelatine sources based on polypeptide molecular weights[J].Food Chemistry,2014,151(20):286-292.

[34]PIZZANO R,SALIMEI E.Isoelectric focusing and ELISA for detecting adulteration of donkey milk with cow milk[J].Journal of Agricultural and Food Chemistry,2014,62(25):5853-5858.

Review on Non-targeted Detection Technique for Food Safety and Quality

Liangli(Lucy)Yu1,LU Weiying2,LIU Jie3,DU Lijuan2
(1.Department of Nutrition and Food Science,University of Maryland,College Park,MD 20742,USA; 2.School of Agriculture and Biology,Shanghai Jiao Tong University,Shanghai 200240,China; 3.Beijing Advanced Innovation Center for Food Nutrition and Human Health,Beijing Technology and Business University,Beijing 100048,China)

Non-targeted detection technique has been extensively applied in the food safety and quality in recent years.In general,a non-targeted detection combines analytical approaches,fingerprinting techniques and chemometrics to detect toxicants or foreign components in foods without knowing their chemical structures.The key purpose of non-targeted detection technique is to detect whether the sample is abnormal,without prior knowledge of what caused the abnormality.This manuscript introduces and reviews the current progress and the prospect non-targeted food detection techniques,including chromatographic,mass spectrometric,spectroscopic,cell-based non-targeted detection techniques.Foods and ingredients including milk,Chinese wolfberries,Chinese angelica,oregano,honey,etc.,were introduced.The nontargeted detection technique can help the healthy development of food industry and play an important role in protecting public welfare and human wellbeing.

non-targeted detection technique;chemometrics;food safety and quality assurance; food analysis

葉紅波)

TS207.3

A

10.3969/j.issn.2095-6002.2016.06.001

2095-6002(2016)06-0001- 06

2016-11- 01

農(nóng)業(yè)部公益性行業(yè)科研專項(201203069);國家高技術(shù)研究發(fā)展計劃(863計劃)項目(2013AA102202;2013AA102207);國家自然科學(xué)基金青年基金資助項目(31501553;31501479)。

俞良莉,女,教授,博士生導(dǎo)師,主要從事食品安全與營養(yǎng)方面的研究;陸維盈,男,副教授,博士生導(dǎo)師,主要從事食品安全與分析方面的研究。

俞良莉,陸維盈,劉潔,等.食品非目標(biāo)性檢測技術(shù)[J].食品科學(xué)技術(shù)學(xué)報,2016,34(6):1-6.

Liangli(Lucy)Yu,Lu Weiying,Liu Jie,et al.Review on non-targeted detection technique for food safety and quality[J].Journal of Food Science and Technology,2016,34(6):1-6.

專家論壇專欄

猜你喜歡
目標(biāo)性指紋圖譜
目標(biāo)性社區(qū)護理對預(yù)防冠心病發(fā)生心肌梗死的價值
某三甲醫(yī)院綜合重癥監(jiān)護病房醫(yī)院感染目標(biāo)性監(jiān)測分析
像偵探一樣提取指紋
繪一張成長圖譜
為什么每個人的指紋都不一樣
論前置作業(yè)的目標(biāo)性和實踐性——以單元整組閱讀教學(xué)和習(xí)作教學(xué)為例
補腎強身片UPLC指紋圖譜
主動對接你思維的知識圖譜
基于自適應(yīng)稀疏變換的指紋圖像壓縮
新課標(biāo)下初中數(shù)學(xué)目標(biāo)性教學(xué)策略的應(yīng)用
肃北| 黔东| 科技| 周至县| 浪卡子县| 津市市| 达拉特旗| 乌海市| 柳江县| 江城| 博兴县| 博乐市| 潍坊市| 稻城县| 朝阳区| 岢岚县| 凌海市| 霍林郭勒市| 永修县| 寿宁县| 龙泉市| 临沭县| 即墨市| 文成县| 河东区| 白银市| 梧州市| 大石桥市| 榆社县| 洛川县| 邹平县| 嘉峪关市| 大厂| 宁德市| 文山县| 周宁县| 安化县| 绥江县| 赫章县| 巫山县| 湖南省|